X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FTargetData.cpp;h=f83adefbee3426e2124a3c093aef21a6d274db9e;hb=73b43b9b549a75fb0015c825df68abd95705a67c;hp=dfa6d2a283a20fcaa899c1091eb8f745f19b90c0;hpb=1ede29c9511a50c7a9a77178e2cfff538daa0347;p=oota-llvm.git diff --git a/lib/Target/TargetData.cpp b/lib/Target/TargetData.cpp index dfa6d2a283a..f83adefbee3 100644 --- a/lib/Target/TargetData.cpp +++ b/lib/Target/TargetData.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -27,14 +27,14 @@ #include "llvm/ADT/StringExtras.h" #include #include -#include using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. -namespace { - // Register the default SparcV9 implementation... - RegisterPass X("targetdata", "Target Data Layout"); -} + +// Register the default SparcV9 implementation... +static RegisterPass X("targetdata", "Target Data Layout", false, + true); +char TargetData::ID = 0; //===----------------------------------------------------------------------===// // Support for StructLayout @@ -48,20 +48,16 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { // Loop over each of the elements, placing them in memory... for (unsigned i = 0, e = NumElements; i != e; ++i) { const Type *Ty = ST->getElementType(i); - unsigned TyAlign; - uint64_t TySize; - TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty)); - TySize = TD.getTypeSize(Ty); + unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); - // Add padding if necessary to make the data element aligned properly... - if (StructSize % TyAlign != 0) - StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... + // Add padding if necessary to align the data element properly... + StructSize = (StructSize + TyAlign - 1)/TyAlign * TyAlign; // Keep track of maximum alignment constraint StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets[i] = StructSize; - StructSize += TySize; // Consume space for this data item + StructSize += TD.getABITypeSize(Ty); // Consume space for this data item } // Empty structures have alignment of 1 byte. @@ -82,9 +78,15 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); - assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) && + assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && "Upper bound didn't work!"); + + // Multiple fields can have the same offset if any of them are zero sized. + // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop + // at the i32 element, because it is the last element at that offset. This is + // the right one to return, because anything after it will have a higher + // offset, implying that this element is non-empty. return SI-&MemberOffsets[0]; } @@ -95,6 +97,7 @@ unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { TargetAlignElem TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); TargetAlignElem retval; retval.AlignType = align_type; retval.ABIAlign = abi_align; @@ -145,10 +148,11 @@ const TargetAlignElem TargetData::InvalidAlignmentElem = [E|e]: Endianness. "E" specifies a big-endian target data model, "e" specifies a little-endian target data model.

- p:::: Pointer size, ABI and preferred - alignment. + p:@verbatim::@endverbatim: Pointer size, + ABI and preferred alignment.

- ::: Numeric type alignment. Type is + @verbatim::@endverbatim: Numeric type + alignment. Type is one of i|f|v|a, corresponding to integer, floating point, vector (aka packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits. \p @@ -181,7 +185,7 @@ void TargetData::init(const std::string &TargetDescription) { setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32 setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ... - + while (!temp.empty()) { std::string token = getToken(temp, "-"); std::string arg0 = getToken(token, ":"); @@ -203,10 +207,16 @@ void TargetData::init(const std::string &TargetDescription) { case 'i': case 'v': case 'f': - case 'a': { - AlignTypeEnum align_type = - (*p == 'i' ? INTEGER_ALIGN : (*p == 'f' ? FLOAT_ALIGN : - (*p == 'v' ? VECTOR_ALIGN : AGGREGATE_ALIGN))); + case 'a': + case 's': { + AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning + switch(*p) { + case 'i': align_type = INTEGER_ALIGN; break; + case 'v': align_type = VECTOR_ALIGN; break; + case 'f': align_type = FLOAT_ALIGN; break; + case 'a': align_type = AGGREGATE_ALIGN; break; + case 's': align_type = STACK_ALIGN; break; + } uint32_t size = (uint32_t) atoi(++p); unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; @@ -221,13 +231,15 @@ void TargetData::init(const std::string &TargetDescription) { } } -TargetData::TargetData(const Module *M) { +TargetData::TargetData(const Module *M) + : ImmutablePass((intptr_t)&ID) { init(M->getDataLayout()); } void TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, unsigned char pref_align, uint32_t