X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=63b3eaafe1be92361f24e7e388048b3876aef069;hb=2625f9b2e4388a957286063f6c7fe5406fd0ca7a;hp=805b7549373182007b2ec5280eb7d476429baf3b;hpb=a12bd03f0719f396e8f6e235ee80eb23e49a938c;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index 805b7549373..63b3eaafe1b 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -23,23 +23,18 @@ #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ManagedStatic.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringExtras.h" #include #include -#include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. -namespace { - // Register the default SparcV9 implementation... - RegisterPass X("targetdata", "Target Data Layout"); -} - -static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment); -static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment); +// Register the default SparcV9 implementation... +static RegisterPass X("targetdata", "Target Data Layout", false, + true); +char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout @@ -50,24 +45,20 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructSize = 0; NumElements = ST->getNumElements(); - // Loop over each of the elements, placing them in memory... + // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { const Type *Ty = ST->getElementType(i); - unsigned char A; - unsigned TyAlign; - uint64_t TySize; - getTypeInfoABI(Ty, &TD, TySize, A); - TyAlign = ST->isPacked() ? 1 : A; + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); - // Add padding if necessary to make the data element aligned properly... - if (StructSize % TyAlign != 0) - StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... + // Add padding if necessary to align the data element properly. + if ((StructSize & (TyAlign-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); - // Keep track of maximum alignment constraint + // Keep track of maximum alignment constraint. StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets[i] = StructSize; - StructSize += TySize; // Consume space for this data item + StructSize += TD.getTypePaddedSize(Ty); // Consume space for this data item } // Empty structures have alignment of 1 byte. @@ -75,8 +66,8 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. - if (StructSize % StructAlignment != 0) - StructSize = (StructSize/StructAlignment + 1) * StructAlignment; + if ((StructSize & (StructAlignment-1)) != 0) + StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); } @@ -88,45 +79,119 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); - assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) && + assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); + + // Multiple fields can have the same offset if any of them are zero sized. + // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop + // at the i32 element, because it is the last element at that offset. This is + // the right one to return, because anything after it will have a higher + // offset, implying that this element is non-empty. return SI-&MemberOffsets[0]; } +//===----------------------------------------------------------------------===// +// TargetAlignElem, TargetAlign support +//===----------------------------------------------------------------------===// + +TargetAlignElem +TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, + unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); + TargetAlignElem retval; + retval.AlignType = align_type; + retval.ABIAlign = abi_align; + retval.PrefAlign = pref_align; + retval.TypeBitWidth = bit_width; + return retval; +} + +bool +TargetAlignElem::operator==(const TargetAlignElem &rhs) const { + return (AlignType == rhs.AlignType + && ABIAlign == rhs.ABIAlign + && PrefAlign == rhs.PrefAlign + && TypeBitWidth == rhs.TypeBitWidth); +} + +std::ostream & +TargetAlignElem::dump(std::ostream &os) const { + return os << AlignType + << TypeBitWidth + << ":" << (int) (ABIAlign * 8) + << ":" << (int) (PrefAlign * 8); +} + +const TargetAlignElem TargetData::InvalidAlignmentElem = + TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); + //===----------------------------------------------------------------------===// // TargetData Class Implementation //===----------------------------------------------------------------------===// +/*! + A TargetDescription string consists of a sequence of hyphen-delimited + specifiers for target endianness, pointer size and alignments, and various + primitive type sizes and alignments. A typical string looks something like: +

+ "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" +

+ (note: this string is not fully specified and is only an example.) + \p + Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, + below) dictates how a type will be aligned within an aggregate and when used + as an argument. Preferred alignment (pref_align, below) determines a type's + alignment when emitted as a global. + \p + Specifier string details: +

+ [E|e]: Endianness. "E" specifies a big-endian target data model, "e" + specifies a little-endian target data model. +

+ p:@verbatim::@endverbatim: Pointer size, + ABI and preferred alignment. +

+ @verbatim::@endverbatim: Numeric type + alignment. Type is + one of i|f|v|a, corresponding to integer, floating point, vector (aka + packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. + \p + The default string, fully specified is: +

+ "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" + "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" + "-v64:64:64-v128:128:128" +

+ Note that in the case of aggregates, 0 is the default ABI and preferred + alignment. This is a special case, where the aggregate's computed worst-case + alignment will be used. + */ void TargetData::init(const std::string &TargetDescription) { std::string temp = TargetDescription; LittleEndian = false; PointerMemSize = 8; - PointerABIAlignment = 8; - DoubleABIAlignment = 0; - FloatABIAlignment = 4; - LongABIAlignment = 0; - IntABIAlignment = 4; - ShortABIAlignment = 2; - ByteABIAlignment = 1; - BoolABIAlignment = 1; - BoolPrefAlignment = BoolABIAlignment; - BytePrefAlignment = ByteABIAlignment; - ShortPrefAlignment = ShortABIAlignment; - IntPrefAlignment = IntABIAlignment; - LongPrefAlignment = 8; - FloatPrefAlignment = FloatABIAlignment; - DoublePrefAlignment = 8; - PointerPrefAlignment = PointerABIAlignment; - AggMinPrefAlignment = 0; - + PointerABIAlign = 8; + PointerPrefAlign = PointerABIAlign; + + // Default alignments + setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool + setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte + setAlignment(INTEGER_ALIGN, 2, 2, 16); // short + setAlignment(INTEGER_ALIGN, 4, 4, 32); // int + setAlignment(INTEGER_ALIGN, 4, 8, 64); // long + setAlignment(FLOAT_ALIGN, 4, 4, 32); // float + setAlignment(FLOAT_ALIGN, 8, 8, 64); // double + setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 + setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... + setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... + while (!temp.empty()) { std::string token = getToken(temp, "-"); - - char signal = getToken(token, ":")[0]; - - switch(signal) { + std::string arg0 = getToken(token, ":"); + const char *p = arg0.c_str(); + switch(*p) { case 'E': LittleEndian = false; break; @@ -135,95 +200,165 @@ void TargetData::init(const std::string &TargetDescription) { break; case 'p': PointerMemSize = atoi(getToken(token,":").c_str()) / 8; - PointerABIAlignment = atoi(getToken(token,":").c_str()) / 8; - PointerPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (PointerPrefAlignment == 0) - PointerPrefAlignment = PointerABIAlignment; - break; - case 'd': - DoubleABIAlignment = atoi(getToken(token,":").c_str()) / 8; - DoublePrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (DoublePrefAlignment == 0) - DoublePrefAlignment = DoubleABIAlignment; - break; - case 'f': - FloatABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - FloatPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (FloatPrefAlignment == 0) - FloatPrefAlignment = FloatABIAlignment; - break; - case 'l': - LongABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - LongPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (LongPrefAlignment == 0) - LongPrefAlignment = LongABIAlignment; + PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; + PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; + if (PointerPrefAlign == 0) + PointerPrefAlign = PointerABIAlign; break; case 'i': - IntABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - IntPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (IntPrefAlignment == 0) - IntPrefAlignment = IntABIAlignment; - break; - case 's': - ShortABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - ShortPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (ShortPrefAlignment == 0) - ShortPrefAlignment = ShortABIAlignment; - break; - case 'b': - ByteABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - BytePrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (BytePrefAlignment == 0) - BytePrefAlignment = ByteABIAlignment; - break; - case 'B': - BoolABIAlignment = atoi(getToken(token, ":").c_str()) / 8; - BoolPrefAlignment = atoi(getToken(token,":").c_str()) / 8; - if (BoolPrefAlignment == 0) - BoolPrefAlignment = BoolABIAlignment; - break; - case 'A': - AggMinPrefAlignment = atoi(getToken(token,":").c_str()) / 8; + case 'v': + case 'f': + case 'a': + case 's': { + AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning + switch(*p) { + case 'i': align_type = INTEGER_ALIGN; break; + case 'v': align_type = VECTOR_ALIGN; break; + case 'f': align_type = FLOAT_ALIGN; break; + case 'a': align_type = AGGREGATE_ALIGN; break; + case 's': align_type = STACK_ALIGN; break; + } + uint32_t size = (uint32_t) atoi(++p); + unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; + unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; + if (pref_align == 0) + pref_align = abi_align; + setAlignment(align_type, abi_align, pref_align, size); break; + } default: break; } } - - // Unless explicitly specified, the alignments for longs and doubles is - // capped by pointer size. - if (LongABIAlignment == 0) - LongABIAlignment = LongPrefAlignment = PointerMemSize; - if (DoubleABIAlignment == 0) - DoubleABIAlignment = DoublePrefAlignment = PointerMemSize; } -TargetData::TargetData(const Module *M) { +TargetData::TargetData(const Module *M) + : ImmutablePass(&ID) { init(M->getDataLayout()); } +void +TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, + unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == align_type && + Alignments[i].TypeBitWidth == bit_width) { + // Update the abi, preferred alignments. + Alignments[i].ABIAlign = abi_align; + Alignments[i].PrefAlign = pref_align; + return; + } + } + + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, + pref_align, bit_width)); +} + +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// preferred if ABIInfo = false) the target wants for the specified datatype. +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, + uint32_t BitWidth, bool ABIInfo, + const Type *Ty) const { + // Check to see if we have an exact match and remember the best match we see. + int BestMatchIdx = -1; + int LargestInt = -1; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { + if (Alignments[i].AlignType == AlignType && + Alignments[i].TypeBitWidth == BitWidth) + return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; + + // The best match so far depends on what we're looking for. + if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { + // If this is a specification for a smaller vector type, we will fall back + // to it. This happens because <128 x double> can be implemented in terms + // of 64 <2 x double>. + if (Alignments[i].TypeBitWidth < BitWidth) { + // Verify that we pick the biggest of the fallbacks. + if (BestMatchIdx == -1 || + Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) + BestMatchIdx = i; + } + } else if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { + // The "best match" for integers is the smallest size that is larger than + // the BitWidth requested. + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) + BestMatchIdx = i; + // However, if there isn't one that's larger, then we must use the + // largest one we have (see below) + if (LargestInt == -1 || + Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) + LargestInt = i; + } + } + + // Okay, we didn't find an exact solution. Fall back here depending on what + // is being looked for. + if (BestMatchIdx == -1) { + // If we didn't find an integer alignment, fall back on most conservative. + if (AlignType == INTEGER_ALIGN) { + BestMatchIdx = LargestInt; + } else { + assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); + + // If we didn't find a vector size that is smaller or equal to this type, + // then we will end up scalarizing this to its element type. Just return + // the alignment of the element. + return getAlignment(cast(Ty)->getElementType(), ABIInfo); + } + } + + // Since we got a "best match" index, just return it. + return ABIInfo ? Alignments[BestMatchIdx].ABIAlign + : Alignments[BestMatchIdx].PrefAlign; +} + +namespace { + /// LayoutInfo - The lazy cache of structure layout information maintained by /// TargetData. Note that the struct types must have been free'd before /// llvm_shutdown is called (and thus this is deallocated) because all the /// targets with cached elements should have been destroyed. /// typedef std::pair LayoutKey; -typedef std::map LayoutInfoTy; -static ManagedStatic LayoutInfo; +struct DenseMapLayoutKeyInfo { + static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } + static inline LayoutKey getTombstoneKey() { + return LayoutKey((TargetData*)(intptr_t)-1, 0); + } + static unsigned getHashValue(const LayoutKey &Val) { + return DenseMapInfo::getHashValue(Val.first) ^ + DenseMapInfo::getHashValue(Val.second); + } + static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { + return LHS == RHS; + } + + static bool isPod() { return true; } +}; + +typedef DenseMap LayoutInfoTy; + +} + +static ManagedStatic LayoutInfo; TargetData::~TargetData() { - if (LayoutInfo.isConstructed()) { - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *LayoutInfo; - LayoutInfoTy::iterator - I = TheMap.lower_bound(LayoutKey(this, (const StructType*)0)); - - for (LayoutInfoTy::iterator E = TheMap.end(); - I != E && I->first.first == this; ) { + if (!LayoutInfo.isConstructed()) + return; + + // Remove any layouts for this TD. + LayoutInfoTy &TheMap = *LayoutInfo; + for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) { + if (I->first.first == this) { I->second->~StructLayout(); free(I->second); TheMap.erase(I++); + } else { + ++I; } } } @@ -231,18 +366,20 @@ TargetData::~TargetData() { const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { LayoutInfoTy &TheMap = *LayoutInfo; - LayoutInfoTy::iterator I = TheMap.lower_bound(LayoutKey(this, Ty)); - if (I != TheMap.end() && I->first.first == this && I->first.second == Ty) - return I->second; + StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; + if (SL) return SL; // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. - unsigned NumElts = Ty->getNumElements(); + int NumElts = Ty->getNumElements(); StructLayout *L = (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); + + // Set SL before calling StructLayout's ctor. The ctor could cause other + // entries to be added to TheMap, invalidating our reference. + SL = L; + new (L) StructLayout(Ty, *this); - - TheMap.insert(I, std::make_pair(LayoutKey(this, Ty), L)); return L; } @@ -254,198 +391,144 @@ void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { if (!LayoutInfo.isConstructed()) return; // No cache. LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); - if (I != LayoutInfo->end()) { - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); - } + if (I == LayoutInfo->end()) return; + + I->second->~StructLayout(); + free(I->second); + LayoutInfo->erase(I); } std::string TargetData::getStringRepresentation() const { - std::stringstream repr; - - if (LittleEndian) - repr << "e"; - else - repr << "E"; - - repr << "-p:" << (PointerMemSize * 8) << ":" << (PointerABIAlignment * 8); - repr << "-d:" << (DoubleABIAlignment * 8) << ":" - << (DoublePrefAlignment * 8); - repr << "-f:" << (FloatABIAlignment * 8) << ":" - << (FloatPrefAlignment * 8); - repr << "-l:" << (LongABIAlignment * 8) << ":" - << (LongPrefAlignment * 8); - repr << "-i:" << (IntABIAlignment * 8) << ":" - << (IntPrefAlignment * 8); - repr << "-s:" << (ShortABIAlignment * 8) << ":" - << (ShortPrefAlignment * 8); - repr << "-b:" << (ByteABIAlignment * 8) << ":" - << (BytePrefAlignment * 8); - repr << "-B:" << (BoolABIAlignment * 8) << ":" - << (BoolPrefAlignment * 8); - repr << "-A:" << (AggMinPrefAlignment * 8); - - return repr.str(); + std::string repr; + repr.append(LittleEndian ? "e" : "E"); + repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). + append(":").append(itostr((int64_t) (PointerABIAlign * 8))). + append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); + for (align_const_iterator I = Alignments.begin(); + I != Alignments.end(); + ++I) { + repr.append("-").append(1, (char) I->AlignType). + append(utostr((int64_t) I->TypeBitWidth)). + append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). + append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); + } + return repr; } -static inline void getTypeInfoABI(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment) { +uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) { - Size = 1; Alignment = TD->getByteABIAlignment(); - } else if (BitWidth <= 16) { - Size = 2; Alignment = TD->getShortABIAlignment(); - } else if (BitWidth <= 32) { - Size = 4; Alignment = TD->getIntABIAlignment(); - } else if (BitWidth <= 64) { - Size = 8; Alignment = TD->getLongABIAlignment(); - } else { - Size = ((BitWidth + 7) / 8) & ~1; - Alignment = TD->getLongABIAlignment(); - } - return; - } - case Type::VoidTyID: Size = 1; Alignment = TD->getByteABIAlignment(); return; - case Type::FloatTyID: Size = 4; Alignment = TD->getFloatABIAlignment(); return; - case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleABIAlignment(); return; case Type::LabelTyID: case Type::PointerTyID: - Size = TD->getPointerSize(); Alignment = TD->getPointerABIAlignment(); - return; + return getPointerSizeInBits(); case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); - getTypeInfoABI(ATy->getElementType(), TD, Size, Alignment); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - Size = AlignedSize*ATy->getNumElements(); - return; - } - case Type::PackedTyID: { - const PackedType *PTy = cast(Ty); - getTypeInfoABI(PTy->getElementType(), TD, Size, Alignment); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - Size = AlignedSize*PTy->getNumElements(); - // FIXME: The alignments of specific packed types are target dependent. - // For now, just set it to be equal to Size. - Alignment = Size; - return; + return getTypePaddedSizeInBits(ATy->getElementType())*ATy->getNumElements(); } - case Type::StructTyID: { + case Type::StructTyID: // Get the layout annotation... which is lazily created on demand. - const StructLayout *Layout = TD->getStructLayout(cast(Ty)); - Size = Layout->getSizeInBytes(); Alignment = Layout->getAlignment(); - return; - } - + return getStructLayout(cast(Ty))->getSizeInBits(); + case Type::IntegerTyID: + return cast(Ty)->getBitWidth(); + case Type::VoidTyID: + return 8; + case Type::FloatTyID: + return 32; + case Type::DoubleTyID: + return 64; + case Type::PPC_FP128TyID: + case Type::FP128TyID: + return 128; + // In memory objects this is always aligned to a higher boundary, but + // only 80 bits contain information. + case Type::X86_FP80TyID: + return 80; + case Type::VectorTyID: + return cast(Ty)->getBitWidth(); default: - assert(0 && "Bad type for getTypeInfo!!!"); - return; + assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); + break; } + return 0; } -static inline void getTypeInfoPref(const Type *Ty, const TargetData *TD, - uint64_t &Size, unsigned char &Alignment) { - assert(Ty->isSized() && "Cannot getTypeInfoPref() on a type that is unsized!"); +/*! + \param abi_or_pref Flag that determines which alignment is returned. true + returns the ABI alignment, false returns the preferred alignment. + \param Ty The underlying type for which alignment is determined. + + Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref + == false) for the requested type \a Ty. + */ +unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { + int AlignType = -1; + + assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) { - Size = 1; Alignment = TD->getBytePrefAlignment(); - } else if (BitWidth <= 16) { - Size = 2; Alignment = TD->getShortPrefAlignment(); - } else if (BitWidth <= 32) { - Size = 4; Alignment = TD->getIntPrefAlignment(); - } else if (BitWidth <= 64) { - Size = 8; Alignment = TD->getLongPrefAlignment(); - } else - assert(0 && "Integer types > 64 bits not supported."); - return; - } - case Type::VoidTyID: - Size = 1; Alignment = TD->getBytePrefAlignment(); - return; - case Type::FloatTyID: - Size = 4; Alignment = TD->getFloatPrefAlignment(); - return; - case Type::DoubleTyID: - Size = 8; Alignment = TD->getDoublePrefAlignment(); - return; + // Early escape for the non-numeric types. case Type::LabelTyID: case Type::PointerTyID: - Size = TD->getPointerSize(); Alignment = TD->getPointerPrefAlignment(); - return; - case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); - getTypeInfoPref(ATy->getElementType(), TD, Size, Alignment); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - Size = AlignedSize*ATy->getNumElements(); - return; - } - case Type::PackedTyID: { - const PackedType *PTy = cast(Ty); - getTypeInfoPref(PTy->getElementType(), TD, Size, Alignment); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - Size = AlignedSize*PTy->getNumElements(); - // FIXME: The alignments of specific packed types are target dependent. - // For now, just set it to be equal to Size. - Alignment = Size; - return; - } + return (abi_or_pref + ? getPointerABIAlignment() + : getPointerPrefAlignment()); + case Type::ArrayTyID: + return getAlignment(cast(Ty)->getElementType(), abi_or_pref); + case Type::StructTyID: { - // Get the layout annotation... which is lazily created on demand; - // enforce minimum aggregate alignment. - const StructLayout *Layout = TD->getStructLayout(cast(Ty)); - Size = Layout->getSizeInBytes(); - Alignment = std::max(Layout->getAlignment(), - (const unsigned int)TD->getAggMinPrefAlignment()); - return; - } + // Packed structure types always have an ABI alignment of one. + if (cast(Ty)->isPacked() && abi_or_pref) + return 1; + // Get the layout annotation... which is lazily created on demand. + const StructLayout *Layout = getStructLayout(cast(Ty)); + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); + return std::max(Align, (unsigned)Layout->getAlignment()); + } + case Type::IntegerTyID: + case Type::VoidTyID: + AlignType = INTEGER_ALIGN; + break; + case Type::FloatTyID: + case Type::DoubleTyID: + // PPC_FP128TyID and FP128TyID have different data contents, but the + // same size and alignment, so they look the same here. + case Type::PPC_FP128TyID: + case Type::FP128TyID: + case Type::X86_FP80TyID: + AlignType = FLOAT_ALIGN; + break; + case Type::VectorTyID: + AlignType = VECTOR_ALIGN; + break; default: - assert(0 && "Bad type for getTypeInfoPref!!!"); - return; + assert(0 && "Bad type for getAlignment!!!"); + break; } -} - -uint64_t TargetData::getTypeSize(const Type *Ty) const { - uint64_t Size; - unsigned char Align; - getTypeInfoABI(Ty, this, Size, Align); - return Size; + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), + abi_or_pref, Ty); } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { - if (Ty->isInteger()) - return cast(Ty)->getBitWidth(); - - uint64_t Size; - unsigned char Align; - getTypeInfoABI(Ty, this, Size, Align); - return Size * 8; +unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { + return getAlignment(Ty, true); } -unsigned char TargetData::getTypeAlignmentABI(const Type *Ty) const { - uint64_t Size; - unsigned char Align; - getTypeInfoABI(Ty, this, Size, Align); - return Align; +unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) + if (Alignments[i].AlignType == STACK_ALIGN) + return Alignments[i].ABIAlign; + + return getABITypeAlignment(Ty); } -unsigned char TargetData::getTypeAlignmentPref(const Type *Ty) const { - uint64_t Size; - unsigned char Align; - getTypeInfoPref(Ty, this, Size, Align); - return Align; +unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { + return getAlignment(Ty, false); } unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = getTypeAlignmentPref(Ty); + unsigned Align = (unsigned) getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } @@ -453,12 +536,7 @@ unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. const Type *TargetData::getIntPtrType() const { - switch (getPointerSize()) { - default: assert(0 && "Unknown pointer size!"); - case 2: return Type::Int16Ty; - case 4: return Type::Int32Ty; - case 8: return Type::Int64Ty; - } + return IntegerType::get(getPointerSizeInBits()); } @@ -472,7 +550,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { if (const StructType *STy = dyn_cast(*TI)) { - assert(Indices[CurIDX]->getType() == Type::Int32Ty &&"Illegal struct idx"); + assert(Indices[CurIDX]->getType() == Type::Int32Ty && + "Illegal struct idx"); unsigned FieldNo = cast(Indices[CurIDX])->getZExtValue(); // Get structure layout information... @@ -489,30 +568,36 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, // Get the array index and the size of each array element. int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeSize(Ty); + Result += arrayIdx * (int64_t)getTypePaddedSize(Ty); } } return Result; } -/// getPreferredAlignmentLog - Return the preferred alignment of the -/// specified global, returned in log form. This includes an explicitly -/// requested alignment (if the global has one). -unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { +/// getPreferredAlignment - Return the preferred alignment of the specified +/// global. This includes an explicitly requested alignment (if the global +/// has one). +unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); - unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); - if (GV->getAlignment() > (1U << Alignment)) - Alignment = Log2_32(GV->getAlignment()); - + unsigned Alignment = getPrefTypeAlignment(ElemType); + if (GV->getAlignment() > Alignment) + Alignment = GV->getAlignment(); + if (GV->hasInitializer()) { - if (Alignment < 4) { + if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment. - if (getTypeSize(ElemType) > 128) - Alignment = 4; // 16-byte alignment. + if (getTypeSizeInBits(ElemType) > 128) + Alignment = 16; // 16-byte alignment. } } return Alignment; } +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + return Log2_32(getPreferredAlignment(GV)); +}