X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86CodeEmitter.cpp;h=9c68a9ce9ca7083188777d41156b08d3b366f802;hb=7ad7c75048eb32f95eae04847908793e0183802f;hp=eaca90ac55fe30bff06e5345dd8e23c00dc6ef48;hpb=75361b69f3f327842b9dad69fa7f28ae3b688412;p=oota-llvm.git diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp index eaca90ac55f..9c68a9ce9ca 100644 --- a/lib/Target/X86/X86CodeEmitter.cpp +++ b/lib/Target/X86/X86CodeEmitter.cpp @@ -1,4 +1,4 @@ -//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// +//===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===// // // The LLVM Compiler Infrastructure // @@ -12,38 +12,38 @@ // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "x86-emitter" +#include "X86.h" #include "X86InstrInfo.h" #include "X86JITInfo.h" +#include "X86Relocations.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" -#include "X86Relocations.h" -#include "X86.h" -#include "llvm/LLVMContext.h" -#include "llvm/PassManager.h" +#include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/JITCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" -#include "llvm/Function.h" -#include "llvm/ADT/Statistic.h" +#include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" +#include "llvm/PassManager.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; +#define DEBUG_TYPE "x86-emitter" + STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { template class Emitter : public MachineFunctionPass { const X86InstrInfo *II; - const TargetData *TD; + const DataLayout *TD; X86TargetMachine &TM; CodeEmitter &MCE; MachineModuleInfo *MMI; @@ -53,25 +53,31 @@ namespace { public: static char ID; explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) - : MachineFunctionPass(&ID), II(0), TD(0), TM(tm), - MCE(mce), PICBaseOffset(0), Is64BitMode(false), - IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} - Emitter(X86TargetMachine &tm, CodeEmitter &mce, - const X86InstrInfo &ii, const TargetData &td, bool is64) - : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm), - MCE(mce), PICBaseOffset(0), Is64BitMode(is64), - IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} - - bool runOnMachineFunction(MachineFunction &MF); - - virtual const char *getPassName() const { + : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm), + MCE(mce), PICBaseOffset(0), Is64BitMode(false), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + + bool runOnMachineFunction(MachineFunction &MF) override; + + const char *getPassName() const override { return "X86 Machine Code Emitter"; } - void emitInstruction(const MachineInstr &MI, - const TargetInstrDesc *Desc); - - void getAnalysisUsage(AnalysisUsage &AU) const { + void emitOpcodePrefix(uint64_t TSFlags, int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const; + + void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const; + + void emitSegmentOverridePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI) const; + + void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc); + + void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); @@ -79,7 +85,7 @@ namespace { private: void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); - void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, + void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, intptr_t Disp = 0, intptr_t PCAdj = 0, bool Indirect = false); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); @@ -100,7 +106,13 @@ namespace { unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj = 0); - unsigned getX86RegNum(unsigned RegNo) const; + unsigned getX86RegNum(unsigned RegNo) const { + const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo(); + return TRI->getEncodingValue(RegNo) & 0x7; + } + + unsigned char getVEXRegisterEncoding(const MachineInstr &MI, + unsigned OpNum) const; }; template @@ -108,7 +120,7 @@ template } // end anonymous namespace. /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code -/// to the specified templated MachineCodeEmitter object. +/// to the specified JITCodeEmitter object. FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, JITCodeEmitter &JCE) { return new Emitter(TM, JCE); @@ -118,27 +130,26 @@ template bool Emitter::runOnMachineFunction(MachineFunction &MF) { MMI = &getAnalysis(); MCE.setModuleInfo(MMI); - - II = TM.getInstrInfo(); - TD = TM.getTargetData(); + + II = TM.getSubtargetImpl()->getInstrInfo(); + TD = TM.getSubtargetImpl()->getDataLayout(); Is64BitMode = TM.getSubtarget().is64Bit(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; - + do { - DEBUG(dbgs() << "JITTing function '" - << MF.getFunction()->getName() << "'\n"); + DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n"); MCE.startFunction(MF); - for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); + for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); - for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { - const TargetInstrDesc &Desc = I->getDesc(); + const MCInstrDesc &Desc = I->getDesc(); emitInstruction(*I, &Desc); // MOVPC32r is basically a call plus a pop instruction. if (Desc.getOpcode() == X86::MOVPC32r) emitInstruction(*I, &II->get(X86::POP32r)); - NumEmitted++; // Keep