bit_width) { + assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { if (Alignments[i].AlignType == align_type && Alignments[i].TypeBitWidth == bit_width) { @@ -245,7 +257,8 @@ TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or /// preferred if ABIInfo = false) the target wants for the specified datatype. unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, - uint32_t BitWidth, bool ABIInfo) const { + uint32_t BitWidth, bool ABIInfo, + const Type *Ty) const { // Check to see if we have an exact match and remember the best match we see. int BestMatchIdx = -1; int LargestInt = -1; @@ -255,15 +268,14 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; // The best match so far depends on what we're looking for. - if (AlignType == VECTOR_ALIGN) { + if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { // If this is a specification for a smaller vector type, we will fall back // to it. This happens because <128 x double> can be implemented in terms // of 64 <2 x double>. - if (Alignments[i].AlignType == VECTOR_ALIGN && - Alignments[i].TypeBitWidth < BitWidth) { + if (Alignments[i].TypeBitWidth < BitWidth) { // Verify that we pick the biggest of the fallbacks. if (BestMatchIdx == -1 || - Alignments[BestMatchIdx].TypeBitWidth < BitWidth) + Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) BestMatchIdx = i; } } else if (AlignType == INTEGER_ALIGN && @@ -281,19 +293,29 @@ unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, } } - // For integers, if we didn't find a best match, use the largest one found. - if (BestMatchIdx == -1) - BestMatchIdx = LargestInt; - // Okay, we didn't find an exact solution. Fall back here depending on what // is being looked for. - assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!"); - + if (BestMatchIdx == -1) { + // If we didn't find an integer alignment, fall back on most conservative. + if (AlignType == INTEGER_ALIGN) { + BestMatchIdx = LargestInt; + } else { + assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); + + // If we didn't find a vector size that is smaller or equal to this type, + // then we will end up scalarizing this to its element type. Just return + // the alignment of the element. + return getAlignment(cast(Ty)->getElementType(), ABIInfo); + } + } + // Since we got a "best match" index, just return it. return ABIInfo ? Alignments[BestMatchIdx].ABIAlign : Alignments[BestMatchIdx].PrefAlign; } +namespace { + /// LayoutInfo - The lazy cache of structure layout information maintained by /// TargetData. Note that the struct types must have been free'd before /// llvm_shutdown is called (and thus this is deallocated) because all the @@ -307,15 +329,21 @@ struct DenseMapLayoutKeyInfo { return LayoutKey((TargetData*)(intptr_t)-1, 0); } static unsigned getHashValue(const LayoutKey &Val) { - return DenseMapKeyInfo::getHashValue(Val.first) ^ - DenseMapKeyInfo::getHashValue(Val.second); + return DenseMapInfo::getHashValue(Val.first) ^ + DenseMapInfo::getHashValue(Val.second); + } + static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { + return LHS == RHS; } + static bool isPod() { return true; } }; typedef DenseMap LayoutInfoTy; -static ManagedStatic LayoutInfo; +} + +static ManagedStatic LayoutInfo; TargetData::~TargetData() { if (LayoutInfo.isConstructed()) { @@ -342,7 +370,7 @@ const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { // Otherwise, create the struct layout. Because it is variable length, we // malloc it, then use placement new. - unsigned NumElts = Ty->getNumElements(); + int NumElts = Ty->getNumElements(); StructLayout *L = (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); @@ -388,71 +416,47 @@ std::string TargetData::getStringRepresentation() const { } -uint64_t TargetData::getTypeSize(const Type *Ty) const { +uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::LabelTyID: case Type::PointerTyID: - return getPointerSize(); + return getPointerSizeInBits(); case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); - uint64_t Size; - unsigned char Alignment; - Size = getTypeSize(ATy->getElementType()); - Alignment = getABITypeAlignment(ATy->getElementType()); - unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; - return AlignedSize*ATy->getNumElements(); + return getABITypeSizeInBits(ATy->getElementType())*ATy->getNumElements(); } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); - return Layout->getSizeInBytes(); - } - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - if (BitWidth <= 8) { - return 1; - } else if (BitWidth <= 16) { - return 2; - } else if (BitWidth <= 32) { - return 4; - } else if (BitWidth <= 64) { - return 8; - } else { - // The size of this > 64 bit type is chosen as a multiple of the - // preferred alignment of the largest "native" size the target supports. - // We