X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=1dfd9a83dafb3d4dbf1aeecfe5607992a81f8b33;hb=4032eaf98c63b0fb1f2418a1cdc56b72bc76c329;hp=06c493fe0d15b21728ca563ee4c05fae37b9504d;hpb=2e07494170d5f56805b7a6c1b70808fc2a157052;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index 06c493fe0d1..1dfd9a83daf 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -17,15 +17,15 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/System/Mutex.h" +#include "llvm/Support/Mutex.h" #include "llvm/ADT/DenseMap.h" #include #include @@ -34,22 +34,22 @@ using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. // Register the default SparcV9 implementation... -static RegisterPass X("targetdata", "Target Data Layout", false, - true); +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// -StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { +StructLayout::StructLayout(StructType *ST, const TargetData &TD) { + assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); StructAlignment = 0; StructSize = 0; NumElements = ST->getNumElements(); // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { - const Type *Ty = ST->getElementType(i); + Type *Ty = ST->getElementType(i); unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); // Add padding if necessary to align the data element properly. @@ -84,7 +84,7 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); - + // Multiple fields can have the same offset if any of them are zero sized. // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop // at the i32 element, because it is the last element at that offset. This is @@ -98,8 +98,8 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { //===----------------------------------------------------------------------===// TargetAlignElem -TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; @@ -117,14 +117,6 @@ TargetAlignElem::operator==(const TargetAlignElem &rhs) const { && TypeBitWidth == rhs.TypeBitWidth); } -std::ostream & -TargetAlignElem::dump(std::ostream &os) const { - return os << AlignType - << TypeBitWidth - << ":" << (int) (ABIAlign * 8) - << ":" << (int) (PrefAlign * 8); -} - const TargetAlignElem TargetData::InvalidAlignmentElem = TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); @@ -139,44 +131,8 @@ static unsigned getInt(StringRef R) { return Result; } -/*! - A TargetDescription string consists of a sequence of hyphen-delimited - specifiers for target endianness, pointer size and alignments, and various - primitive type sizes and alignments. A typical string looks something like: -

- "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" -

- (note: this string is not fully specified and is only an example.) - \p - Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, - below) dictates how a type will be aligned within an aggregate and when used - as an argument. Preferred alignment (pref_align, below) determines a type's - alignment when emitted as a global. - \p - Specifier string details: -

- [E|e]: Endianness. "E" specifies a big-endian target data model, "e" - specifies a little-endian target data model. -

- p:@verbatim::@endverbatim: Pointer size, - ABI and preferred alignment. -

- @verbatim::@endverbatim: Numeric type - alignment. Type is - one of i|f|v|a, corresponding to integer, floating point, vector, or - aggregate. Size indicates the size, e.g., 32 or 64 bits. - \p - The default string, fully specified, is: -

- "E-p:64:64:64-a0:0:8-f32:32:32-f64:64:64" - "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64" - "-v64:64:64-v128:128:128" -