track of the # of mi's emitted + ++NumEmitted; // Keep track of the # of mi's emitted } } } while (MCE.finishFunction(MF)); @@ -146,6 +157,100 @@ bool Emitter::runOnMachineFunction(MachineFunction &MF) { return false; } +/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 +/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand +/// size, and 3) use of X86-64 extended registers. +static unsigned determineREX(const MachineInstr &MI) { + unsigned REX = 0; + const MCInstrDesc &Desc = MI.getDesc(); + + // Pseudo instructions do not need REX prefix byte. + if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) + return 0; + if (Desc.TSFlags & X86II::REX_W) + REX |= 1 << 3; + + unsigned NumOps = Desc.getNumOperands(); + if (NumOps) { + bool isTwoAddr = NumOps > 1 && + Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; + + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. + unsigned i = isTwoAddr ? 1 : 0; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + unsigned Reg = MO.getReg(); + if (X86II::isX86_64NonExtLowByteReg(Reg)) + REX |= 0x40; + } + } + + switch (Desc.TSFlags & X86II::FormMask) { + case X86II::MRMSrcReg: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << 0; + } + break; + } + case X86II::MRMSrcMem: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + unsigned Bit = 0; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + case X86II::MRMXm: + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: { + unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); + i = isTwoAddr ? 1 : 0; + if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e))) + REX |= 1 << 2; + unsigned Bit = 0; + for (; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + default: { + if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 0; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (X86InstrInfo::isX86_64ExtendedReg(MO)) + REX |= 1 << 2; + } + break; + } + } + } + return REX; +} + + /// emitPCRelativeBlockAddress - This method keeps track of the information /// necessary to resolve the address of this block later and emits a dummy /// value. @@ -163,7 +268,8 @@ void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { /// this is part of a "take the address of a global" instruction. /// template -void Emitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, +void Emitter::emitGlobalAddress(const GlobalValue *GV, + unsigned Reloc, intptr_t Disp /* = 0 */, intptr_t PCAdj /* = 0 */, bool Indirect /* = false */) { @@ -174,9 +280,10 @@ void Emitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, RelocCST = PCAdj; MachineRelocation MR = Indirect ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, - GV, RelocCST, false) + const_cast(GV), + RelocCST, false) : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, - GV, RelocCST, false); + const_cast(GV), RelocCST, false); MCE.addRelocation(MR); // The relocated value will be added to the displacement if (Reloc == X86::reloc_absolute_dword) @@ -248,11 +355,6 @@ void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, MCE.emitWordLE(0); } -template -unsigned Emitter::getX86RegNum(unsigned RegNo) const { - return X86RegisterInfo::getX86RegNum(RegNo); -} - inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); @@ -271,7 +373,7 @@ void Emitter::emitRegModRMByte(unsigned RegOpcodeFld) { } template -void Emitter::emitSIBByte(unsigned SS, +void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... @@ -287,8 +389,8 @@ void Emitter::emitConstant(uint64_t Val, unsigned Size) { } } -/// isDisp8 - Return true if this signed displacement fits in a 8-bit -/// sign-extended field. +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } @@ -297,10 +399,10 @@ static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, const TargetMachine &TM) { // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer // mechanism as 32-bit mode. - if (TM.getSubtarget().is64Bit() && + if (TM.getSubtarget().is64Bit() && !TM.getSubtarget().isTargetDarwin()) return false; - + // Return true if this is a reference to a stub containing the address of the // global, not the global itself. return isGlobalStubReference(GVOp.getTargetFlags()); @@ -326,7 +428,7 @@ void Emitter::emitDisplacementField(const MachineOperand *RelocOp, if (RelocOp->isGlobal()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. If the MCE supports using RIP directly - // do it, otherwise fallback to absolute (this is determined by IsPCRel). + // do it, otherwise fallback to absolute (this is determined by IsPCRel). // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); @@ -349,8 +451,8 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, intptr_t PCAdj) { const MachineOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; - const MachineOperand *DispForReloc = 0; - + const MachineOperand *DispForReloc = nullptr; + // Figure out what sort of displacement we have to handle here. if (Op3.isGlobal()) { DispForReloc = &Op3; @@ -379,13 +481,23 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, unsigned BaseReg = Base.getReg(); + // Handle %rip relative addressing. + if (BaseReg == X86::RIP || + (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode + assert(IndexReg.getReg() == 0 && Is64BitMode && + "Invalid rip-relative address"); + MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, true); + return; + } + // Indicate that the displacement will use an pcrel or absolute reference // by default. MCEs able to resolve addresses on-the-fly use pcrel by default // while others, unless explicit asked to use RIP, use absolute references. bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; // Is a SIB byte needed? - // If no BaseReg, issue a RIP relative instruction only if the MCE can + // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. unsigned BaseRegNo = -1U; @@ -393,7 +505,7 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, BaseRegNo = getX86RegNum(BaseReg); if (// The SIB byte must be used if there is an index register. - IndexReg.getReg() == 0 && + IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. @@ -407,7 +519,7 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, emitDisplacementField(DispForReloc, DispVal, PCAdj, true); return; } - + // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it @@ -416,20 +528,20 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); return; } - + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (!DispForReloc && isDisp8(DispVal)) { MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(DispVal, 1); return; } - + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); return; } - + // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); @@ -445,7 +557,7 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, // Emit the normal disp32 encoding. MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); ForceDisp32 = true; - } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) { + } else if (DispVal == 0 && BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(DispVal)) { @@ -458,11 +570,11 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, } // Calculate what the SS field value should be... - static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; + static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { - // Handle the SIB byte for the case where there is no base, see Intel + // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) @@ -488,85 +600,94 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, } } -template -void Emitter::emitInstruction(const MachineInstr &MI, - const TargetInstrDesc *Desc) { - DEBUG(dbgs() << MI); - - MCE.processDebugLoc(MI.getDebugLoc(), true); - - unsigned Opcode = Desc->Opcode; +static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II, + unsigned Opcode) { + const MCInstrDesc *Desc = &II->get(Opcode); + MI.setDesc(*Desc); + return Desc; +} - // Emit the lock opcode prefix as needed. - if (Desc->TSFlags & X86II::LOCK) - MCE.emitByte(0xF0); +/// Is16BitMemOperand - Return true if the specified instruction has +/// a 16-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} - // Emit segment override opcode prefix as needed. - switch (Desc->TSFlags & X86II::SegOvrMask) { - case X86II::FS: - MCE.emitByte(0x64); - break; - case X86II::GS: - MCE.emitByte(0x65); - break; - default: llvm_unreachable("Invalid segment!"); - case 0: break; // No segment override! - } +/// Is32BitMemOperand - Return true if the specified instruction has +/// a 32-bit memory operand. Op specifies the operand # of the memoperand. +static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} - // Emit the repeat opcode prefix as needed. - if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) - MCE.emitByte(0xF3); +/// Is64BitMemOperand - Return true if the specified instruction has +/// a 64-bit memory operand. Op specifies the operand # of the memoperand. +#ifndef NDEBUG +static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) { + const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); + const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); + + if ((BaseReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || + (IndexReg.getReg() != 0 && + X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) + return true; + return false; +} +#endif +template +void Emitter::emitOpcodePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const { // Emit the operand size opcode prefix as needed. - if (Desc->TSFlags & X86II::OpSize) + if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16) MCE.emitByte(0x66); - // Emit the address size opcode prefix as needed. - if (Desc->TSFlags & X86II::AdSize) - MCE.emitByte(0x67); - - bool Need0FPrefix = false; - switch (Desc->TSFlags & X86II::Op0Mask) { - case X86II::TB: // Two-byte opcode prefix - case X86II::T8: // 0F 38 - case X86II::TA: // 0F 3A - Need0FPrefix = true; - break; - case X86II::TF: // F2 0F 38 - MCE.emitByte(0xF2); - Need0FPrefix = true; + switch (Desc->TSFlags & X86II::OpPrefixMask) { + case X86II::PD: // 66 + MCE.emitByte(0x66); break; - case X86II::REP: break; // already handled. - case X86II::XS: // F3 0F + case X86II::XS: // F3 MCE.emitByte(0xF3); - Need0FPrefix = true; break; - case X86II::XD: // F2 0F + case X86II::XD: // F2 MCE.emitByte(0xF2); - Need0FPrefix = true; break; - case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: - case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: - MCE.emitByte(0xD8+ - (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) - >> X86II::Op0Shift)); - break; // Two-byte opcode prefix - default: llvm_unreachable("Invalid prefix!"); - case 0: break; // No prefix! } // Handle REX prefix. if (Is64BitMode) { - if (unsigned REX = X86InstrInfo::determineREX(MI)) + if (unsigned REX = determineREX(MI)) MCE.emitByte(0x40 | REX); } // 0x0F escape code must be emitted just before the opcode. - if (Need0FPrefix) + switch (Desc->TSFlags & X86II::OpMapMask) { + case X86II::TB: // Two-byte opcode map + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A MCE.emitByte(0x0F); + break; + } - switch (Desc->TSFlags & X86II::Op0Mask) { - case X86II::TF: // F2 0F 38 + switch (Desc->TSFlags & X86II::OpMapMask) { case X86II::T8: // 0F 38 MCE.emitByte(0x38); break; @@ -574,51 +695,460 @@ void Emitter::emitInstruction(const MachineInstr &MI, MCE.emitByte(0x3A); break; } +} + +// On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range +// 0-7 and the difference between the 2 groups is given by the REX prefix. +// In the VEX prefix, registers are seen sequencially from 0-15 and encoded +// in 1's complement form, example: +// +// ModRM field => XMM9 => 1 +// VEX.VVVV => XMM9 => ~9 +// +// See table 4-35 of Intel AVX Programming Reference for details. +template +unsigned char +Emitter::getVEXRegisterEncoding(const MachineInstr &MI, + unsigned OpNum) const { + unsigned SrcReg = MI.getOperand(OpNum).getReg(); + unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg()); + if (X86II::isX86_64ExtendedReg(SrcReg)) + SrcRegNum |= 8; + + // The registers represented through VEX_VVVV should + // be encoded in 1's complement form. + return (~SrcRegNum) & 0xf; +} + +/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed +template +void Emitter::emitSegmentOverridePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI) const { + if (MemOperand < 0) + return; // No memory operand + + // Check for explicit segment override on memory operand. + switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { + default: llvm_unreachable("Unknown segment register!"); + case 0: break; + case X86::CS: MCE.emitByte(0x2E); break; + case X86::SS: MCE.emitByte(0x36); break; + case X86::DS: MCE.emitByte(0x3E); break; + case X86::ES: MCE.emitByte(0x26); break; + case X86::FS: MCE.emitByte(0x64); break; + case X86::GS: MCE.emitByte(0x65); break; + } +} + +template +void Emitter::emitVEXOpcodePrefix(uint64_t TSFlags, + int MemOperand, + const MachineInstr &MI, + const MCInstrDesc *Desc) const { + unsigned char Encoding = (TSFlags & X86II::EncodingMask) >> + X86II::EncodingShift; + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + + // VEX_R: opcode externsion equivalent to REX.R in + // 1's complement (inverted) form + // + // 1: Same as REX_R=0 (must be 1 in 32-bit mode) + // 0: Same as REX_R=1 (64 bit mode only) + // + unsigned char VEX_R = 0x1; + + // VEX_X: equivalent to REX.X, only used when a + // register is used for index in SIB Byte. + // + // 1: Same as REX.X=0 (must be 1 in 32-bit mode) + // 0: Same as REX.X=1 (64-bit mode only) + unsigned char VEX_X = 0x1; + + // VEX_B: + // + // 1: Same as REX_B=0 (ignored in 32-bit mode) + // 0: Same as REX_B=1 (64 bit mode only) + // + unsigned char VEX_B = 0x1; + + // VEX_W: opcode specific (use like REX.W, or used for + // opcode extension, or ignored, depending on the opcode byte) + unsigned char VEX_W = 0; + + // VEX_5M (VEX m-mmmmm field): + // + // 0b00000: Reserved for future use + // 0b00001: implied 0F leading opcode + // 0b00010: implied 0F 38 leading opcode bytes + // 0b00011: implied 0F 3A leading opcode bytes + // 0b00100-0b11111: Reserved for future use + // 0b01000: XOP map select - 08h instructions with imm byte + // 0b01001: XOP map select - 09h instructions with no imm byte + // 0b01010: XOP map select - 0Ah instructions with imm dword + unsigned char VEX_5M = 0; + + // VEX_4V (VEX vvvv field): a register specifier + // (in 1's complement form) or 1111 if unused. + unsigned char VEX_4V = 0xf; + + // VEX_L (Vector Length): + // + // 0: scalar or 128-bit vector + // 1: 256-bit vector + // + unsigned char VEX_L = 0; + + // VEX_PP: opcode extension providing equivalent + // functionality of a SIMD prefix + // + // 0b00: None + // 0b01: 66 + // 0b10: F3 + // 0b11: F2 + // + unsigned char VEX_PP = 0; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) + VEX_W = 1; + + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) + VEX_L = 1; + + switch (TSFlags & X86II::OpPrefixMask) { + default: break; // VEX_PP already correct + case X86II::PD: VEX_PP = 0x1; break; // 66 + case X86II::XS: VEX_PP = 0x2; break; // F3 + case X86II::XD: VEX_PP = 0x3; break; // F2 + } + + switch (TSFlags & X86II::OpMapMask) { + default: llvm_unreachable("Invalid prefix!"); + case X86II::TB: VEX_5M = 0x1; break; // 0F + case X86II::T8: VEX_5M = 0x2; break; // 0F 38 + case X86II::TA: VEX_5M = 0x3; break; // 0F 3A + case X86II::XOP8: VEX_5M = 