first obtain the the alignment info for this type and then compute - // the next largest multiple of that size. - uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8; - return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8; - } - break; + return Layout->getSizeInBits(); } + case Type::IntegerTyID: + return cast(Ty)->getBitWidth(); case Type::VoidTyID: - return 1; + return 8; case Type::FloatTyID: - return 4; + return 32; case Type::DoubleTyID: - return 8; + return 64; + case Type::PPC_FP128TyID: + case Type::FP128TyID: + return 128; + // In memory objects this is always aligned to a higher boundary, but + // only 80 bits contain information. + case Type::X86_FP80TyID: + return 80; case Type::VectorTyID: { const VectorType *PTy = cast(Ty); - return PTy->getBitWidth() / 8; + return PTy->getBitWidth(); } default: - assert(0 && "TargetData::getTypeSize(): Unsupported type"); + assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); break; } return 0; } -uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { - if (Ty->isInteger()) - return cast(Ty)->getBitWidth(); - else - return getTypeSize(Ty) * 8; -} - - /*! \param abi_or_pref Flag that determines which alignment is returned. true returns the ABI alignment, false returns the preferred alignment. @@ -482,7 +486,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = getStructLayout(cast(Ty)); - unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref); + unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); return std::max(Align, (unsigned)Layout->getAlignment()); } case Type::IntegerTyID: @@ -491,6 +495,11 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { break; case Type::FloatTyID: case Type::DoubleTyID: + // PPC_FP128TyID and FP128TyID have different data contents, but the + // same size and alignment, so they look the same here. + case Type::PPC_FP128TyID: + case Type::FP128TyID: + case Type::X86_FP80TyID: AlignType = FLOAT_ALIGN; break; case Type::VectorTyID: @@ -501,14 +510,22 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { break; } - return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8, - abi_or_pref); + return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), + abi_or_pref, Ty); } unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { return getAlignment(Ty, true); } +unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { + for (unsigned i = 0, e = Alignments.size(); i != e; ++i) + if (Alignments[i].AlignType == STACK_ALIGN) + return Alignments[i].ABIAlign; + + return getABITypeAlignment(Ty); +} + unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { return getAlignment(Ty, false); } @@ -522,12 +539,7 @@ unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. const Type *TargetData::getIntPtrType() const { - switch (getPointerSize()) { - default: assert(0 && "Unknown pointer size!"); - case 2: return Type::Int16Ty; - case 4: return Type::Int32Ty; - case 8: return Type::Int64Ty; - } + return IntegerType::get(getPointerSizeInBits()); } @@ -559,29 +571,36 @@ uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, // Get the array index and the size of each array element. int64_t arrayIdx = cast(Indices[CurIDX])->getSExtValue(); - Result += arrayIdx * (int64_t)getTypeSize(Ty); + Result += arrayIdx * (int64_t)getABITypeSize(Ty); } } return Result; } -/// getPreferredAlignmentLog - Return the preferred alignment of the -/// specified global, returned in log form. This includes an explicitly -/// requested alignment (if the global has one). -unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { +/// getPreferredAlignment - Return the preferred alignment of the specified +/// global. This includes an explicitly requested alignment (if the global +/// has one). +unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { const Type *ElemType = GV->getType()->getElementType(); - unsigned Alignment = getPreferredTypeAlignmentShift(ElemType); - if (GV->getAlignment() > (1U << Alignment)) - Alignment = Log2_32(GV->getAlignment()); - + unsigned Alignment = getPrefTypeAlignment(ElemType); + if (GV->getAlignment() > Alignment) + Alignment = GV->getAlignment(); + if (GV->hasInitializer()) { - if (Alignment < 4) { + if (Alignment < 16) { // If the global is not external, see if it is large. If so, give it a // larger alignment. - if (getTypeSize(ElemType) > 128) - Alignment = 4; // 16-byte alignment. + if (getTypeSizeInBits(ElemType) > 128) + Alignment = 16; // 16-byte alignment. } } return Alignment; } + +/// getPreferredAlignmentLog - Return the preferred alignment of the +/// specified global, returned in log form. This includes an explicitly +/// requested alignment (if the global has one). +unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { + return Log2_32(getPreferredAlignment(GV)); +}