- Note that in the case of aggregates, 0 is the default ABI and preferred - alignment. This is a special case, where the aggregate's computed worst-case - alignment will be used. - */ void TargetData::init(StringRef Desc) { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); LayoutMap = 0; LittleEndian = false; @@ -200,17 +156,17 @@ void TargetData::init(StringRef Desc) { std::pair Split = Desc.split('-'); StringRef Token = Split.first; Desc = Split.second; - + if (Token.empty()) continue; - + Split = Token.split(':'); StringRef Specifier = Split.first; Token = Split.second; - + assert(!Specifier.empty() && "Can't be empty here"); - - switch(Specifier[0]) { + + switch (Specifier[0]) { case 'E': LittleEndian = false; break; @@ -243,15 +199,26 @@ void TargetData::init(StringRef Desc) { } unsigned Size = getInt(Specifier.substr(1)); Split = Token.split(':'); - unsigned char ABIAlign = getInt(Split.first) / 8; - + unsigned ABIAlign = getInt(Split.first) / 8; + Split = Split.second.split(':'); - unsigned char PrefAlign = getInt(Split.first) / 8; + unsigned PrefAlign = getInt(Split.first) / 8; if (PrefAlign == 0) PrefAlign = ABIAlign; setAlignment(AlignType, ABIAlign, PrefAlign, Size); break; } + case 'n': // Native integer types. + Specifier = Specifier.substr(1); + do { + if (unsigned Width = getInt(Specifier)) + LegalIntWidths.push_back(Width); + Split = Token.split(':'); + Specifier = Split.first; + Token = Split.second; + } while (!Specifier.empty() || !Token.empty()); + break; + default: break; } @@ -262,19 +229,19 @@ void TargetData::init(StringRef Desc) { /// /// @note This has to exist, because this is a pass, but it should never be /// used. -TargetData::TargetData() : ImmutablePass(&ID) { - llvm_report_error("Bad TargetData ctor used. " +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " "Tool did not specify a TargetData to use?"); } -TargetData::TargetData(const Module *M) - : ImmutablePass(&ID) { +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { init(M->getDataLayout()); } void -TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && @@ -285,16 +252,16 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, return; } } - + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, pref_align, bit_width)); } -/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. -unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth, bool ABIInfo, - const Type *Ty) const { + Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. int BestMatchIdx = -1; int LargestInt = -1; @@ -302,28 +269,18 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, if (Alignments[i].AlignType == AlignType && Alignments[i].TypeBitWidth == BitWidth) return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; - + // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { - // If this is a specification for a smaller vector type, we will fall back - // to it. This happens because <128 x double> can be implemented in terms - // of 64 <2 x double>. - if (Alignments[i].TypeBitWidth < BitWidth) { - // Verify that we pick the biggest of the fallbacks. - if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) - BestMatchIdx = i; - } - } else if (AlignType == INTEGER_ALIGN && - Alignments[i].AlignType == INTEGER_ALIGN) { + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { // The "best match" for integers is the smallest size that is larger than // the BitWidth requested. - if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) BestMatchIdx = i; // However, if there isn't one that's larger, then we must use the // largest one we have (see below) - if (LargestInt == -1 || + if (LargestInt == -1 || Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) LargestInt = i; } @@ -338,10 +295,15 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, } else { assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); - // If we didn't find a vector size that is smaller or equal to this type, - // then we will end up scalarizing this to its element type. Just return - // the alignment of the element. - return getAlignment(cast(Ty)->getElementType(), ABIInfo); + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = llvm::NextPowerOf2(Align); + return Align; } } @@ -350,67 +312,64 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, : Alignments[BestMatchIdx].PrefAlign; } -typedef DenseMapLayoutInfoTy; +namespace { -TargetData::~TargetData() { - if (!LayoutMap) - return; - - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *static_cast(LayoutMap); - for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) { - I->second->~StructLayout(); - free(I->second); - TheMap.erase(I++); +class StructLayoutMap { + typedef DenseMap LayoutInfoTy; + LayoutInfoTy LayoutInfo; + +public: + virtual ~StructLayoutMap() { + // Remove any layouts. + for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); + I != E; ++I) { + StructLayout *Value = I->second; + Value->~StructLayout(); + free(Value); + } } - - delete static_cast(LayoutMap); + + StructLayout *&operator[](StructType *STy) { + return LayoutInfo[STy]; + } + + // for debugging... + virtual void dump() const {} +}; + +} // end anonymous namespace + +TargetData::~TargetData() { + delete static_cast(LayoutMap); } -const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { +const StructLayout *TargetData::getStructLayout(StructType *Ty) const { if (!LayoutMap) - LayoutMap = static_cast(new LayoutInfoTy()); - - LayoutInfoTy &TheMap = *static_cast(LayoutMap); - - StructLayout *&SL = TheMap[Ty]; + LayoutMap = new StructLayoutMap(); + + StructLayoutMap *STM = static_cast(LayoutMap); + StructLayout *&SL = (*STM)[Ty]; if (SL) return