0x8; break; + case X86II::XOP9: VEX_5M = 0x9; break; + case X86II::XOPA: VEX_5M = 0xA; break; + } + + // Classify VEX_B, VEX_4V, VEX_R, VEX_X + unsigned NumOps = Desc->getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) + ++CurOp; + else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { + assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + } + + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!"); + case X86II::RawFrm: + break; + case X86II::MRMDestMem: { + // MRMDestMem instructions forms: + // MemAddr, src1(ModR/M) + // MemAddr, src1(VEX_4V), src2(ModR/M) + // MemAddr, src1(ModR/M), imm8 + // + if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + + CurOp = X86::AddrNumOperands; + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + const MachineOperand &MO = MI.getOperand(CurOp); + if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) + VEX_R = 0x0; + break; + } + case X86II::MRMSrcMem: + // MRMSrcMem instructions forms: + // src1(ModR/M), MemAddr + // src1(ModR/M), src2(VEX_4V), MemAddr + // src1(ModR/M), MemAddr, imm8 + // src1(ModR/M), MemAddr, src2(VEX_I8IMM) + // + // FMA4: + // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + CurOp++; + + if (HasVEX_4V) { + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + CurOp++; + } + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + + if (HasVEX_4VOp3) + VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands); + break; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + // MRM[0-9]m instructions forms: + // MemAddr + // src1(VEX_4V), MemAddr + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) + VEX_B = 0x0; + if (X86II::isX86_64ExtendedReg( + MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) + VEX_X = 0x0; + break; + } + case X86II::MRMSrcReg: + // MRMSrcReg instructions forms: + // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) + // dst(ModR/M), src1(ModR/M) + // dst(ModR/M), src1(ModR/M), imm8 + // + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + CurOp++; + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + CurOp++; + if (HasVEX_4VOp3) + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + break; + case X86II::MRMDestReg: + // MRMDestReg instructions forms: + // dst(ModR/M), src(ModR/M) + // dst(ModR/M), src(ModR/M), imm8 + // dst(ModR/M), src1(VEX_4V), src2(ModR/M) + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + CurOp++; + + if (HasVEX_4V) + VEX_4V = getVEXRegisterEncoding(MI, CurOp++); + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_R = 0x0; + break; + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + // MRM0r-MRM7r instructions forms: + // dst(VEX_4V), src(ModR/M), imm8 + VEX_4V = getVEXRegisterEncoding(MI, CurOp); + CurOp++; + + if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) + VEX_B = 0x0; + break; + } + + // Emit segment override opcode prefix as needed. + emitSegmentOverridePrefix(TSFlags, MemOperand, MI); + + // VEX opcode prefix can have 2 or 3 bytes + // + // 3 bytes: + // +-----+ +--------------+ +-------------------+ + // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + // 2 bytes: + // +-----+ +-------------------+ + // | C5h | | R | vvvv | L | pp | + // +-----+ +-------------------+ + // + // XOP uses a similar prefix: + // +-----+ +--------------+ +-------------------+ + // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | + // +-----+ +--------------+ +-------------------+ + unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); + + // Can this use the 2 byte VEX prefix? + if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { + MCE.emitByte(0xC5); + MCE.emitByte(LastByte | (VEX_R << 7)); + return; + } + + // 3 byte VEX prefix + MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4); + MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M); + MCE.emitByte(LastByte | (VEX_W << 7)); +} + +template +void Emitter::emitInstruction(MachineInstr &MI, + const MCInstrDesc *Desc) { + DEBUG(dbgs() << MI); + + // If this is a pseudo instruction, lower it. + switch (Desc->getOpcode()) { + case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break; + case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break; + case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break; + case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break; + case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break; + case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break; + case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break; + case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break; + case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break; + case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break; + case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break; + case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break; + case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break; + case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break; + case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break; + case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break; + case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break; + } + + + MCE.processDebugLoc(MI.getDebugLoc(), true); + + unsigned