X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=bd6a6b67beb9710d7b2265d585cc22a5675ae2dd;hb=bb5b3f33594cfa40e9f53bf9a71af359b080a697;hp=9434a1901ffde3be18730c0016682bcb9b5ccb91;hpb=740266269b2df0b44a5a11cb5204d97d2dd3d0a3;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index 9434a1901ff..bd6a6b67beb 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -25,7 +25,7 @@ #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/System/Mutex.h" +#include "llvm/Support/Mutex.h" #include "llvm/ADT/DenseMap.h" #include #include @@ -34,22 +34,22 @@ using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. // Register the default SparcV9 implementation... -static RegisterPass X("targetdata", "Target Data Layout", false, - true); +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// -StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { +StructLayout::StructLayout(StructType *ST, const TargetData &TD) { + assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); StructAlignment = 0; StructSize = 0; NumElements = ST->getNumElements(); // Loop over each of the elements, placing them in memory. for (unsigned i = 0, e = NumElements; i != e; ++i) { - const Type *Ty = ST->getElementType(i); + Type *Ty = ST->getElementType(i); unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); // Add padding if necessary to align the data element properly. @@ -84,7 +84,7 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); - + // Multiple fields can have the same offset if any of them are zero sized. // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop // at the i32 element, because it is the last element at that offset. This is @@ -98,8 +98,8 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { //===----------------------------------------------------------------------===// TargetAlignElem -TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; @@ -132,11 +132,14 @@ static unsigned getInt(StringRef R) { } void TargetData::init(StringRef Desc) { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); + LayoutMap = 0; LittleEndian = false; PointerMemSize = 8; PointerABIAlign = 8; PointerPrefAlign = PointerABIAlign; + StackNaturalAlign = 0; // Default alignments setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 @@ -154,16 +157,16 @@ void TargetData::init(StringRef Desc) { std::pair Split = Desc.split('-'); StringRef Token = Split.first; Desc = Split.second; - + if (Token.empty()) continue; - + Split = Token.split(':'); StringRef Specifier = Split.first; Token = Split.second; - + assert(!Specifier.empty() && "Can't be empty here"); - + switch (Specifier[0]) { case 'E': LittleEndian = false; @@ -197,10 +200,10 @@ void TargetData::init(StringRef Desc) { } unsigned Size = getInt(Specifier.substr(1)); Split = Token.split(':'); - unsigned char ABIAlign = getInt(Split.first) / 8; - + unsigned ABIAlign = getInt(Split.first) / 8; + Split = Split.second.split(':'); - unsigned char PrefAlign = getInt(Split.first) / 8; + unsigned PrefAlign = getInt(Split.first) / 8; if (PrefAlign == 0) PrefAlign = ABIAlign; setAlignment(AlignType, ABIAlign, PrefAlign, Size); @@ -216,7 +219,12 @@ void TargetData::init(StringRef Desc) { Token = Split.second; } while (!Specifier.empty() || !Token.empty()); break; - + case 'S': // Stack natural alignment. + StackNaturalAlign = getInt(Specifier.substr(1)); + StackNaturalAlign /= 8; + // FIXME: Should we really be truncating these alingments and + // sizes silently? + break; default: break; } @@ -227,19 +235,19 @@ void TargetData::init(StringRef Desc) { /// /// @note This has to exist, because this is a pass, but it should never be /// used. -TargetData::TargetData() : ImmutablePass(&ID) { - llvm_report_error("Bad TargetData ctor used. " +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " "Tool did not specify a TargetData to use?"); } -TargetData::TargetData(const Module *M) - : ImmutablePass(&ID) { +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { init(M->getDataLayout()); } void -TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && @@ -250,16 +258,16 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, return; } } - + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, pref_align, bit_width)); } -/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. -unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth, bool ABIInfo, - const Type *Ty) const { + Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. int BestMatchIdx = -1; int LargestInt = -1; @@ -267,28 +275,18 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, if (Alignments[i].AlignType == AlignType && Alignments[i].TypeBitWidth == BitWidth) return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; - + // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { - // If this is a specification for a smaller vector type, we will fall back - // to it. This happens because <128 x double> can be implemented in terms - // of 64 <2 x double>. - if (Alignments[i].TypeBitWidth < BitWidth) { - // Verify that we pick the biggest of the fallbacks. - if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) - BestMatchIdx = i; - } - } else if (AlignType == INTEGER_ALIGN && - Alignments[i].AlignType == INTEGER_ALIGN) { + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { // The "best match" for integers is the smallest size that is larger than // the BitWidth requested. - if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) BestMatchIdx = i; // However, if there isn't one that's larger, then we must use the // largest one we have (see below) - if (LargestInt == -1 || + if (LargestInt == -1 || Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) LargestInt = i; } @@ -303,10 +301,15 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, } else { assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); - // If we didn't find a vector size that is smaller or equal to this type, - // then we will end up scalarizing this to its element type. Just return - // the alignment of the element. - return getAlignment(cast(Ty)->getElementType(), ABIInfo); + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = llvm::NextPowerOf2(Align); + return Align; } } @@ -317,67 +320,22 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, namespace { -class StructLayoutMap : public AbstractTypeUser { - typedef DenseMap LayoutInfoTy; +class StructLayoutMap { + typedef DenseMap LayoutInfoTy; LayoutInfoTy LayoutInfo; - /// refineAbstractType - The callback method invoked when an abstract type is - /// resolved to another type. An object must override this method to update - /// its internal state to reference NewType instead of OldType. - /// - virtual void refineAbstractType(const DerivedType *OldTy, - const Type *) { - const StructType *STy = cast(OldTy); - LayoutInfoTy::iterator Iter = LayoutInfo.find(STy); - Iter->second->~StructLayout(); - free(Iter->second); - LayoutInfo.erase(Iter); - OldTy->removeAbstractTypeUser(this); - } - - /// typeBecameConcrete - The other case which AbstractTypeUsers must be aware - /// of is when a type makes the transition from being abstract (where it has - /// clients on its AbstractTypeUsers list) to concrete (where it does not). - /// This method notifies ATU's when this occurs for a type. - /// - virtual void typeBecameConcrete(const DerivedType *AbsTy) { - const StructType *STy = cast(AbsTy); - LayoutInfoTy::iterator Iter = LayoutInfo.find(STy); - Iter->second->~StructLayout(); - free(Iter->second); - LayoutInfo.erase(Iter); - AbsTy->removeAbstractTypeUser(this); - } - public: virtual ~StructLayoutMap() { // Remove any layouts. - for (LayoutInfoTy::iterator - I = LayoutInfo.begin(), E = LayoutInfo.end(); I != E; ++I) { - const Type *Key = I->first; + for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); + I != E; ++I) { StructLayout *Value = I->second; - - if (Key->isAbstract()) - Key->removeAbstractTypeUser(this); - Value->~StructLayout(); free(Value); } } - void InvalidateEntry(const StructType *Ty) { - LayoutInfoTy::iterator I = LayoutInfo.find(Ty); - if (I == LayoutInfo.end()) return; - - I->second->~StructLayout(); - free(I->second); - LayoutInfo.erase(I); - - if (Ty->isAbstract()) - Ty->removeAbstractTypeUser(this); - } - - StructLayout *&operator[](const StructType *STy) { + StructLayout *&operator[](StructType *STy) { return LayoutInfo[STy]; } @@ -391,59 +349,47 @@ TargetData::~TargetData() { delete static_cast(LayoutMap); } -const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { +const StructLayout *TargetData::getStructLayout(StructType *Ty) const { if (!LayoutMap) LayoutMap = new StructLayoutMap(); - + StructLayoutMap *STM = static_cast(LayoutMap); StructLayout *&SL = (*STM)[Ty]; if (SL) return SL; - // Otherwise, create the struct layout. Because it is variable length, we + // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. int NumElts = Ty->getNumElements(); StructLayout *L = (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); - + // Set SL before calling StructLayout's ctor. The ctor could cause other // entries to be added to TheMap, invalidating our reference. SL = L; - - new (L) StructLayout(Ty, *this); - if (Ty->isAbstract()) - Ty->addAbstractTypeUser(STM); + new (L) StructLayout(Ty, *this); return L; } -/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout -/// objects. If a TargetData object is alive when types are being refined and -/// removed, this method must be called whenever a StructType is removed to -/// avoid a dangling pointer in this cache. -void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { - if (!LayoutMap) return; // No cache. - - StructLayoutMap *STM = static_cast(LayoutMap); - STM->InvalidateEntry(Ty); -} - std::string TargetData::getStringRepresentation() const { std::string Result; raw_string_ostream OS(Result); - + OS << (LittleEndian ? "e" : "E") << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 - << ':' << PointerPrefAlign*8; + << ':' << PointerPrefAlign*8 + << "-S" << StackNaturalAlign*8; + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { const TargetAlignElem &AI = Alignments[i]; OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; } - + if (!LegalIntWidths.empty()) { OS << "-n" << (unsigned)LegalIntWidths[0]; - + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) OS << ':' << (unsigned)LegalIntWidths[i]; } @@ -451,14 +397,14 @@ std::string TargetData::getStringRepresentation() const { } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { +uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: return getPointerSizeInBits(); case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); + ArrayType *ATy = cast(Ty); return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); } case Type::StructTyID: @@ -471,6 +417,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { case Type::FloatTyID: return 32; case Type::DoubleTyID: + case Type::X86_MMXTyID: return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: @@ -496,7 +443,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref == false) for the requested type \a Ty. */ -unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { +unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { int AlignType = -1; assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); @@ -518,7 +465,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); - return std::max(Align, (unsigned)Layout->getAlignment()); + return std::max(Align, Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -533,6 +480,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; + case Type::X86_MMXTyID: case Type::VectorTyID: AlignType = VECTOR_ALIGN; break; @@ -545,11 +493,18 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { abi_or_pref, Ty); } -unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { +unsigned TargetData::getABITypeAlignment(Type *Ty) const { return getAlignment(Ty, true); } -unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { for (unsigned i = 0, e = Alignments.size(); i != e; ++i) if (Alignments[i].AlignType == STACK_ALIGN) return Alignments[i].ABIAlign; @@ -557,33 +512,34 @@ unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { return getABITypeAlignment(Ty); } -unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { +unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { return getAlignment(Ty, false); } -unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = (unsigned) getPrefTypeAlignment(Ty); +unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. -const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { +IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { return IntegerType::get(C, getPointerSizeInBits()); } -uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, - unsigned NumIndices) const { - const Type *Ty = ptrTy; - assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); +uint64_t TargetData::getIndexedOffset(Type *ptrTy, + ArrayRef Indices) const { + Type *Ty = ptrTy; + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator - TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); - for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { - if (const StructType *STy = dyn_cast(*TI)) { + TI = gep_type_begin(ptrTy, Indices); + for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; + ++CurIDX, ++TI) { + if (StructType *STy = dyn_cast(*TI)) { assert(Indices[CurIDX]->getType() == Type::getInt32Ty(ptrTy->getContext()) && "Illegal struct idx"); @@ -602,8 +558,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. - int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeAllocSize(Ty); + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); } } @@ -614,12 +570,16 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, /// global. This includes an explicitly requested alignment (if the global /// has one). unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { - const Type *ElemType = GV->getType()->getElementType(); + Type *ElemType = GV->getType()->getElementType(); unsigned Alignment = getPrefTypeAlignment(ElemType); - if (GV->getAlignment() > Alignment) - Alignment = GV->getAlignment(); + unsigned GVAlignment = GV->getAlignment(); + if (GVAlignment >= Alignment) { + Alignment = GVAlignment; + } else if (GVAlignment != 0) { + Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); + } - if (GV->hasInitializer()) { + if (GV->hasInitializer() && GVAlignment == 0) { if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment.