X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86FastISel.cpp;h=83f2f6a202bc3f820d92edede504275b5bff4aaa;hb=96bd4418b2320dec7cf9573c4f1da0a0ef31465e;hp=b938539a7f45243778b7c06ff000709cb8895a63;hpb=1e96bab329eb23e4ce8a0dc3cc6b33a3f03d15bf;p=oota-llvm.git diff --git a/lib/Target/X86/X86FastISel.cpp b/lib/Target/X86/X86FastISel.cpp index b938539a7f4..83f2f6a202b 100644 --- a/lib/Target/X86/X86FastISel.cpp +++ b/lib/Target/X86/X86FastISel.cpp @@ -15,14 +15,17 @@ #include "X86.h" #include "X86InstrBuilder.h" +#include "X86ISelLowering.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" +#include "llvm/GlobalAlias.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" +#include "llvm/Operator.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" @@ -36,7 +39,7 @@ using namespace llvm; namespace { - + class X86FastISel : public FastISel { /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. @@ -46,7 +49,7 @@ class X86FastISel : public FastISel { /// unsigned StackPtr; - /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 + /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 /// floating point ops. /// When SSE is available, use it for f32 operations. /// When SSE2 is available, use it for f64 operations. @@ -54,7 +57,9 @@ class X86FastISel : public FastISel { bool X86ScalarSSEf32; public: - explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) { + explicit X86FastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) + : FastISel(funcInfo, libInfo) { Subtarget = &TM.getSubtarget(); StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; X86ScalarSSEf64 = Subtarget->hasSSE2(); @@ -69,27 +74,25 @@ public: /// possible. virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo, const LoadInst *LI); - + #include "X86GenFastISel.inc" private: bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); - + bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); - bool X86FastEmitStore(EVT VT, const Value *Val, - const X86AddressMode &AM); - bool X86FastEmitStore(EVT VT, unsigned Val, - const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); - + bool X86SelectAddress(const Value *V, X86AddressMode &AM); bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); bool X86SelectLoad(const Instruction *I); - + bool X86SelectStore(const Instruction *I); bool X86SelectRet(const Instruction *I); @@ -105,15 +108,15 @@ private: bool X86SelectSelect(const Instruction *I); bool X86SelectTrunc(const Instruction *I); - + bool X86SelectFPExt(const Instruction *I); bool X86SelectFPTrunc(const Instruction *I); - bool X86SelectExtractValue(const Instruction *I); - bool X86VisitIntrinsicCall(const IntrinsicInst &I); bool X86SelectCall(const Instruction *I); + bool DoSelectCall(const Instruction *I, const char *MemIntName); + const X86InstrInfo *getInstrInfo() const { return getTargetMachine()->getInstrInfo(); } @@ -125,6 +128,8 @@ private: unsigned TargetMaterializeAlloca(const AllocaInst *C); + unsigned TargetMaterializeFloatZero(const ConstantFP *CF); + /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { @@ -132,12 +137,17 @@ private: (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 } - bool isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1 = false); + bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); + + bool IsMemcpySmall(uint64_t Len); + + bool TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len); }; - + } // end anonymous namespace. -bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) { +bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true); if (evt == MVT::Other || !evt.isSimple()) // Unhandled type. Halt "fast" selection and bail. @@ -147,9 +157,9 @@ bool X86FastISel::isTypeLegal(const Type *Ty, MVT &VT, bool AllowI1) { // For now, require SSE/SSE2 for performing floating-point operations, // since x87 requires additional work. if (VT == MVT::f64 && !X86ScalarSSEf64) - return false; + return false; if (VT == MVT::f32 && !X86ScalarSSEf32) - return false; + return false; // Similarly, no f80 support yet. if (VT == MVT::f80) return false; @@ -175,37 +185,37 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, case MVT::i1: case MVT::i8: Opc = X86::MOV8rm; - RC = X86::GR8RegisterClass; + RC = &X86::GR8RegClass; break; case MVT::i16: Opc = X86::MOV16rm; - RC = X86::GR16RegisterClass; + RC = &X86::GR16RegClass; break; case MVT::i32: Opc = X86::MOV32rm; - RC = X86::GR32RegisterClass; + RC = &X86::GR32RegClass; break; case MVT::i64: // Must be in x86-64 mode. Opc = X86::MOV64rm; - RC = X86::GR64RegisterClass; + RC = &X86::GR64RegClass; break; case MVT::f32: - if (Subtarget->hasSSE1()) { - Opc = X86::MOVSSrm; - RC = X86::FR32RegisterClass; + if (X86ScalarSSEf32) { + Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; + RC = &X86::FR32RegClass; } else { Opc = X86::LD_Fp32m; - RC = X86::RFP32RegisterClass; + RC = &X86::RFP32RegClass; } break; case MVT::f64: - if (Subtarget->hasSSE2()) { - Opc = X86::MOVSDrm; - RC = X86::FR64RegisterClass; + if (X86ScalarSSEf64) { + Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; + RC = &X86::FR64RegClass; } else { Opc = X86::LD_Fp64m; - RC = X86::RFP64RegisterClass; + RC = &X86::RFP64RegClass; } break; case MVT::f80: @@ -224,8 +234,7 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. bool -X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, - const X86AddressMode &AM) { +X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { @@ -233,7 +242,7 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, default: return false; case MVT::i1: { // Mask out all but lowest bit. - unsigned AndResult = createResultReg(X86::GR8RegisterClass); + unsigned AndResult = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); Val = AndResult; @@ -244,13 +253,27 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, case MVT::i32: Opc = X86::MOV32mr; break; case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. case MVT::f32: - Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m; + Opc = X86ScalarSSEf32 ? + (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m; break; case MVT::f64: - Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m; + Opc = X86ScalarSSEf64 ? + (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m; + break; + case MVT::v4f32: + Opc = X86::MOVAPSmr; + break; + case MVT::v2f64: + Opc = X86::MOVAPDmr; + break; + case MVT::v4i32: + case MVT::v2i64: + case MVT::v8i16: + case MVT::v16i8: + Opc = X86::MOVDQAmr; break; } - + addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), AM).addReg(Val); return true; @@ -261,7 +284,7 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, // Handle 'null' like i32/i64 0. if (isa(Val)) Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); - + // If this is a store of a simple constant, fold the constant into the store. if (const ConstantInt *CI = dyn_cast(Val)) { unsigned Opc = 0; @@ -278,7 +301,7 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, Opc = X86::MOV64mi32; break; } - + if (Opc) { addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), AM) @@ -287,11 +310,11 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, return true; } } - + unsigned ValReg = getRegForValue(Val); if (ValReg == 0) - return false; - + return false; + return X86FastEmitStore(VT, ValReg, AM); } @@ -303,7 +326,7 @@ bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned &ResultReg) { unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src, /*TODO: Kill=*/false); - + if (RR != 0) { ResultReg = RR; return true; @@ -320,17 +343,17 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { // Don't walk into other basic blocks; it's possible we haven't // visited them yet, so the instructions may not yet be assigned // virtual registers. - if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB) - return false; - - Opcode = I->getOpcode(); - U = I; + if (FuncInfo.StaticAllocaMap.count(static_cast(V)) || + FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { + Opcode = I->getOpcode(); + U = I; + } } else if (const ConstantExpr *C = dyn_cast(V)) { Opcode = C->getOpcode(); U = C; } - if (const PointerType *Ty = dyn_cast(V->getType())) + if (PointerType *Ty = dyn_cast(V->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. @@ -393,39 +416,47 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i, ++GTI) { const Value *Op = *i; - if (const StructType *STy = dyn_cast(*GTI)) { + if (StructType *STy = dyn_cast(*GTI)) { const StructLayout *SL = TD.getStructLayout(STy); - unsigned Idx = cast(Op)->getZExtValue(); - Disp += SL->getElementOffset(Idx); - } else { - uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); - SmallVector Worklist; - Worklist.push_back(Op); - do { - Op = Worklist.pop_back_val(); - if (const ConstantInt *CI = dyn_cast(Op)) { - // Constant-offset addressing. - Disp += CI->getSExtValue() * S; - } else if (isa(Op) && - isa(cast(Op)->getOperand(1))) { - // An add with a constant operand. Fold the constant. - ConstantInt *CI = - cast(cast(Op)->getOperand(1)); - Disp += CI->getSExtValue() * S; - // Add the other operand back to the work list. - Worklist.push_back(cast(Op)->getOperand(0)); - } else if (IndexReg == 0 && - (!AM.GV || !Subtarget->isPICStyleRIPRel()) && - (S == 1 || S == 2 || S == 4 || S == 8)) { - // Scaled-index addressing. - Scale = S; - IndexReg = getRegForGEPIndex(Op).first; - if (IndexReg == 0) - return false; - } else - // Unsupported. - goto unsupported_gep; - } while (!Worklist.empty()); + Disp += SL->getElementOffset(cast(Op)->getZExtValue()); + continue; + } + + // A array/variable index is always of the form i*S where S is the + // constant scale size. See if we can push the scale into immediates. + uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); + for (;;) { + if (const ConstantInt *CI = dyn_cast(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + break; + } + if (isa(Op) && + (!isa(Op) || + FuncInfo.MBBMap[cast(Op)->getParent()] + == FuncInfo.MBB) && + isa(cast(Op)->getOperand(1))) { + // An add (in the same block) with a constant operand. Fold the + // constant. + ConstantInt *CI = + cast(cast(Op)->getOperand(1)); + Disp += CI->getSExtValue() * S; + // Iterate on the other operand. + Op = cast(Op)->getOperand(0); + continue; + } + if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + break; + } + // Unsupported. + goto unsupported_gep; } } // Check for displacement overflow. @@ -438,8 +469,8 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { AM.Disp = (uint32_t)Disp; if (X86SelectAddress(U->getOperand(0), AM)) return true; - - // If we couldn't merge the sub value into this addr mode, revert back to + + // If we couldn't merge the gep value into this addr mode, revert back to // our address and just match the value instead of completely failing. AM = SavedAM; break; @@ -455,87 +486,96 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { if (TM.getCodeModel() != CodeModel::Small) return false; - // RIP-relative addresses can't have additional register operands. - if (Subtarget->isPICStyleRIPRel() && - (AM.Base.Reg != 0 || AM.IndexReg != 0)) - return false; - // Can't handle TLS yet. if (const GlobalVariable *GVar = dyn_cast(GV)) if (GVar->isThreadLocal()) return false; - // Okay, we've committed to selecting this global. Set up the basic address. - AM.GV = GV; - - // Allow the subtarget to classify the global. - unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); - - // If this reference is relative to the pic base, set it now. - if (isGlobalRelativeToPICBase(GVFlags)) { - // FIXME: How do we know Base.Reg is free?? - AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); - } - - // Unless