Opcode = Desc->Opcode; // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc->getNumOperands(); unsigned CurOp = 0; - if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) + if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0) ++CurOp; - else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) - // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 - --NumOps; + else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) { + assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1); + // Special case for GATHER with 2 TIED_TO operands + // Skip the first 2 operands: dst, mask_wb + CurOp += 2; + } + + uint64_t TSFlags = Desc->TSFlags; + + // Encoding type for this instruction. + unsigned char Encoding = (TSFlags & X86II::EncodingMask) >> + X86II::EncodingShift; + + // It uses the VEX.VVVV field? + bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V; + bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3; + bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4; + const unsigned MemOp4_I8IMMOperand = 2; + + // Determine where the memory operand starts, if present. + int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode); + if (MemoryOperand != -1) MemoryOperand += CurOp; + + // Emit the lock opcode prefix as needed. + if (Desc->TSFlags & X86II::LOCK) + MCE.emitByte(0xF0); + + // Emit segment override opcode prefix as needed. + emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI); + + // Emit the repeat opcode prefix as needed. + if (Desc->TSFlags & X86II::REP) + MCE.emitByte(0xF3); + + // Emit the address size opcode prefix as needed. + bool need_address_override; + if (TSFlags & X86II::AdSize) { + need_address_override = true; + } else if (MemoryOperand < 0) { + need_address_override = false; + } else if (Is64BitMode) { + assert(!Is16BitMemOperand(MI, MemoryOperand)); + need_address_override = Is32BitMemOperand(MI, MemoryOperand); + } else { + assert(!Is64BitMemOperand(MI, MemoryOperand)); + need_address_override = Is16BitMemOperand(MI, MemoryOperand); + } + + if (need_address_override) + MCE.emitByte(0x67); + + if (Encoding == 0) + emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); + else + emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc); unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); - switch (Desc->TSFlags & X86II::FormMask) { + switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: // Remember the current PC offset, this is the PIC relocation // base address. switch (Opcode) { - default: - llvm_unreachable("psuedo instructions should be removed before code" + default: + llvm_unreachable("pseudo instructions should be removed before code" " emission"); + // Do nothing for Int_MemBarrier - it's just a comment. Add a debug + // to make it slightly easier to see. + case X86::Int_MemBarrier: + DEBUG(dbgs() << "#MEMBARRIER\n"); break; + case TargetOpcode::INLINEASM: // We allow inline assembler nodes with empty bodies - they can // implicitly define registers, which is ok for JIT. - if (MI.getOperand(0).getSymbolName()[0]) + if (MI.getOperand(0).getSymbolName()[0]) { + DebugLoc DL = MI.getDebugLoc(); + DL.print(MI.getParent()->getParent()->getFunction()->getContext(), + llvm::errs()); report_fatal_error("JIT does not support inline asm!"); + } + break; + case TargetOpcode::DBG_VALUE: + case TargetOpcode::CFI_INSTRUCTION: break; - case TargetOpcode::DBG_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::EH_LABEL: MCE.emitLabel(MI.getOperand(0).getMCSymbol()); break; - + case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: - case X86::FP_REG_KILL: break; + + case X86::SEH_PushReg: + case X86::SEH_SaveReg: + case X86::SEH_SaveXMM: + case X86::SEH_StackAlloc: + case X86::SEH_SetFrame: + case X86::SEH_PushFrame: + case X86::SEH_EndPrologue: + case X86::SEH_Epilogue: + break; + case X86::MOVPC32r: { // This emits the "call" portion of this pseudo instruction. MCE.emitByte(BaseOpcode); emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); // Remember PIC base. PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); - X86JITInfo *JTI = TM.getJITInfo(); + X86JITInfo *JTI = TM.getSubtargetImpl()->getJITInfo(); JTI->setPICBase(MCE.getCurrentPCValue()); break; } @@ -630,7 +1160,7 @@ void Emitter::emitInstruction(const MachineInstr &MI, if (CurOp == NumOps) break; - + const MachineOperand &MO = MI.getOperand(CurOp++); DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); @@ -643,13 +1173,13 @@ void Emitter::emitInstruction(const MachineInstr &MI, emitPCRelativeBlockAddress(MO.getMBB()); break; } - + if (MO.isGlobal()) { emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, MO.getOffset(), 0); break; } - + if (MO.isSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); break; @@ -660,7 +1190,7 @@ void Emitter::emitInstruction(const MachineInstr &MI, emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); break; } - + assert(MO.isImm() && "Unknown RawFrm operand!"); if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { // Fix up immediate operand for pc relative calls. @@ -671,23 +1201,24 @@ void Emitter::emitInstruction(const MachineInstr &MI, emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); break; } - + case X86II::AddRegFrm: { - MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); - + MCE.emitByte(BaseOpcode + + getX86RegNum(MI.getOperand(CurOp++).getReg())); + if (CurOp == NumOps) break; - + const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } - + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); - if (Opcode == X86::MOV64ri64i32) + if (Opcode == X86::MOV32ri64) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? // This should not occur on Darwin for relocatable objects. if (Opcode == X86::MOV64ri) @@ -707,76 +1238,90 @@ void Emitter::emitInstruction(const MachineInstr &MI, case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp+1; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; + emitRegModRMByte(MI.getOperand(CurOp).getReg(), - getX86RegNum(MI.getOperand(CurOp+1).getReg())); - CurOp += 2; - if (CurOp != NumOps) - emitConstant(MI.getOperand(CurOp++).getImm(), - X86II::getSizeOfImm(Desc->TSFlags)); + getX86RegNum(MI.getOperand(SrcRegNum).getReg())); + CurOp = SrcRegNum + 1; break; } case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); + + unsigned SrcRegNum = CurOp + X86::AddrNumOperands; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + SrcRegNum++; emitMemModRMByte(MI, CurOp, - getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands) - .getReg())); - CurOp += X86AddrNumOperands + 1; - if (CurOp != NumOps) - emitConstant(MI.getOperand(CurOp++).getImm(), - X86II::getSizeOfImm(Desc->TSFlags)); + getX86RegNum(MI.getOperand(SrcRegNum).getReg())); + CurOp = SrcRegNum + 1; break; } - case X86II::MRMSrcReg: + case X86II::MRMSrcReg: { MCE.emitByte(BaseOpcode); - emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), + + unsigned SrcRegNum = CurOp+1; + if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) + ++SrcRegNum; + + if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM) + ++SrcRegNum; + + emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); - CurOp += 2; - if (CurOp != NumOps) - emitConstant(MI.getOperand(CurOp++).getImm(), - X86II::getSizeOfImm(Desc->TSFlags)); + // 2 operands skipped with HasMemOp4, compensate accordingly + CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1; + if (HasVEX_4VOp3) + ++CurOp; break; - + } case X86II::MRMSrcMem: { - // FIXME: Maybe lea should have its own form? - int AddrOperands; - if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || - Opcode == X86::LEA16r || Opcode == X86::LEA32r) - AddrOperands = X86AddrNumOperands - 1; // No segment register - else - AddrOperands = X86AddrNumOperands; + int AddrOperands = X86::AddrNumOperands; + unsigned FirstMemOp = CurOp+1; + if (HasVEX_4V) { + ++AddrOperands; + ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). + } + if (HasMemOp4) // Skip second register source (encoded in I8IMM) + ++FirstMemOp; + + MCE.emitByte(BaseOpcode); intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? X86II::getSizeOfImm(Desc->TSFlags) : 0; - - MCE.emitByte(BaseOpcode); - emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), - PCAdj); + emitMemModRMByte(MI, FirstMemOp, + getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj); CurOp += AddrOperands + 1; - if (CurOp != NumOps) - emitConstant(MI.getOperand(CurOp++).getImm(), - X86II::getSizeOfImm(Desc->TSFlags)); + if (HasVEX_4VOp3) + ++CurOp; break; } + case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; MCE.emitByte(BaseOpcode); + uint64_t Form = (Desc->TSFlags & X86II::FormMask); emitRegModRMByte(MI.getOperand(CurOp++).getReg(), - (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); + (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r); if (CurOp == NumOps) break; - + const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO1.isImm()) { emitConstant(MO1.getImm(), Size); break; } - + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri32) @@ -794,29 +1339,33 @@ void Emitter::emitInstruction(const MachineInstr &MI, break; } + case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { - intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ? - (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ? + if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). + ++CurOp; + intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ? + (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ? X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; MCE.emitByte(BaseOpcode); - emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, + uint64_t Form = (Desc->TSFlags & X86II::FormMask); + emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m, PCAdj); - CurOp += X86AddrNumOperands; + CurOp += X86::AddrNumOperands; if (CurOp == NumOps) break; - + const MachineOperand &MO = MI.getOperand(CurOp++); unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); if (MO.isImm()) { emitConstant(MO.getImm(), Size); break; } - + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64mi32) @@ -834,41 +1383,119 @@ void Emitter::emitInstruction(const MachineInstr &MI, break; } - case X86II::MRMInitReg: - MCE.emitByte(BaseOpcode); - // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). - emitRegModRMByte(MI.getOperand(CurOp).getReg(), - getX86RegNum(MI.getOperand(CurOp).getReg())); - ++CurOp; - break; - - case X86II::MRM_C1: - MCE.emitByte(BaseOpcode); - MCE.emitByte(0xC1); - break; - case X86II::MRM_C8: - MCE.emitByte(BaseOpcode); - MCE.emitByte(0xC8); - break; - case X86II::MRM_C9: + case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: + case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8: + case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: + case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: + case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: + case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: + case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: + case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: + case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: + case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: + case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: + case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: + case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1: + case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: + case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: + case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: + case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: + case X86II::MRM_FE: case X86II::MRM_FF: MCE.emitByte(BaseOpcode); - MCE.emitByte(0xC9); - break; - case X86II::MRM_E8: - MCE.emitByte(BaseOpcode); - MCE.emitByte(0xE8); - break; - case X86II::MRM_F0: - MCE.emitByte(BaseOpcode); - MCE.emitByte(0xF0); + + unsigned char MRM; + switch (TSFlags & X86II::FormMask) { + default: llvm_unreachable("Invalid Form"); + case X86II::MRM_C0: MRM = 0xC0; break; + case X86II::MRM_C1: MRM = 0xC1; break; + case X86II::MRM_C2: MRM = 0xC2; break; + case X86II::MRM_C3: MRM = 0xC3; break; + case X86II::MRM_C4: MRM = 0xC4; break; + case X86II::MRM_C8: MRM = 0xC8; break; + case X86II::MRM_C9: MRM = 0xC9; break; + case X86II::MRM_CA: MRM = 0xCA; break; + case X86II::MRM_CB: MRM = 0xCB; break; + case X86II::MRM_CF: MRM = 0xCF; break; + case X86II::MRM_D0: MRM = 0xD0; break; + case X86II::MRM_D1: MRM = 0xD1; break; + case X86II::MRM_D4: MRM = 0xD4; break; + case X86II::MRM_D5: MRM = 0xD5; break; + case X86II::MRM_D6: MRM = 0xD6; break; + case X86II::MRM_D7: MRM = 0xD7; break; + case X86II::MRM_D8: MRM = 0xD8; break; + case X86II::MRM_D9: MRM = 0xD9; break; + case X86II::MRM_DA: MRM = 0xDA; break; + case X86II::MRM_DB: MRM = 0xDB; break; + case X86II::MRM_DC: MRM = 0xDC; break; + case X86II::MRM_DD: MRM = 0xDD; break; + case X86II::MRM_DE: MRM = 0xDE; break; + case X86II::MRM_DF: MRM = 0xDF; break; + case X86II::MRM_E0: MRM = 0xE0; break; + case X86II::MRM_E1: MRM = 0xE1; break; + case X86II::MRM_E2: MRM = 0xE2; break; + case X86II::MRM_E3: MRM = 0xE3; break; + case X86II::MRM_E4: MRM = 0xE4; break; + case X86II::MRM_E5: MRM = 0xE5; break; + case X86II::MRM_E8: MRM = 0xE8; break; + case X86II::MRM_E9: MRM = 0xE9; break; + case X86II::MRM_EA: MRM = 0xEA; break; + case X86II::MRM_EB: MRM = 0xEB; break; + case X86II::MRM_EC: MRM = 0xEC; break; + case X86II::MRM_ED: MRM = 0xED; break; + case X86II::MRM_EE: MRM = 0xEE; break; + case X86II::MRM_F0: MRM = 0xF0; break; + case X86II::MRM_F1: MRM = 0xF1; break; + case X86II::MRM_F2: MRM = 0xF2; break; + case X86II::MRM_F3: MRM = 0xF3; break; + case X86II::MRM_F4: MRM = 0xF4; break; + case X86II::MRM_F5: MRM = 0xF5; break; + case X86II::MRM_F6: MRM = 0xF6; break; + case X86II::MRM_F7: MRM = 0xF7; break; + case X86II::MRM_F8: MRM = 0xF8; break; + case X86II::MRM_F9: MRM = 0xF9; break; + case X86II::MRM_FA: MRM = 0xFA; break; + case X86II::MRM_FB: MRM = 0xFB; break; + case X86II::MRM_FC: MRM = 0xFC; break; + case X86II::MRM_FD: MRM = 0xFD; break; + case X86II::MRM_FE: MRM = 0xFE; break; + case X86II::MRM_FF: MRM = 0xFF; break; + } + MCE.emitByte(MRM); break; } - if (!Desc->isVariadic() && CurOp != NumOps) { + while (CurOp != NumOps && NumOps - CurOp <= 2) { + // The last source register of a 4 operand instruction in AVX is encoded + // in bits[7:4] of a immediate byte. + if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { + const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand + : CurOp); + ++CurOp; + unsigned RegNum = getX86RegNum(MO.getReg()) << 4; + if (X86II::isX86_64ExtendedReg(MO.getReg())) + RegNum |= 1 << 7; + // If there is an additional 5th operand it must be an immediate, which + // is encoded in bits[3:0] + if (CurOp != NumOps) { + const MachineOperand &MIMM = MI.getOperand(CurOp++); + if (MIMM.isImm()) { + unsigned Val = MIMM.getImm(); + assert(Val < 16 && "Immediate operand value out of range"); + RegNum |= Val; + } + } + emitConstant(RegNum, 1); + } else { + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + } + } + + if (!MI.isVariadic() && CurOp != NumOps) { #ifndef NDEBUG dbgs() << "Cannot encode all operands of: " << MI << "\n"; #endif - llvm_unreachable(0); + llvm_unreachable(nullptr); } MCE.processDebugLoc(MI.getDebugLoc(), false);