X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=29004dad2841983935bb820378ce78e3aaeb3494;hb=43e91b9c2f242c53dab2cf5813c0f6e208d7f213;hp=b53ac562379dd5b5098a5ef9ded2a2fe90ad8c5f;hpb=52dc96842efa6f722f5b55540e235828699e0326;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index b53ac562379..29004dad284 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -27,14 +27,14 @@ #include "llvm/ADT/StringExtras.h" #include #include -#include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. -namespace { - // Register the default SparcV9 implementation... - RegisterPass X("targetdata", "Target Data Layout"); -} + +// Register the default SparcV9 implementation... +static RegisterPass X("targetdata", "Target Data Layout", false, + true); +char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout @@ -45,23 +45,20 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructSize = 0; NumElements = ST->getNumElements(); - // Loop over each of the elements, placing them in memory... + // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { const Type *Ty = ST->getElementType(i); - unsigned TyAlign; - uint64_t TySize; - TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty)); - TySize = TD.getTypeSize(Ty); + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); - // Add padding if necessary to make the data element aligned properly... - if (StructSize % TyAlign != 0) - StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... + // Add padding if necessary to align the data element properly. + if ((StructSize & (TyAlign-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); - // Keep track of maximum alignment constraint + // Keep track of maximum alignment constraint. StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets[i] = StructSize; - StructSize += TySize; // Consume space for this data item + StructSize += TD.getTypePaddedSize(Ty); // Consume space for this data item } // Empty structures have alignment of 1 byte. @@ -69,8 +66,8 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. - if (StructSize % StructAlignment != 0) - StructSize = (StructSize/StructAlignment + 1) * StructAlignment; + if ((StructSize & (StructAlignment-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); } @@ -82,9 +79,15 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); - assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) && + assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); + + // Multiple fields can have the same offset if any of them are zero sized. + // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop + // at the i32 element, because it is the last element at that offset. This is + // the right one to return, because anything after it will have a higher + // offset, implying that this element is non-empty. return SI-&MemberOffsets[0]; } @@ -94,7 +97,8 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { TargetAlignElem TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, short bit_width) { + unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; retval.ABIAlign = abi_align; @@ -103,12 +107,6 @@ TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, return retval; } -bool -TargetAlignElem::operator<(const TargetAlignElem &rhs) const { - return ((AlignType < rhs.AlignType) - || (AlignType == rhs.AlignType && TypeBitWidth < rhs.TypeBitWidth)); -} - bool TargetAlignElem::operator==(const TargetAlignElem &rhs) const { return (AlignType == rhs.AlignType @@ -151,10 +149,11 @@ const TargetAlignElem TargetData::InvalidAlignmentElem = [E|e]: Endianness. "E" specifies a big-endian target data model, "e" specifies a little-endian target data model.

- p:::: Pointer size, ABI and preferred - alignment. + p:@verbatim::@endverbatim: Pointer size, + ABI and preferred alignment.

- ::: Numeric type alignment. Type is + @verbatim::@endverbatim: Numeric type + alignment. Type is one of i|f|v|a, corresponding to integer, floating point, vector (aka packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. \p @@ -177,27 +176,21 @@ void TargetData::init(const std::string &TargetDescription) { PointerPrefAlign = PointerABIAlign; // Default alignments - setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool - setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte - setAlignment(INTEGER_ALIGN, 2, 2, 16); // short - setAlignment(INTEGER_ALIGN, 4, 4, 32); // int - setAlignment(INTEGER_ALIGN, 4, 8, 64); // long + setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 + setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8 + setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16 + setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32 + setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64 setAlignment(FLOAT_ALIGN, 4, 4, 32); // float setAlignment(FLOAT_ALIGN, 8, 8, 64); // double setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... - setAlignment(AGGREGATE_ALIGN, 