the ABI requires an extra load, return a direct reference to - // the global. - if (!isGlobalStubReference(GVFlags)) { - if (Subtarget->isPICStyleRIPRel()) { - // Use rip-relative addressing if we can. Above we verified that the - // base and index registers are unused. - assert(AM.Base.Reg == 0 && AM.IndexReg == 0); - AM.Base.Reg = X86::RIP; + // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how + // it works...). + if (const GlobalAlias *GA = dyn_cast(GV)) + if (const GlobalVariable *GVar = + dyn_cast_or_null(GA->resolveAliasedGlobal(false))) + if (GVar->isThreadLocal()) + return false; + + // RIP-relative addresses can't have additional register operands, so if + // we've already folded stuff into the addressing mode, just force the + // global value into its own register, which we can use as the basereg. + if (!Subtarget->isPICStyleRIPRel() || + (AM.Base.Reg == 0 && AM.IndexReg == 0)) { + // Okay, we've committed to selecting this global. Set up the address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } - AM.GVOpFlags = GVFlags; - return true; - } - - // Ok, we need to do a load from a stub. If we've already loaded from this - // stub, reuse the loaded pointer, otherwise emit the load now. - DenseMap::iterator I = LocalValueMap.find(V); - unsigned LoadReg; - if (I != LocalValueMap.end() && I->second != 0) { - LoadReg = I->second; - } else { - // Issue load from stub. - unsigned Opc = 0; - const TargetRegisterClass *RC = NULL; - X86AddressMode StubAM; - StubAM.Base.Reg = AM.Base.Reg; - StubAM.GV = GV; - StubAM.GVOpFlags = GVFlags; - - // Prepare for inserting code in the local-value area. - SavePoint SaveInsertPt = enterLocalValueArea(); - - if (TLI.getPointerTy() == MVT::i64) { - Opc = X86::MOV64rm; - RC = X86::GR64RegisterClass; - - if (Subtarget->isPICStyleRIPRel()) - StubAM.Base.Reg = X86::RIP; - } else { - Opc = X86::MOV32rm; - RC = X86::GR32RegisterClass; + + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; } - - LoadReg = createResultReg(RC); - MachineInstrBuilder LoadMI = - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); - addFullAddress(LoadMI, StubAM); - // Ok, back to normal mode. - leaveLocalValueArea(SaveInsertPt); + // Ok, we need to do a load from a stub. If we've already loaded from + // this stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; + } else { + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + // Prepare for inserting code in the local-value area. + MachineBasicBlock::iterator SaveIter = enterLocalValueArea(); + + if (TLI.getPointerTy() == MVT::i64) { + Opc = X86::MOV64rm; + RC = &X86::GR64RegClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = &X86::GR32RegClass; + } + + LoadReg = createResultReg(RC); + MachineInstrBuilder LoadMI = + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); + addFullAddress(LoadMI, StubAM); + + // Ok, back to normal mode. + leaveLocalValueArea(SaveIter); + + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } - // Prevent loading GV stub multiple times in same MBB. - LocalValueMap[V] = LoadReg; + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = 0; + return true; } - - // Now construct the final address. Note that the Disp, Scale, - // and Index values may already be set here. - AM.Base.Reg = LoadReg; - AM.GV = 0; - return true; } // If all else fails, try to materialize the value in a register. @@ -597,14 +637,18 @@ bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { (AM.Base.Reg != 0 || AM.IndexReg != 0)) return false; - // Can't handle TLS or DLLImport. + // Can't handle DLLImport. + if (GV->hasDLLImportLinkage()) + return false; + + // Can't handle TLS. if (const GlobalVariable *GVar = dyn_cast(GV)) - if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage()) + if (GVar->isThreadLocal()) return false; // Okay, we've committed to selecting this global. Set up the basic address. AM.GV = GV; - + // No ABI requires an extra load for anything other than DLLImport, which // we rejected above. Return a direct reference to the global. if (Subtarget->isPICStyleRIPRel()) { @@ -617,7 +661,7 @@ bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { } else if (Subtarget->isPICStyleGOT()) { AM.GVOpFlags = X86II::MO_GOTOFF; } - + return true; } @@ -640,6 +684,17 @@ bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { /// X86SelectStore - Select and emit code to implement store instructions. bool X86FastISel::X86SelectStore(const Instruction *I) { + // Atomic stores need special handling. + const StoreInst *S = cast(I); + + if (S->isAtomic()) + return false; + + unsigned SABIAlignment = + TD.getABITypeAlignment(S->getValueOperand()->getType()); + if (S->getAlignment() != 0 && S->getAlignment() < SABIAlignment) + return false; + MVT VT; if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) return false; @@ -675,7 +730,7 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && GuaranteedTailCallOpt) + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) return false; // Let SDISel handle vararg functions. @@ -689,7 +744,8 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { // Analyze operands of the call, assigning locations to each operand. SmallVector ValLocs; - CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext()); + CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, + I->getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); const Value *RV = Ret->getOperand(0); @@ -702,25 +758,45 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { return false; CCValAssign &VA = ValLocs[0]; - + // Don't bother handling odd stuff for now. if (VA.getLocInfo() != CCValAssign::Full) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; - // TODO: For now, don't try to handle cases where getLocInfo() - // says Full but the types don't