SL; - // Otherwise, create the struct layout. Because it is variable length, we + // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. int NumElts = Ty->getNumElements(); StructLayout *L = - (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); - + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); + // Set SL before calling StructLayout's ctor. The ctor could cause other // entries to be added to TheMap, invalidating our reference. SL = L; - + new (L) StructLayout(Ty, *this); - return L; -} -/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout -/// objects. If a TargetData object is alive when types are being refined and -/// removed, this method must be called whenever a StructType is removed to -/// avoid a dangling pointer in this cache. -void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { - if (!LayoutMap) return; // No cache. - - LayoutInfoTy* LayoutInfo = static_cast(LayoutMap); - LayoutInfoTy::iterator I = LayoutInfo->find(Ty); - if (I == LayoutInfo->end()) return; - - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); + return L; } - std::string TargetData::getStringRepresentation() const { std::string Result; raw_string_ostream OS(Result); - + OS << (LittleEndian ? "e" : "E") << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 << ':' << PointerPrefAlign*8; @@ -419,18 +378,25 @@ std::string TargetData::getStringRepresentation() const { OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; } + + if (!LegalIntWidths.empty()) { + OS << "-n" << (unsigned)LegalIntWidths[0]; + + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) + OS << ':' << (unsigned)LegalIntWidths[i]; + } return OS.str(); } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { +uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: return getPointerSizeInBits(); case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); + ArrayType *ATy = cast(Ty); return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); } case Type::StructTyID: @@ -443,6 +409,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { case Type::FloatTyID: return 32; case Type::DoubleTyID: + case Type::X86_MMXTyID: return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: @@ -468,7 +435,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref == false) for the requested type \a Ty. */ -unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { +unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { int AlignType = -1; assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); @@ -490,7 +457,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); - return std::max(Align, (unsigned)Layout->getAlignment()); + return std::max(Align, Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -505,6 +472,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; + case Type::X86_MMXTyID: case Type::VectorTyID: AlignType = VECTOR_ALIGN; break; @@ -517,11 +485,18 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { abi_or_pref, Ty); } -unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { +unsigned TargetData::getABITypeAlignment(Type *Ty) const { return getAlignment(Ty, true); } -unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { for (unsigned i = 0, e = Alignments.size(); i != e; ++i) if (Alignments[i].AlignType == STACK_ALIGN) return Alignments[i].ABIAlign; @@ -529,33 +504,34 @@ unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { return getABITypeAlignment(Ty); } -unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { +unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { return getAlignment(Ty, false); } -unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = (unsigned) getPrefTypeAlignment(Ty); +unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. -const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { +IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { return IntegerType::get(C, getPointerSizeInBits()); } -uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, - unsigned NumIndices) const { - const Type *Ty = ptrTy; - assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); +uint64_t TargetData::getIndexedOffset(Type *ptrTy, + ArrayRef Indices) const { + Type *Ty = ptrTy; + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator - TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); - for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { - if (const StructType *STy = dyn_cast(*TI)) { + TI = gep_type_begin(ptrTy, Indices); + for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; + ++CurIDX, ++TI) { + if (StructType *STy = dyn_cast(*TI)) { assert(Indices[CurIDX]->getType() == Type::getInt32Ty(ptrTy->getContext()) && "Illegal struct idx"); @@ -574,8 +550,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. - int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeAllocSize(Ty); + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); } } @@ -586,12 +562,16 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, /// global. This includes an explicitly requested alignment (if the global /// has one). unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { - const Type *ElemType = GV->getType()->getElementType(); + Type *ElemType = GV->getType()->getElementType(); unsigned Alignment = getPrefTypeAlignment(ElemType); - if (GV->getAlignment() > Alignment) - Alignment = GV->getAlignment(); + unsigned GVAlignment = GV->getAlignment(); + if (GVAlignment >= Alignment) { + Alignment = GVAlignment; + } else if (GVAlignment != 0) { + Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); + } - if (GV->hasInitializer()) { + if (GV->hasInitializer() && GVAlignment == 0) { if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment.