X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=c628df04e710c9feaed7ea46d9b8546e3a37aac1;hb=670a456c8323fc5da4752bdcf2b416ebef1bc66c;hp=c2fbd3f0e61e4fdfea4208d541a3ab936232fd49;hpb=7e89738f98c1dbe455a1b6c5c55c04cc891fe503;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index c2fbd3f0e61..c628df04e71 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -17,15 +17,15 @@ //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" -#include "llvm/Module.h" -#include "llvm/DerivedTypes.h" #include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" -#include "llvm/System/Mutex.h" +#include "llvm/Support/Mutex.h" #include "llvm/ADT/DenseMap.h" #include #include @@ -34,8 +34,7 @@ using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. // Register the default SparcV9 implementation... -static RegisterPass X("targetdata", "Target Data Layout", false, - true); +INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) char TargetData::ID = 0; //===----------------------------------------------------------------------===// @@ -84,7 +83,7 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); - + // Multiple fields can have the same offset if any of them are zero sized. // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop // at the i32 element, because it is the last element at that offset. This is @@ -98,8 +97,8 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { //===----------------------------------------------------------------------===// TargetAlignElem -TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; @@ -117,14 +116,6 @@ TargetAlignElem::operator==(const TargetAlignElem &rhs) const { && TypeBitWidth == rhs.TypeBitWidth); } -std::ostream & -TargetAlignElem::dump(std::ostream &os) const { - return os << AlignType - << TypeBitWidth - << ":" << (int) (ABIAlign * 8) - << ":" << (int) (PrefAlign * 8); -} - const TargetAlignElem TargetData::InvalidAlignmentElem = TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); @@ -140,6 +131,8 @@ static unsigned getInt(StringRef R) { } void TargetData::init(StringRef Desc) { + initializeTargetDataPass(*PassRegistry::getPassRegistry()); + LayoutMap = 0; LittleEndian = false; PointerMemSize = 8; @@ -162,16 +155,16 @@ void TargetData::init(StringRef Desc) { std::pair Split = Desc.split('-'); StringRef Token = Split.first; Desc = Split.second; - + if (Token.empty()) continue; - + Split = Token.split(':'); StringRef Specifier = Split.first; Token = Split.second; - + assert(!Specifier.empty() && "Can't be empty here"); - + switch (Specifier[0]) { case 'E': LittleEndian = false; @@ -205,10 +198,10 @@ void TargetData::init(StringRef Desc) { } unsigned Size = getInt(Specifier.substr(1)); Split = Token.split(':'); - unsigned char ABIAlign = getInt(Split.first) / 8; - + unsigned ABIAlign = getInt(Split.first) / 8; + Split = Split.second.split(':'); - unsigned char PrefAlign = getInt(Split.first) / 8; + unsigned PrefAlign = getInt(Split.first) / 8; if (PrefAlign == 0) PrefAlign = ABIAlign; setAlignment(AlignType, ABIAlign, PrefAlign, Size); @@ -224,7 +217,7 @@ void TargetData::init(StringRef Desc) { Token = Split.second; } while (!Specifier.empty() || !Token.empty()); break; - + default: break; } @@ -235,19 +228,19 @@ void TargetData::init(StringRef Desc) { /// /// @note This has to exist, because this is a pass, but it should never be /// used. -TargetData::TargetData() : ImmutablePass(&ID) { - llvm_report_error("Bad TargetData ctor used. " +TargetData::TargetData() : ImmutablePass(ID) { + report_fatal_error("Bad TargetData ctor used. " "Tool did not specify a TargetData to use?"); } -TargetData::TargetData(const Module *M) - : ImmutablePass(&ID) { +TargetData::TargetData(const Module *M) + : ImmutablePass(ID) { init(M->getDataLayout()); } void -TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, - unsigned char pref_align, uint32_t bit_width) { +TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, + unsigned pref_align, uint32_t bit_width) { assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && @@ -258,14 +251,14 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, return; } } - + Alignments.push_back(TargetAlignElem::get(align_type, abi_align, pref_align, bit_width)); } -/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or +/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. -unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, +unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth, bool ABIInfo, const Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. @@ -275,28 +268,18 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, if (Alignments[i].AlignType == AlignType && Alignments[i].TypeBitWidth == BitWidth) return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; - + // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { - // If this is a specification for a smaller vector type, we will fall back - // to it. This happens because <128 x double> can be implemented in terms - // of 64 <2 x double>. - if (Alignments[i].TypeBitWidth < BitWidth) { - // Verify that we pick the biggest of the fallbacks. - if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) - BestMatchIdx = i; - } - } else if (AlignType == INTEGER_ALIGN && - Alignments[i].AlignType == INTEGER_ALIGN) { + if (AlignType == INTEGER_ALIGN && + Alignments[i].AlignType == INTEGER_ALIGN) { // The "best match" for integers is the smallest size that is larger than // the BitWidth requested. - if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || + if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) BestMatchIdx = i; // However, if there isn't one that's larger, then we must use the // largest one we have (see below) - if (LargestInt == -1 || + if (LargestInt == -1 || Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) LargestInt = i; } @@ -311,10 +294,15 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, } else { assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); - // If we didn't find a vector size that is smaller or equal to this type, - // then we will end up scalarizing this to its element type. Just return - // the alignment of the element. - return getAlignment(cast(Ty)->getElementType(), ABIInfo); + // By default, use natural alignment for vector types. This is consistent + // with what clang and llvm-gcc do. + unsigned Align = getTypeAllocSize(cast(Ty)->getElementType()); + Align *= cast(Ty)->getNumElements(); + // If the alignment is not a power of 2, round up to the next power of 2. + // This happens for non-power-of-2 length vectors. + if (Align & (Align-1)) + Align = llvm::NextPowerOf2(Align); + return Align; } } @@ -323,43 +311,102 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, : Alignments[BestMatchIdx].PrefAlign; } -typedef DenseMapLayoutInfoTy; +namespace { -TargetData::~TargetData() { - if (!LayoutMap) - return; - - // Remove any layouts for this TD. - LayoutInfoTy &TheMap = *static_cast(LayoutMap); - for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) { +class StructLayoutMap : public AbstractTypeUser { + typedef DenseMap LayoutInfoTy; + LayoutInfoTy LayoutInfo; + + void RemoveEntry(LayoutInfoTy::iterator I, bool WasAbstract) { I->second->~StructLayout(); free(I->second); - TheMap.erase(I++); + if (WasAbstract) + I->first->removeAbstractTypeUser(this); + LayoutInfo.erase(I); } - - delete static_cast(LayoutMap); + + + /// refineAbstractType - The callback method invoked when an abstract type is + /// resolved to another type. An object must override this method to update + /// its internal state to reference NewType instead of OldType. + /// + virtual void refineAbstractType(const DerivedType *OldTy, + const Type *) { + LayoutInfoTy::iterator I = LayoutInfo.find(cast(OldTy)); + assert(I != LayoutInfo.end() && "Using type but not in map?"); + RemoveEntry(I, true); + } + + /// typeBecameConcrete - The other case which AbstractTypeUsers must be aware + /// of is when a type makes the transition from being abstract (where it has + /// clients on its AbstractTypeUsers list) to concrete (where it does not). + /// This method notifies ATU's when this occurs for a type. + /// + virtual void typeBecameConcrete(const DerivedType *AbsTy) { + LayoutInfoTy::iterator I = LayoutInfo.find(cast(AbsTy)); + assert(I != LayoutInfo.end() && "Using type but not in map?"); + RemoveEntry(I, true); + } + +public: + virtual ~StructLayoutMap() { + // Remove any layouts. + for (LayoutInfoTy::iterator + I = LayoutInfo.begin(), E = LayoutInfo.end(); I != E; ++I) { + const Type *Key = I->first; + StructLayout *Value = I->second; + + if (Key->isAbstract()) + Key->removeAbstractTypeUser(this); + + Value->~StructLayout(); + free(Value); + } + } + + void InvalidateEntry(const StructType *Ty) { + LayoutInfoTy::iterator I = LayoutInfo.find(Ty); + if (I == LayoutInfo.end()) return; + RemoveEntry(I, Ty->isAbstract()); + } + + StructLayout *&operator[](const StructType *STy) { + return LayoutInfo[STy]; + } + + // for debugging... + virtual void dump() const {} +}; + +} // end anonymous namespace + +TargetData::~TargetData() { + delete static_cast(LayoutMap); } const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { if (!LayoutMap) - LayoutMap = static_cast(new LayoutInfoTy()); - - LayoutInfoTy &TheMap = *static_cast(LayoutMap); - - StructLayout *&SL = TheMap[Ty]; + LayoutMap = new StructLayoutMap(); + + StructLayoutMap *STM = static_cast(LayoutMap); + StructLayout *&SL = (*STM)[Ty]; if (SL) return SL; - // Otherwise, create the struct layout. Because it is variable length, we + // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. int NumElts = Ty->getNumElements(); StructLayout *L = - (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); - + (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); + // Set SL before calling StructLayout's ctor. The ctor could cause other // entries to be added to TheMap, invalidating our reference. SL = L; - + new (L) StructLayout(Ty, *this); + + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(STM); + return L; } @@ -369,21 +416,14 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { /// avoid a dangling pointer in this cache. void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { if (!LayoutMap) return; // No cache. - - LayoutInfoTy* LayoutInfo = static_cast(LayoutMap); - LayoutInfoTy::iterator I = LayoutInfo->find(Ty); - if (I == LayoutInfo->end()) return; - - I->second->~StructLayout(); - free(I->second); - LayoutInfo->erase(I); -} + static_cast(LayoutMap)->InvalidateEntry(Ty); +} std::string TargetData::getStringRepresentation() const { std::string Result; raw_string_ostream OS(Result); - + OS << (LittleEndian ? "e" : "E") << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 << ':' << PointerPrefAlign*8; @@ -392,10 +432,10 @@ std::string TargetData::getStringRepresentation() const { OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; } - + if (!LegalIntWidths.empty()) { OS << "-n" << (unsigned)LegalIntWidths[0]; - + for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) OS << ':' << (unsigned)LegalIntWidths[i]; } @@ -423,6 +463,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { case Type::FloatTyID: return 32; case Type::DoubleTyID: + case Type::X86_MMXTyID: return 64; case Type::PPC_FP128TyID: case Type::FP128TyID: @@ -448,7 +489,7 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref == false) for the requested type \a Ty. */ -unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { +unsigned TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { int AlignType = -1; assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); @@ -470,7 +511,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); - return std::max(Align, (unsigned)Layout->getAlignment()); + return std::max(Align, Layout->getAlignment()); } case Type::IntegerTyID: case Type::VoidTyID: @@ -485,6 +526,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; + case Type::X86_MMXTyID: case Type::VectorTyID: AlignType = VECTOR_ALIGN; break; @@ -497,11 +539,18 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { abi_or_pref, Ty); } -unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { +unsigned TargetData::getABITypeAlignment(const Type *Ty) const { return getAlignment(Ty, true); } -unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { +/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for +/// an integer type of the specified bitwidth. +unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { + return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); +} + + +unsigned TargetData::getCallFrameTypeAlignment(const Type *Ty) const { for (unsigned i = 0, e = Alignments.size(); i != e; ++i) if (Alignments[i].AlignType == STACK_ALIGN) return Alignments[i].ABIAlign; @@ -509,12 +558,12 @@ unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { return getABITypeAlignment(Ty); } -unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { +unsigned TargetData::getPrefTypeAlignment(const Type *Ty) const { return getAlignment(Ty, false); } -unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { - unsigned Align = (unsigned) getPrefTypeAlignment(Ty); +unsigned TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { + unsigned Align = getPrefTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } @@ -529,7 +578,7 @@ const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, unsigned NumIndices) const { const Type *Ty = ptrTy; - assert(isa(Ty) && "Illegal argument for getIndexedOffset()"); + assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator @@ -554,8 +603,8 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, Ty = cast(Ty)->getElementType(); // Get the array index and the size of each array element. - int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeAllocSize(Ty); + if (int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue()) + Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); } }