match. - if (TLI.getValueType(RV->getType()) != VA.getValVT()) - return false; // The calling-convention tables for x87 returns don't tell // the whole story. if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) return false; - // Make the copy. unsigned SrcReg = Reg + VA.getValNo(); + EVT SrcVT = TLI.getValueType(RV->getType()); + EVT DstVT = VA.getValVT(); + // Special handling for extended integers. + if (SrcVT != DstVT) { + if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) + return false; + + if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) + return false; + + assert(DstVT == MVT::i32 && "X86 should always ext to i32"); + + if (SrcVT == MVT::i1) { + if (Outs[0].Flags.isSExt()) + return false; + SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); + SrcVT = MVT::i8; + } + unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : + ISD::SIGN_EXTEND; + SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, + SrcReg, /*TODO: Kill=*/false); + } + + // Make the copy. unsigned DstReg = VA.getLocReg(); const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); // Avoid a cross-class copy. This is very unlikely. @@ -741,6 +817,10 @@ bool X86FastISel::X86SelectRet(const Instruction *I) { /// X86SelectLoad - Select and emit code to implement load instructions. /// bool X86FastISel::X86SelectLoad(const Instruction *I) { + // Atomic loads need special handling. + if (cast(I)->isAtomic()) + return false; + MVT VT; if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) return false; @@ -758,14 +838,20 @@ bool X86FastISel::X86SelectLoad(const Instruction *I) { } static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { + bool HasAVX = Subtarget->hasAVX(); + bool X86ScalarSSEf32 = Subtarget->hasSSE1(); + bool X86ScalarSSEf64 = Subtarget->hasSSE2(); + switch (VT.getSimpleVT().SimpleTy) { default: return 0; case MVT::i8: return X86::CMP8rr; case MVT::i16: return X86::CMP16rr; case MVT::i32: return X86::CMP32rr; case MVT::i64: return X86::CMP64rr; - case MVT::f32: return Subtarget->hasSSE1() ? X86::UCOMISSrr : 0; - case MVT::f64: return Subtarget->hasSSE2() ? X86::UCOMISDrr : 0; + case MVT::f32: + return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0; + case MVT::f64: + return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0; } } @@ -792,11 +878,11 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT) { unsigned Op0Reg = getRegForValue(Op0); if (Op0Reg == 0) return false; - + // Handle 'null' like i32/i64 0. if (isa(Op1)) Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); - + // We have two options: compare with register or immediate. If the RHS of // the compare is an immediate that we can fold into this compare, use // CMPri, otherwise use CMPrr. @@ -808,16 +894,16 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, return true; } } - + unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); if (CompareOpc == 0) return false; - + unsigned Op1Reg = getRegForValue(Op1); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) .addReg(Op0Reg) .addReg(Op1Reg); - + return true; } @@ -835,13 +921,13 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { case CmpInst::FCMP_OEQ: { if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) return false; - + unsigned EReg = createResultReg(&X86::GR8RegClass); unsigned NPReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNPr), NPReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); UpdateValueMap(I, ResultReg); return true; @@ -852,12 +938,9 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { unsigned NEReg = createResultReg(&X86::GR8RegClass); unsigned PReg = createResultReg(&X86::GR8RegClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::SETNEr), NEReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::SETPr), PReg); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::OR8rr), ResultReg) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg) .addReg(PReg).addReg(NEReg); UpdateValueMap(I, ResultReg); return true; @@ -874,7 +957,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; - + case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; @@ -896,7 +979,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { // Emit a compare of Op0/Op1. if (!X86FastEmitCompare(Op0, Op1, VT)) return false; - + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); UpdateValueMap(I, ResultReg); return true; @@ -904,18 +987,31 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) { bool X86FastISel::X86SelectZExt(const Instruction *I) { // Handle zero-extension from i1 to i8, which is common. - if (I->getType()->isIntegerTy(8) && - I->getOperand(0)->getType()->isIntegerTy(1)) { - unsigned ResultReg = getRegForValue(I->getOperand(0)); - if (ResultReg == 0) return false; - // Set the high bits to zero. - ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); - if (ResultReg == 0) return false; - UpdateValueMap(I, ResultReg); - return true; + if (!I->getOperand(0)->getType()->isIntegerTy(1)) + return false; + + EVT DstVT = TLI.getValueType(I->getType()); + if (!TLI.isTypeLegal(DstVT)) + return false; + + unsigned ResultReg = getRegForValue(I->getOperand(0)); + if (ResultReg == 0) + return false; + + // Set the high bits to zero. + ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); + if (ResultReg == 0) + return false; + + if (DstVT != MVT::i8) { + ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, + ResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; } - return false; + UpdateValueMap(I, ResultReg); + return true; } @@ -961,7 +1057,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; - + case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; @@ -975,7 +1071,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { default: return false; } - + const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); if (SwapArgs) std::swap(Op0, Op1); @@ -983,7 +1079,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { // Emit a compare of the LHS and RHS, setting the flags. if (!X86FastEmitCompare(Op0, Op1, VT)) return false; - + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) .addMBB(TrueMBB); @@ -998,71 +1094,49 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { FuncInfo.MBB->addSuccessor(TrueMBB); return true; } - } else if (ExtractValueInst *EI = - dyn_cast(BI->getCondition())) { - // Check to see if the branch instruction is from an "arithmetic with - // overflow" intrinsic. The main way these intrinsics are used is: - // - // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2) - // %sum = extractvalue { i32, i1 } %t, 0 - // %obit = extractvalue { i32, i1 } %t, 1 - // br i1 %obit, label %overflow, label %normal - // - // The %sum and %obit are converted in an ADD and a SETO/SETB before - // reaching the branch. Therefore, we search backwards through the MBB - // looking for the SETO/SETB instruction. If an instruction modifies the - // EFLAGS register before we reach the SETO/SETB instruction, then we can't - // convert the branch into a JO/JB instruction. - if (const IntrinsicInst *CI = - dyn_cast(EI->getAggregateOperand())){ - if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow || - CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) { - const MachineInstr *SetMI = 0; - unsigned Reg = getRegForValue(EI); - - for (MachineBasicBlock::const_reverse_iterator - RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend(); - RI != RE; ++RI) { - const MachineInstr &MI = *RI; - - if (MI.definesRegister(Reg)) { - if (MI.isCopy()) { - Reg = MI.getOperand(1).getReg(); - continue; - } - - SetMI = &MI; - break; - } - - const TargetInstrDesc &TID = MI.getDesc(); - if (TID.hasUnmodeledSideEffects() || - TID.hasImplicitDefOfPhysReg(X86::EFLAGS)) - break; - } + } else if (TruncInst *TI = dyn_cast(BI->getCondition())) { + // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which + // typically happen for _Bool and C++ bools. + MVT SourceVT; + if (TI->hasOneUse() && TI->getParent() == I->getParent() && + isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { + unsigned TestOpc = 0; + switch (SourceVT.SimpleTy) { + default: break; + case MVT::i8: TestOpc = X86::TEST8ri; break; + case MVT::i16: TestOpc = X86::TEST16ri; break; + case MVT::i32: TestOpc = X86::TEST32ri; break; + case MVT::i64: TestOpc = X86::TEST64ri32; break; + } + if (TestOpc) { + unsigned OpReg = getRegForValue(TI->getOperand(0)); + if (OpReg == 0) return false; + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc)) + .addReg(OpReg).addImm(1); - if (SetMI) { - unsigned OpCode = SetMI->getOpcode(); - - if (OpCode == X86::SETOr || OpCode == X86::SETBr) { - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4)) - .addMBB(TrueMBB); - FastEmitBranch(FalseMBB, DL); - FuncInfo.MBB->addSuccessor(TrueMBB); - return true; - } + unsigned JmpOpc = X86::JNE_4; + if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + JmpOpc = X86::JE_4; } + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB, DL); + FuncInfo.MBB->addSuccessor(TrueMBB); + return true; } } } // Otherwise do a clumsy setcc and re-test it. + // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used + // in an explicit cast, so make sure to handle that correctly. unsigned OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) - .addReg(OpReg).addReg(OpReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri)) + .addReg(OpReg).addImm(1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) .addMBB(TrueMBB); FastEmitBranch(FalseMBB, DL); @@ -1071,42 +1145,42 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) { } bool X86FastISel::X86SelectShift(const Instruction *I) { - unsigned CReg = 0, OpReg = 0, OpImm = 0; + unsigned CReg = 0, OpReg = 0; const TargetRegisterClass *RC = NULL; if (I->getType()->isIntegerTy(8)) { CReg = X86::CL; RC = &X86::GR8RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break; - case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break; - case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break; + case Instruction::LShr: OpReg = X86::SHR8rCL; break; + case Instruction::AShr: OpReg = X86::SAR8rCL; break; + case Instruction::Shl: OpReg = X86::SHL8rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(16)) { CReg = X86::CX; RC = &X86::GR16RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break; - case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break; - case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break; + case Instruction::LShr: OpReg = X86::SHR16rCL; break; + case Instruction::AShr: OpReg = X86::SAR16rCL; break; + case Instruction::Shl: OpReg = X86::SHL16rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(32)) { CReg = X86::ECX; RC = &X86::GR32RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break; - case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break; - case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break; + case Instruction::LShr: OpReg = X86::SHR32rCL; break; + case Instruction::AShr: OpReg = X86::SAR32rCL; break; + case Instruction::Shl: OpReg = X86::SHL32rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(64)) { CReg = X86::RCX; RC = &X86::GR64RegClass; switch (I->getOpcode()) { - case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break; - case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break; - case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break; + case Instruction::LShr: OpReg = X86::SHR64rCL; break; + case Instruction::AShr: OpReg = X86::SAR64rCL; break; + case Instruction::Shl: OpReg = X86::SHL64rCL; break; default: return false; } } else { @@ -1119,16 +1193,7 @@ bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; - - // Fold immediate in shl(x,3). - if (const ConstantInt *CI = dyn_cast(I->getOperand(1))) { - unsigned ResultReg = createResultReg(RC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm), - ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); - UpdateValueMap(I, ResultReg); - return true; - } - + unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), @@ -1152,10 +1217,10 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) { MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; - + // We only use cmov here, if we don't have a cmov instruction bail. if (!Subtarget->hasCMov()) return false; - + unsigned Opc = 0; const TargetRegisterClass *RC = NULL; if (VT == MVT::i16) { @@ -1168,7 +1233,7 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) { Opc = X86::CMOVE64rr; RC = &X86::GR64RegClass; } else { - return false; + return false; } unsigned Op0Reg = getRegForValue(I->getOperand(0)); @@ -1189,13 +1254,13 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) { bool X86FastISel::X86SelectFPExt(const Instruction *I) { // fpext from float to double. - if (Subtarget->hasSSE2() && + if (X86ScalarSSEf64 && I->getType()->isDoubleTy()) { const Value *V = I->getOperand(0); if (V->getType()->isFloatTy()) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; - unsigned ResultReg = createResultReg(X86::FR64RegisterClass); + unsigned ResultReg = createResultReg(&X86::FR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::CVTSS2SDrr), ResultReg) .addReg(OpReg); @@ -1208,13 +1273,13 @@ bool X86FastISel::X86SelectFPExt(const Instruction *I) { } bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { - if (Subtarget->hasSSE2()) { + if (X86ScalarSSEf64) { if (I->getType()->isFloatTy()) { const Value *V = I->getOperand(0); if (V->getType()->isDoubleTy()) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; - unsigned ResultReg = createResultReg(X86::FR32RegisterClass); + unsigned ResultReg = createResultReg(&X86::FR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::CVTSD2SSrr), ResultReg) .addReg(OpReg); @@ -1228,18 +1293,13 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { } bool X86FastISel::X86SelectTrunc(const Instruction *I) { - if (Subtarget->is64Bit()) - // All other cases should be handled by the tblgen generated code. - return false; EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); - - // This code only handles truncation to byte right now. + + // This code only handles truncation to byte. if (DstVT != MVT::i8 && DstVT != MVT::i1) - // All other cases should be handled by the tblgen generated code. return false; - if (SrcVT != MVT::i16 && SrcVT != MVT::i32) - // All other cases should be handled by the tblgen generated code. + if (!TLI.isTypeLegal(SrcVT)) return false; unsigned InputReg = getRegForValue(I->getOperand(0)); @@ -1247,16 +1307,27 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) { // Unhandled operand. Halt "fast" selection and bail. return false; - // First issue a copy to GR16_ABCD or GR32_ABCD. - const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) - ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass; - unsigned CopyReg = createResultReg(CopyRC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - CopyReg).addReg(InputReg); + if (SrcVT == MVT::i8) { + // Truncate from i8 to i1; no code needed. + UpdateValueMap(I, InputReg); + return true; + } - // Then issue an extract_subreg. + if (!Subtarget->is64Bit()) { + // If we're on x86-32; we can't extract an i8 from a general register. + // First issue a copy to GR16_ABCD or GR32_ABCD. + const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ? + (const TargetRegisterClass*)&X86::GR16_ABCDRegClass : + (const TargetRegisterClass*)&X86::GR32_ABCDRegClass; + unsigned CopyReg = createResultReg(CopyRC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CopyReg).addReg(InputReg); + InputReg = CopyReg; + } + + // Issue an extract_subreg. unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, - CopyReg, /*Kill=*/true, + InputReg, /*Kill=*/true, X86::sub_8bit); if (!ResultReg) return false; @@ -1265,37 +1336,97 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) { return true; } -bool X86FastISel::X86SelectExtractValue(const Instruction *I) { - const ExtractValueInst *EI = cast(I); - const Value *Agg = EI->getAggregateOperand(); +bool X86FastISel::IsMemcpySmall(uint64_t Len) { + return Len <= (Subtarget->is64Bit() ? 32 : 16); +} - if (const IntrinsicInst *CI = dyn_cast(Agg)) { - switch (CI->getIntrinsicID()) { - default: break; - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: { - // Cheat a little. We know that the registers for "add" and "seto" are - // allocated sequentially. However, we only keep track of the register - // for "add" in the value map. Use extractvalue's index to get the - // correct register for "seto". - unsigned OpReg = getRegForValue(Agg); - if (OpReg == 0) - return false; - UpdateValueMap(I, OpReg + *EI->idx_begin()); - return true; - } +bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, + X86AddressMode SrcAM, uint64_t Len) { + + // Make sure we don't bloat code by inlining very large memcpy's. + if (!IsMemcpySmall(Len)) + return false; + + bool i64Legal = Subtarget->is64Bit(); + + // We don't care about alignment here since we just emit integer accesses. + while (Len) { + MVT VT; + if (Len >= 8 && i64Legal) + VT = MVT::i64; + else if (Len >= 4) + VT = MVT::i32; + else if (Len >= 2) + VT = MVT::i16; + else { + assert(Len == 1); + VT = MVT::i8; } + + unsigned Reg; + bool RV = X86FastEmitLoad(VT, SrcAM, Reg); + RV &= X86FastEmitStore(VT, Reg, DestAM); + assert(RV && "Failed to emit load or store??"); + + unsigned Size = VT.getSizeInBits()/8; + Len -= Size; + DestAM.Disp += Size; + SrcAM.Disp += Size; } - return false; + return true; } bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // FIXME: Handle more intrinsics. switch (I.getIntrinsicID()) { default: return false; + case Intrinsic::memcpy: { + const MemCpyInst &MCI = cast(I); + // Don't handle volatile or variable length memcpys. + if (MCI.isVolatile()) + return false; + + if (isa(MCI.getLength())) { + // Small memcpy's are common enough that we want to do them + // without a call if possible. + uint64_t Len = cast(MCI.getLength())->getZExtValue(); + if (IsMemcpySmall(Len)) { + X86AddressMode DestAM, SrcAM; + if (!X86SelectAddress(MCI.getRawDest(), DestAM) || + !X86SelectAddress(MCI.getRawSource(), SrcAM)) + return false; + TryEmitSmallMemcpy(DestAM, SrcAM, Len); + return true; + } + } + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255) + return false; + + return DoSelectCall(&I, "memcpy"); + } + case Intrinsic::memset: { + const MemSetInst &MSI = cast(I); + + if (MSI.isVolatile()) + return false; + + unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; + if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth)) + return false; + + if (MSI.getDestAddressSpace() > 255) + return false; + + return DoSelectCall(&I, "memset"); + } case Intrinsic::stackprotector: { - // Emit code inline code to store the stack guard onto the stack. + // Emit code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(); const Value *Op1 = I.getArgOperand(0); // The guard's value. @@ -1304,33 +1435,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // Grab the frame index. X86AddressMode AM; if (!X86SelectAddress(Slot, AM)) return false; - if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; - - return true; - } - case Intrinsic::objectsize: { - ConstantInt *CI = dyn_cast(I.getArgOperand(1)); - const Type *Ty = I.getCalledFunction()->getReturnType(); - - assert(CI && "Non-constant type in Intrinsic::objectsize?"); - - MVT VT; - if (!isTypeLegal(Ty, VT)) - return false; - - unsigned OpC = 0; - if (VT == MVT::i32) - OpC = X86::MOV32ri; - else if (VT == MVT::i64) - OpC = X86::MOV64ri; - else - return false; - - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg). - addImm(CI->isZero() ? -1ULL : 0); - UpdateValueMap(&I, ResultReg); return true; } case Intrinsic::dbg_declare: { @@ -1339,7 +1444,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { assert(DI->getAddress() && "Null address should be checked earlier!"); if (!X86SelectAddress(DI->getAddress(), AM)) return false; - const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); // FIXME may need to add RegState::Debug to any registers produced, // although ESP/EBP should be the only ones at the moment. addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). @@ -1352,13 +1457,12 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: { + // FIXME: Should fold immediates. + // Replace "add with overflow" intrinsics with an "add" instruction followed - // by a seto/setc instruction. Later on, when the "extractvalue" - // instructions are encountered, we use the fact that two registers were - // created sequentially to get the correct registers for the "sum" and the - // "overflow bit". + // by a seto/setc instruction. const Function *Callee = I.getCalledFunction(); - const Type *RetTy = + Type *RetTy = cast(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); MVT VT; @@ -1382,27 +1486,18 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { else return false; - unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + // The call to CreateRegs builds two sequential registers, to store the + // both the returned values. + unsigned ResultReg = FuncInfo.CreateRegs(I.getType()); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) .addReg(Reg1).addReg(Reg2); - unsigned DestReg1 = UpdateValueMap(&I, ResultReg); - - // If the add with overflow is an intra-block value then we just want to - // create temporaries for it like normal. If it is a cross-block value then - // UpdateValueMap will return the cross-block register used. Since we - // *really* want the value to be live in the register pair known by - // UpdateValueMap, we have to use DestReg1+1 as the destination register in - // the cross block case. In the non-cross-block case, we should just make - // another register for the value. - if (DestReg1 != ResultReg) - ResultReg = DestReg1+1; - else - ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8)); - + unsigned Opc = X86::SETBr; if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) Opc = X86::SETOr; - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1); + + UpdateValueMap(&I, ResultReg, 2); return true; } } @@ -1420,35 +1515,64 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (const IntrinsicInst *II = dyn_cast(CI)) return X86VisitIntrinsicCall(*II); + return DoSelectCall(I, 0); +} + +static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget, + const ImmutableCallSite &CS) { + if (Subtarget.is64Bit()) + return 0; + if (Subtarget.isTargetWindows()) + return 0; + CallingConv::ID CC = CS.getCallingConv(); + if (CC == CallingConv::Fast || CC == CallingConv::GHC) + return 0; + if (!CS.paramHasAttr(1, Attribute::StructRet)) + return 0; + if (CS.paramHasAttr(1, Attribute::InReg)) + return 0; + return 4; +} + +// Select either a call, or an llvm.memcpy/memmove/memset intrinsic +bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { + const CallInst *CI = cast(I); + const Value *Callee = CI->getCalledValue(); + // Handle only C and fastcc calling conventions for now. ImmutableCallSite CS(CI); CallingConv::ID CC = CS.getCallingConv(); - if (CC != CallingConv::C && - CC != CallingConv::Fast && + if (CC != CallingConv::C && CC != CallingConv::Fast && CC != CallingConv::X86_FastCall) return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. - if (CC == CallingConv::Fast && GuaranteedTailCallOpt) + if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) return false; - // Let SDISel handle vararg functions. - const PointerType *PT = cast(CS.getCalledValue()->getType()); - const FunctionType *FTy = cast(PT->getElementType()); - if (FTy->isVarArg()) + PointerType *PT = cast(CS.getCalledValue()->getType()); + FunctionType *FTy = cast(PT->getElementType()); + bool isVarArg = FTy->isVarArg(); + + // Don't know how to handle Win64 varargs yet. Nothing special needed for + // x86-32. Special handling for x86-64 is implemented. + if (isVarArg && Subtarget->isTargetWin64()) return false; // Fast-isel doesn't know about callee-pop yet. - if (Subtarget->IsCalleePop(FTy->isVarArg(), CC)) + if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg, + TM.Options.GuaranteedTailCallOpt)) return false; - // Handle *simple* calls for now. - const Type *RetTy = CS.getType(); - MVT RetVT; - if (RetTy->isVoidTy()) - RetVT = MVT::isVoid; - else if (!isTypeLegal(RetTy, RetVT, true)) + // Check whether the function can return without sret-demotion. + SmallVector Outs; + GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(), + Outs, TLI); + bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), + *FuncInfo.MF, FTy->isVarArg(), + Outs, FTy->getContext()); + if (!CanLowerReturn) return false; // Materialize callee address in a register. FIXME: GV address can be @@ -1465,27 +1589,23 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { } else return false; - // Allow calls which produce i1 results. - bool AndToI1 = false; - if (RetVT == MVT::i1) { - RetVT = MVT::i8; - AndToI1 = true; - } - // Deal with call operands first. SmallVector ArgVals; SmallVector Args; SmallVector ArgVTs; SmallVector ArgFlags; - Args.reserve(CS.arg_size()); - ArgVals.reserve(CS.arg_size()); - ArgVTs.reserve(CS.arg_size()); - ArgFlags.reserve(CS.arg_size()); + unsigned arg_size = CS.arg_size(); + Args.reserve(arg_size); + ArgVals.reserve(arg_size); + ArgVTs.reserve(arg_size); + ArgFlags.reserve(arg_size); for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { - unsigned Arg = getRegForValue(*i); - if (Arg == 0) - return false; + // If we're lowering a mem intrinsic instead of a regular call, skip the + // last two arguments, which should not passed to the underlying functions. + if (MemIntName && e-i <= 2) + break; + Value *ArgVal = *i; ISD::ArgFlagsTy Flags; unsigned AttrInd = i - CS.arg_begin() + 1; if (CS.paramHasAttr(AttrInd, Attribute::SExt)) @@ -1493,34 +1613,83 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) Flags.setZExt(); - // FIXME: Only handle *easy* calls for now. - if (CS.paramHasAttr(AttrInd, Attribute::InReg) || - CS.paramHasAttr(AttrInd, Attribute::StructRet) || - CS.paramHasAttr(AttrInd, Attribute::Nest) || - CS.paramHasAttr(AttrInd, Attribute::ByVal)) - return false; + if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) { + PointerType *Ty = cast(ArgVal->getType()); + Type *ElementTy = Ty->getElementType(); + unsigned FrameSize = TD.getTypeAllocSize(ElementTy); + unsigned FrameAlign = CS.getParamAlignment(AttrInd); + if (!FrameAlign) + FrameAlign = TLI.getByValTypeAlignment(ElementTy); + Flags.setByVal(); + Flags.setByValSize(FrameSize); + Flags.setByValAlign(FrameAlign); + if (!IsMemcpySmall(FrameSize)) + return false; + } + + if (CS.paramHasAttr(AttrInd, Attribute::InReg)) + Flags.setInReg(); + if (CS.paramHasAttr(AttrInd, Attribute::Nest)) + Flags.setNest(); + + // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra + // instruction. This is safe because it is common to all fastisel supported + // calling conventions on x86. + if (ConstantInt *CI = dyn_cast(ArgVal)) { + if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 || + CI->getBitWidth() == 16) { + if (Flags.isSExt()) + ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext())); + else + ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext())); + } + } + + unsigned ArgReg; + + // Passing bools around ends up doing a trunc to i1 and passing it. + // Codegen this as an argument + "and 1". + if (ArgVal->getType()->isIntegerTy(1) && isa(ArgVal) && + cast(ArgVal)->getParent() == I->getParent() && + ArgVal->hasOneUse()) { + ArgVal = cast(ArgVal)->getOperand(0); + ArgReg = getRegForValue(ArgVal); + if (ArgReg == 0) return false; + + MVT ArgVT; + if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false; - const Type *ArgTy = (*i)->getType(); + ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg, + ArgVal->hasOneUse(), 1); + } else { + ArgReg = getRegForValue(ArgVal); + } + + if (ArgReg == 0) return false; + + Type *ArgTy = ArgVal->getType(); MVT ArgVT; if (!isTypeLegal(ArgTy, ArgVT)) return false; + if (ArgVT == MVT::x86mmx) + return false; unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); Flags.setOrigAlign(OriginalAlignment); - Args.push_back(Arg); - ArgVals.push_back(*i); + Args.push_back(ArgReg); + ArgVals.push_back(ArgVal); ArgVTs.push_back(ArgVT); ArgFlags.push_back(Flags); } // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; - CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext()); - + CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, + I->getParent()->getContext()); + // Allocate shadow area for Win64 - if (Subtarget->isTargetWin64()) { - CCInfo.AllocateStack(32, 8); - } + if (Subtarget->isTargetWin64()) + CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86); @@ -1528,7 +1697,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { unsigned NumBytes = CCInfo.getNextStackOffset(); // Issue CALLSEQ_START - unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); + unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) .addImm(NumBytes); @@ -1539,31 +1708,31 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { CCValAssign &VA = ArgLocs[i]; unsigned Arg = