X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86CodeEmitter.cpp;h=d55edc5841c472e165b6a2a18dffe871e54bfa81;hb=16cb6f82eb78a2140fe1cf1e432288fc98cb4ee7;hp=185423a2f3e985ba454e884496bf9cba7162e107;hpb=09015d9468abc3afb9880f9405bde31346d2b27d;p=oota-llvm.git diff --git a/lib/Target/X86/X86CodeEmitter.cpp b/lib/Target/X86/X86CodeEmitter.cpp index 185423a2f3e..d55edc5841c 100644 --- a/lib/Target/X86/X86CodeEmitter.cpp +++ b/lib/Target/X86/X86CodeEmitter.cpp @@ -1,19 +1,19 @@ //===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// -// +// // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into -// actual executable machine code. +// relocatable machine code. // //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "jit" #include "X86TargetMachine.h" +#include "X86Relocations.h" #include "X86.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" @@ -21,153 +21,14 @@ #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" -#include "Support/Debug.h" -#include "Support/Statistic.h" -#include "Config/alloca.h" +#include "llvm/ADT/Statistic.h" using namespace llvm; namespace { Statistic<> NumEmitted("x86-emitter", "Number of machine instructions emitted"); - - class JITResolver { - MachineCodeEmitter &MCE; - - // LazyCodeGenMap - Keep track of call sites for functions that are to be - // lazily resolved. - std::map LazyCodeGenMap; - - // LazyResolverMap - Keep track of the lazy resolver created for a - // particular function so that we can reuse them if necessary. - std::map LazyResolverMap; - public: - JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} - unsigned getLazyResolver(Function *F); - unsigned addFunctionReference(unsigned Address, Function *F); - - private: - unsigned emitStubForFunction(Function *F); - static void CompilationCallback(); - unsigned resolveFunctionReference(unsigned RetAddr); - }; - - static JITResolver &getResolver(MachineCodeEmitter &MCE) { - static JITResolver *TheJITResolver = 0; - if (TheJITResolver == 0) - TheJITResolver = new JITResolver(MCE); - return *TheJITResolver; - } -} - - -void *X86JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE) { - return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F)); -} - -void X86JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { - char *OldByte = (char *) Old; - *OldByte++ = 0xE9; // Emit JMP opcode. - int32_t *OldWord = (int32_t *) OldByte; - int32_t NewAddr = (intptr_t) New; - int32_t OldAddr = (intptr_t) OldWord; - *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. -} - -/// addFunctionReference - This method is called when we need to emit the -/// address of a function that has not yet been emitted, so we don't know the -/// address. Instead, we emit a call to the CompilationCallback method, and -/// keep track of where we are. -/// -unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { - LazyCodeGenMap[Address] = F; - return (intptr_t)&JITResolver::CompilationCallback; } -unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { - std::map::iterator I = LazyCodeGenMap.find(RetAddr); - assert(I != LazyCodeGenMap.end() && "Not in map!"); - Function *F = I->second; - LazyCodeGenMap.erase(I); - return MCE.forceCompilationOf(F); -} - -unsigned JITResolver::getLazyResolver(Function *F) { - std::map::iterator I = LazyResolverMap.lower_bound(F); - if (I != LazyResolverMap.end() && I->first == F) return I->second; - -//std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; - - unsigned Stub = emitStubForFunction(F); - LazyResolverMap.insert(I, std::make_pair(F, Stub)); - return Stub; -} - -void JITResolver::CompilationCallback() { - unsigned *StackPtr = (unsigned*)__builtin_frame_address(0); - unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0); - assert(StackPtr[1] == RetAddr && - "Could not find return address on the stack!"); - - // It's a stub if there is an interrupt marker after the call... - bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD; - - // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame - // pointer elimination has been performed. Having a variable sized alloca - // disables frame pointer elimination currently, even if it's dead. This is a - // gross hack. - alloca(10+isStub); - // FIXME FIXME FIXME FIXME - - // The call instruction should have pushed the return value onto the stack... - RetAddr -= 4; // Backtrack to the reference itself... - -#if 0 - DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr - << " ESP=0x" << (unsigned)StackPtr << std::dec - << ": Resolving call to function: " - << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); -#endif - - // Sanity check to make sure this really is a call instruction... - assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); - - JITResolver &JR = getResolver(*(MachineCodeEmitter*)0); - unsigned NewVal = JR.resolveFunctionReference(RetAddr); - - // Rewrite the call target... so that we don't fault every time we execute - // the call. - *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4; - - if (isStub) { - // If this is a stub, rewrite the call into an unconditional branch - // instruction so that two return addresses are not pushed onto the stack - // when the requested function finally gets called. This also makes the - // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. - ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9; - } - - // Change the return address to reexecute the call instruction... - StackPtr[1] -= 5; -} - -/// emitStubForFunction - This method is used by the JIT when it needs to emit -/// the address of a function for a function whose code has not yet been -/// generated. In order to do this, it generates a stub which jumps to the lazy -/// function compiler, which will eventually get fixed to call the function -/// directly. -/// -unsigned JITResolver::emitStubForFunction(Function *F) { - MCE.startFunctionStub(*F, 6); - MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... - - unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); - MCE.emitWord(Address-MCE.getCurrentPCValue()-4); - - MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! - return (intptr_t)MCE.finishFunctionStub(*F); -} - - namespace { class Emitter : public MachineFunctionPass { const X86InstrInfo *II; @@ -191,9 +52,11 @@ namespace { void emitBasicBlock(const MachineBasicBlock &MBB); void emitPCRelativeBlockAddress(const MachineBasicBlock *BB); - void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative); - void emitGlobalAddressForCall(GlobalValue *GV); - void emitGlobalAddressForPtr(GlobalValue *GV); + void emitPCRelativeValue(unsigned Address); + void emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall); + void emitGlobalAddressForPtr(GlobalValue *GV, int Disp = 0); + void emitExternalSymbolAddress(const char *ES, bool isPCRelative, + bool isTailCall); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); @@ -205,14 +68,6 @@ namespace { }; } -// This function is required by Printer.cpp to workaround gas bugs -void llvm::X86::emitInstruction(MachineCodeEmitter& mce, - const X86InstrInfo& ii, - const MachineInstr& mi) -{ - Emitter(mce, ii).emitInstruction(mi); -} - /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get /// machine code emitted. This uses a MachineCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address @@ -228,7 +83,7 @@ bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, } bool Emitter::runOnMachineFunction(MachineFunction &MF) { - II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo(); + II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo(); MCE.startFunction(MF); MCE.emitConstantPool(MF.getConstantPool()); @@ -240,7 +95,7 @@ bool Emitter::runOnMachineFunction(MachineFunction &MF) { for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { unsigned Location = BasicBlockAddrs[BBRefs[i].first]; unsigned Ref = BBRefs[i].second; - MCE.emitWordAt (Location-Ref-4, (unsigned*)(intptr_t)Ref); + MCE.emitWordAt(Location-Ref-4, (unsigned*)(intptr_t)Ref); } BBRefs.clear(); BasicBlockAddrs.clear(); @@ -251,65 +106,66 @@ void Emitter::emitBasicBlock(const MachineBasicBlock &MBB) { if (uint64_t Addr = MCE.getCurrentPCValue()) BasicBlockAddrs[&MBB] = Addr; - for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) + for (MachineBasicBlock::const_iterator I = MBB.begin(), E = MBB.end(); + I != E; ++I) emitInstruction(*I); } +/// emitPCRelativeValue - Emit a 32-bit PC relative address. +/// +void Emitter::emitPCRelativeValue(unsigned Address) { + MCE.emitWord(Address-MCE.getCurrentPCValue()-4); +} + /// emitPCRelativeBlockAddress - This method emits the PC relative address of /// the specified basic block, or if the basic block hasn't been emitted yet /// (because this is a forward branch), it keeps track of the information /// necessary to resolve this address later (and emits a dummy value). /// void Emitter::emitPCRelativeBlockAddress(const MachineBasicBlock *MBB) { - // FIXME: Emit backward branches directly - BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue())); - MCE.emitWord(0); -} - -/// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative. -/// -void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) { - if (isPCRelative) - MCE.emitWord(Address-MCE.getCurrentPCValue()-4); - else - MCE.emitWord(Address); + // If this is a backwards branch, we already know the address of the target, + // so just emit the value. + std::map::iterator I = + BasicBlockAddrs.find(MBB); + if (I != BasicBlockAddrs.end()) { + emitPCRelativeValue(I->second); + } else { + // Otherwise, remember where this reference was and where it is to so we can + // deal with it later. + BBRefs.push_back(std::make_pair(MBB, MCE.getCurrentPCValue())); + MCE.emitWord(0); + } } /// emitGlobalAddressForCall - Emit the specified address to the code stream /// assuming this is part of a function call, which is PC relative. /// -void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { - // Get the address from the backend... - unsigned Address = MCE.getGlobalValueAddress(GV); - - if (Address == 0) { - // FIXME: this is JIT specific! - Address = getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(), - cast(GV)); - } - emitMaybePCRelativeValue(Address, true); +void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool isTailCall) { + MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), + X86::reloc_pcrel_word, GV, 0, + !isTailCall /*Doesn'tNeedStub*/)); + MCE.emitWord(0); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction, which is not /// PC relative. /// -void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) { - // Get the address from the backend... - unsigned Address = MCE.getGlobalValueAddress(GV); - - // If the machine code emitter doesn't know what the address IS yet, we have - // to take special measures. - // - if (Address == 0) { - // FIXME: this is JIT specific! - Address = getResolver(MCE).getLazyResolver((Function*)GV); - } - - emitMaybePCRelativeValue(Address, false); +void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, int Disp /* = 0 */) { + MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), + X86::reloc_absolute_word, GV)); + MCE.emitWord(Disp); // The relocated value will be added to the displacement } - +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +void Emitter::emitExternalSymbolAddress(const char *ES, bool isPCRelative, + bool isTailCall) { + MCE.addRelocation(MachineRelocation(MCE.getCurrentPCOffset(), + isPCRelative ? X86::reloc_pcrel_word : X86::reloc_absolute_word, ES)); + MCE.emitWord(0); +} /// N86 namespace - Native X86 Register numbers... used by X86 backend. /// @@ -374,40 +230,58 @@ static bool isDisp8(int Value) { void Emitter::emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField) { - const MachineOperand &Disp = MI.getOperand(Op+3); - if (MI.getOperand(Op).isConstantPoolIndex()) { - // Emit a direct address reference [disp32] where the displacement of the - // constant pool entry is controlled by the MCE. - MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); - unsigned Index = MI.getOperand(Op).getConstantPoolIndex(); - unsigned Address = MCE.getConstantPoolEntryAddress(Index); - MCE.emitWord(Address+Disp.getImmedValue()); - return; + const MachineOperand &Op3 = MI.getOperand(Op+3); + GlobalValue *GV = 0; + int DispVal = 0; + + if (Op3.isGlobalAddress()) { + GV = Op3.getGlobal(); + DispVal = Op3.getOffset(); + } else { + DispVal = Op3.getImmedValue(); } - const MachineOperand &BaseReg = MI.getOperand(Op); + const MachineOperand &Base = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); + unsigned BaseReg = 0; + + if (Base.isConstantPoolIndex()) { + // Emit a direct address reference [disp32] where the displacement of the + // constant pool entry is controlled by the MCE. + assert(!GV && "Constant Pool reference cannot be relative to global!"); + DispVal += MCE.getConstantPoolEntryAddress(Base.getConstantPoolIndex()); + } else { + BaseReg = Base.getReg(); + } + // Is a SIB byte needed? - if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) { - if (BaseReg.getReg() == 0) { // Just a displacement? + if (IndexReg.getReg() == 0 && BaseReg != X86::ESP) { + if (BaseReg == 0) { // Just a displacement? // Emit special case [disp32] encoding MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); - emitConstant(Disp.getImmedValue(), 4); + if (GV) + emitGlobalAddressForPtr(GV, DispVal); + else + emitConstant(DispVal, 4); } else { - unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); - if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) { + unsigned BaseRegNo = getX86RegNum(BaseReg); + if (GV) { + // Emit the most general non-SIB encoding: [REG+disp32] + MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); + emitGlobalAddressForPtr(GV, DispVal); + } else if (DispVal == 0 && BaseRegNo != N86::EBP) { // Emit simple indirect register encoding... [EAX] f.e. MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); - } else if (isDisp8(Disp.getImmedValue())) { + } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... [REG+disp8] MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); - emitConstant(Disp.getImmedValue(), 1); + emitConstant(DispVal, 1); } else { // Emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); - emitConstant(Disp.getImmedValue(), 4); + emitConstant(DispVal, 4); } } @@ -416,15 +290,19 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, bool ForceDisp32 = false; bool ForceDisp8 = false; - if (BaseReg.getReg() == 0) { + if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; - } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) { + } else if (GV) { + // Emit the normal disp32 encoding... + MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); + ForceDisp32 = true; + } else if (DispVal == 0 && BaseReg != X86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); - } else if (isDisp8(Disp.getImmedValue())) { + } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP @@ -437,27 +315,29 @@ void Emitter::emitMemModRMByte(const MachineInstr &MI, static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImmedValue()]; - if (BaseReg.getReg() == 0) { + if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base. The // displacement has already been output. assert(IndexReg.getReg() && "Index register must be specified!"); emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); } else { - unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); + unsigned BaseRegNo = getX86RegNum(BaseReg); unsigned IndexRegNo; if (IndexReg.getReg()) - IndexRegNo = getX86RegNum(IndexReg.getReg()); + IndexRegNo = getX86RegNum(IndexReg.getReg()); else - IndexRegNo = 4; // For example [ESP+1*+4] + IndexRegNo = 4; // For example [ESP+1*+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? - if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) { - if (!ForceDisp32 && isDisp8(Disp.getImmedValue())) - emitConstant(Disp.getImmedValue(), 1); + if (DispVal != 0 || ForceDisp32 || ForceDisp8) { + if (!ForceDisp32 && isDisp8(DispVal)) + emitConstant(DispVal, 1); + else if (GV) + emitGlobalAddressForPtr(GV, DispVal); else - emitConstant(Disp.getImmedValue(), 4); + emitConstant(DispVal, 4); } } } @@ -472,19 +352,6 @@ static unsigned sizeOfImm(const TargetInstrDescriptor &Desc) { } } -static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) { - switch (Desc.TSFlags & X86II::MemMask) { - case X86II::Mem8: return 1; - case X86II::Mem16: return 2; - case X86II::Mem32: return 4; - case X86II::Mem64: return 8; - case X86II::Mem80: return 10; - case X86II::Mem128: return 16; - default: assert(0 && "Memory size not set!"); - return 0; - } -} - void Emitter::emitInstruction(const MachineInstr &MI) { NumEmitted++; // Keep track of the # of mi's emitted @@ -505,8 +372,8 @@ void Emitter::emitInstruction(const MachineInstr &MI) { case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ - (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) - >> X86II::Op0Shift)); + (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) + >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: assert(0 && "Invalid prefix!"); case 0: break; // No prefix! @@ -530,15 +397,17 @@ void Emitter::emitInstruction(const MachineInstr &MI) { emitPCRelativeBlockAddress(MO.getMachineBasicBlock()); } else if (MO.isGlobalAddress()) { assert(MO.isPCRelative() && "Call target is not PC Relative?"); - emitGlobalAddressForCall(MO.getGlobal()); + bool isTailCall = Opcode == X86::TAILJMPd || + Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm; + emitGlobalAddressForCall(MO.getGlobal(), isTailCall); } else if (MO.isExternalSymbol()) { - unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName()); - assert(Address && "Unknown external symbol!"); - emitMaybePCRelativeValue(Address, MO.isPCRelative()); + bool isTailCall = Opcode == X86::TAILJMPd || + Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm; + emitExternalSymbolAddress(MO.getSymbolName(), true, isTailCall); } else if (MO.isImmediate()) { - emitConstant(MO.getImmedValue(), sizeOfImm(Desc)); + emitConstant(MO.getImmedValue(), sizeOfImm(Desc)); } else { - assert(0 && "Unknown RawFrm operand!"); + assert(0 && "Unknown RawFrm operand!"); } } break; @@ -548,18 +417,18 @@ void Emitter::emitInstruction(const MachineInstr &MI) { if (MI.getNumOperands() == 2) { const MachineOperand &MO1 = MI.getOperand(1); if (Value *V = MO1.getVRegValueOrNull()) { - assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!"); + assert(sizeOfImm(Desc) == 4 && + "Don't know how to emit non-pointer values!"); emitGlobalAddressForPtr(cast(V)); } else if (MO1.isGlobalAddress()) { - assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!"); + assert(sizeOfImm(Desc) == 4 && + "Don't know how to emit non-pointer values!"); assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); - emitGlobalAddressForPtr(MO1.getGlobal()); + emitGlobalAddressForPtr(MO1.getGlobal(), MO1.getOffset()); } else if (MO1.isExternalSymbol()) { - assert(sizeOfImm(Desc) == 4 && "Don't know how to emit non-pointer values!"); - - unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName()); - assert(Address && "Unknown external symbol!"); - emitMaybePCRelativeValue(Address, MO1.isPCRelative()); + assert(sizeOfImm(Desc) == 4 && + "Don't know how to emit non-pointer values!"); + emitExternalSymbolAddress(MO1.getSymbolName(), false, false); } else { emitConstant(MO1.getImmedValue(), sizeOfImm(Desc)); } @@ -577,6 +446,8 @@ void Emitter::emitInstruction(const MachineInstr &MI) { case X86II::MRMDestMem: MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); + if (MI.getNumOperands() == 6) + emitConstant(MI.getOperand(5).getImmedValue(), sizeOfImm(Desc)); break; case X86II::MRMSrcReg: @@ -604,14 +475,15 @@ void Emitter::emitInstruction(const MachineInstr &MI) { (Desc.TSFlags & X86II::FormMask)-X86II::MRM0r); if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { - emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), sizeOfImm(Desc)); + emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), + sizeOfImm(Desc)); } break; case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: - case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRM6m: case X86II::MRM7m: MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRM0m); @@ -619,7 +491,8 @@ void Emitter::emitInstruction(const MachineInstr &MI) { if (MI.getOperand(4).isImmediate()) emitConstant(MI.getOperand(4).getImmedValue(), sizeOfImm(Desc)); else if (MI.getOperand(4).isGlobalAddress()) - emitGlobalAddressForPtr(MI.getOperand(4).getGlobal()); + emitGlobalAddressForPtr(MI.getOperand(4).getGlobal(), + MI.getOperand(4).getOffset()); else assert(0 && "Unknown operand!"); }