0, 0, 0); // struct, union, class, ... - + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... + while (!temp.empty()) { std::string token = getToken(temp, "-"); - std::string arg0 = getToken(token, ":"); const char *p = arg0.c_str(); - AlignTypeEnum align_type; - short size; - unsigned char abi_align; - unsigned char pref_align; - switch(*p) { case 'E': LittleEndian = false; @@ -215,13 +208,19 @@ void TargetData::init(const std::string &TargetDescription) { case 'i': case 'v': case 'f': - case 'a': { - align_type = (*p == 'i' ? INTEGER_ALIGN : - (*p == 'f' ? FLOAT_ALIGN : - (*p == 'v' ? VECTOR_ALIGN : AGGREGATE_ALIGN))); - size = (short) atoi(++p); - abi_align = atoi(getToken(token, ":").c_str()) / 8; - pref_align = atoi(getToken(token, ":").c_str()) / 8; + case 'a': + case 's': { + AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning + switch(*p) { + case 'i': align_type = INTEGER_ALIGN; break; + case 'v': align_type = VECTOR_ALIGN; break; + case 'f': align_type = FLOAT_ALIGN; break; + case 'a': align_type = AGGREGATE_ALIGN; break; + case 's': align_type = STACK_ALIGN; break; + } + uint32_t size = (uint32_t) atoi(++p); + unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; + unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; if (pref_align == 0) pref_align = abi_align; setAlignment(align_type, abi_align, pref_align, size); @@ -233,53 +232,91 @@ void TargetData::init(const std::string &TargetDescription) { } } -TargetData::TargetData(const Module *M) { +TargetData::TargetData(const Module *M) + : ImmutablePass(&ID) { init(M->getDataLayout()); } void TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, short bit_width) { - TargetAlignElem elt = TargetAlignElem::get(align_type, abi_align, - pref_align, bit_width); - std::pair ins_result = - std::equal_range(Alignments.begin(), Alignments.end(), elt); - align_iterator I = ins_result.first; - if (I != Alignments.end() && I->AlignType == align_type && - I->TypeBitWidth == bit_width) { - // Update the abi, preferred alignments. - I->ABIAlign = abi_align; - I->PrefAlign = pref_align; - } else - Alignments.insert(I, elt); - -#if 0 - // Keep around for debugging and testing... - align_iterator E = ins_result.second; - - cerr << "setAlignment(" << elt << ")\n"; - cerr << "I = " << (I - Alignments.begin()) - << ", E = " << (E - Alignments.begin()) << "\n"; - std::copy(Alignments.begin(), Alignments.end(), - std::ostream_iterator(*cerr, "\n")); - cerr << "=====\n"; -#endif + unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == align_type && + Alignments[i].TypeBitWidth == bit_width) { + // Update the abi, preferred alignments. + Alignments[i].ABIAlign = abi_align; + Alignments[i].PrefAlign = pref_align; + return; + } + } + + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, + pref_align, bit_width)); } -const TargetAlignElem & -TargetData::getAlignment(AlignTypeEnum align_type, short bit_width) const -{ - std::pair find_result = - std::equal_range(Alignments.begin(), Alignments.end(), - TargetAlignElem::get(align_type, 0, 0, - bit_width)); - align_const_iterator I = find_result.first; - - // Note: This may not be reasonable if variable-width integer sizes are - // passed, at which point, more sophisticated searching will need to be done. - return *I; +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// preferred if ABIInfo = false) the target wants for the specified datatype. +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, + uint32_t BitWidth, bool ABIInfo, + const Type *Ty) const { + // Check to see if we have an exact match and remember the best match we see. + int BestMatchIdx = -1; + int LargestInt = -1; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == AlignType && + Alignments[i].TypeBitWidth == BitWidth) + return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; + + // The best match so far depends on what we're looking for. + if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { + // If this is a specification for a smaller vector type, we will fall back + // to it. This happens because <128 x double> can be implemented in terms + // of 64 <2 x double>. + if (Alignments[i].TypeBitWidth < BitWidth) { + // Verify that we pick the biggest of the fallbacks. + if (BestMatchIdx == -1 || + Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) + BestMatchIdx = i; + } + } else if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { + // The "best match" for integers is the smallest size that is larger than + // the BitWidth requested. + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) + BestMatchIdx = i; + // However, if there isn't one that's larger, then we must use the + // largest one we have (see below) + if (LargestInt == -1 || + Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) + LargestInt = i; + } + } + + // Okay, we didn't find an exact solution. Fall back here depending on what + // is being looked for. + if (BestMatchIdx == -1) { + // If we didn't find an integer alignment, fall back on most conservative. + if (AlignType == INTEGER_ALIGN) { + BestMatchIdx = LargestInt; + } else { + assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); + + // If we didn't find a vector size that is smaller or equal to this type, + // then we will end up scalarizing this to its element type. Just return + // the alignment of the element. + return getAlignment(cast(Ty)->getElementType(), ABIInfo); + } + } + + // Since we got a "best match" index, just return it. + return ABIInfo ? Alignments[BestMatchIdx].ABIAlign + : Alignments[BestMatchIdx].PrefAlign; } +namespace { + /// LayoutInfo - The lazy cache of structure layout information maintained by /// TargetData. Note that the struct types must have been free'd before /// llvm_shutdown is called (and thus this is deallocated) because all the @@ -293,29 +330,35 @@ struct DenseMapLayoutKeyInfo { return LayoutKey((TargetData*)(intptr_t)-1, 0); } static unsigned getHashValue(const LayoutKey &Val) { - return DenseMapKeyInfo::getHashValue(Val.first) ^ - DenseMapKeyInfo::getHashValue(Val.second); + return DenseMapInfo::getHashValue(Val.first) ^ + DenseMapInfo::getHashValue(Val.second); + } + static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { + return LHS == RHS; } + static bool isPod() { return true; } }; typedef DenseMap LayoutInfoTy; -static ManagedStatic LayoutInfo; +} + +static ManagedStatic LayoutInfo; TargetData::~TargetData() { - if (LayoutInfo.isConstructed()) { - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *LayoutInfo; - for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); - I != E; ) { - if (I->first.first == this) { - I->second->~StructLayout(); - free(I->second); - TheMap.erase(I++); - } else { - ++I; - } + if (!LayoutInfo.isConstructed()) + return; + + // Remove any layouts for this TD. + LayoutInfoTy &TheMap = *LayoutInfo; + for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) { + if (I->first.first == this) { + I->second->~StructLayout(); + free(I->second); + TheMap.erase(I++); + } else { + ++I; } } } @@ -328,7 +371,7 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. - unsigned NumElts = Ty->getNumElements(); + int NumElts = Ty->getNumElements(); StructLayout *L = (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); @@ -337,7 +380,6 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { SL = L; new (L) StructLayout(Ty, *this); - return L; } @@ -349,11 +391,11 @@ void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { if (!LayoutInfo.isConstructed()) return; // No cache. LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); - if (I != LayoutInfo->end()) { - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); - } + if (I == LayoutInfo->end()) return; + + I->second->~StructLayout(); + free(I->second); + LayoutInfo->erase(I); } @@ -375,65 +417,43 @@ std::string TargetData::getStringRepresentation() const { } -uint64_t TargetData::getTypeSize(const Type *Ty) const { +uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: - return getPointerSize(); + return getPointerSizeInBits(); case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); - uint64_t Size; - unsigned char Alignment; - Size = getTypeSize(ATy->getElementType()); - Alignment = getABITypeAlignment(ATy->getElementType()); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - return AlignedSize*ATy->getNumElements(); + return getTypePaddedSizeInBits(ATy->getElementType())*ATy->getNumElements(); } - case Type::StructTyID: { + case Type::StructTyID: // Get the layout annotation... which is lazily created on demand. - const StructLayout *Layout = getStructLayout(cast(Ty)); - return Layout->getSizeInBytes(); - } - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) { - return 1; - } else if (BitWidth <= 16) { - return 2; - } else if (BitWidth <= 32) { - return 4; - } else if (BitWidth <= 64) { - return 8; - } else - assert(0 && "Integer types > 64 bits not supported."); - break; - } + return getStructLayout(cast(Ty))->getSizeInBits(); + case Type::IntegerTyID: + return cast(Ty)->getBitWidth(); case Type::VoidTyID: - return 1; + return 8; case Type::FloatTyID: - return 4; + return 32; case Type::DoubleTyID: - return 8; - case Type::VectorTyID: { - const VectorType *PTy = cast(Ty); - return PTy->getBitWidth() / 8; - } + return 64; + case Type::PPC_FP128TyID: + case Type::FP128TyID: + return 128; + // In memory objects this is always aligned to a higher boundary, but + // only 80 bits contain information. + case Type::X86_FP80TyID: + return 80; + case Type::VectorTyID: + return cast(Ty)->getBitWidth(); default: - assert(0 && "TargetData::getTypeSize(): Unsupported type"); + assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); break; } return 0; } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { - if (Ty->isInteger()) - return cast(Ty)->getBitWidth(); - else - return getTypeSize(Ty) * 8; -} - - /*! \param abi_or_pref Flag that determines which alignment is returned. true returns the ABI alignment, false returns the preferred alignment. @@ -447,7 +467,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { - /* Early escape for the non-numeric types */ + // Early escape for the non-numeric types. case Type::LabelTyID: case Type::PointerTyID: return (abi_or_pref @@ -455,19 +475,16 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { : getPointerPrefAlignment()); case Type::ArrayTyID: return getAlignment(cast(Ty)->getElementType(), abi_or_pref); - + case Type::StructTyID: { // Packed structure types always have an ABI alignment of one. - if (cast(Ty)->isPacked()) + if (cast(Ty)->isPacked() && abi_or_pref) return 1; - + // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); - const TargetAlignElem &elem = getAlignment(AGGREGATE_ALIGN, 0); - assert(validAlignment(elem) - && "Aggregate alignment return invalid in getAlignment"); - unsigned Align = abi_or_pref ? elem.ABIAlign : elem.PrefAlign; - return Align < Layout->getAlignment() ? Layout->StructAlignment : Align; + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); + return std::max(Align, (unsigned)Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -475,6 +492,11 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { break; case Type::FloatTyID: case Type::DoubleTyID: + // PPC_FP128TyID and FP128TyID have different data contents, but the + // same size and alignment, so they look the same here. + case Type::PPC_FP128TyID: + case Type::FP128TyID: + case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; case Type::VectorTyID: @@ -485,23 +507,22 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { break; } - const TargetAlignElem &elem = getAlignment((AlignTypeEnum) AlignType, - getTypeSize(Ty) * 8); - if (validAlignment(elem)) - return (abi_or_pref ? elem.ABIAlign : elem.PrefAlign); - else { - cerr << "TargetData::getAlignment: align type " << AlignType - << " size " << getTypeSize(Ty) << " not found in Alignments.\n"; - abort(); - /*NOTREACHED*/ - return 0; - } + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), + abi_or_pref, Ty); } unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { return getAlignment(Ty, true); } +unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) + if (Alignments[i].AlignType == STACK_ALIGN) + return Alignments[i].ABIAlign; + + return getABITypeAlignment(Ty); +} + unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { return getAlignment(Ty, false); } @@ -515,12 +536,7 @@ unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. const Type *TargetData::getIntPtrType() const { - switch (getPointerSize()) { - default: assert(0 && "Unknown pointer size!"); - case 2: return Type::Int16Ty; - case 4: return Type::Int32Ty; - case 8: return Type::Int64Ty; - } + return IntegerType::get(getPointerSizeInBits()); } @@ -534,7 +550,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { if (const StructType *STy = dyn_cast(*TI)) { - assert(Indices[CurIDX]->getType() == Type::Int32Ty &&"Illegal struct idx"); + assert(Indices[CurIDX]->getType() == Type::Int32Ty && + "Illegal struct idx"); unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); // Get structure layout information... @@ -551,29 +568,36 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, // Get the array index and the size of each array element. int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeSize(Ty); + Result += arrayIdx * (int64_t)getTypePaddedSize(Ty); } } return Result; } -/// getPreferredAlignmentLog - Return the preferred alignment of the -/// specified global, returned in log form. This includes an explicitly -/// requested alignment (if the global has one). -unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { +/// getPreferredAlignment - Return the preferred alignment of the specified +/// global. This includes an explicitly requested alignment (if the global +/// has one). +unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); - unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); - if (GV->getAlignment() > (1U << Alignment)) - Alignment = Log2_32(GV->getAlignment()); - + unsigned Alignment = getPrefTypeAlignment(ElemType); + if (GV->getAlignment() > Alignment) + Alignment = GV->getAlignment(); + if (GV->hasInitializer()) { - if (Alignment < 4) { + if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment. - if (getTypeSize(ElemType) > 128) - Alignment = 4; // 16-byte alignment. + if (getTypeSizeInBits(ElemType) > 128) + Alignment = 16; // 16-byte alignment. } } return Alignment; } + +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + return Log2_32(getPreferredAlignment(GV)); +}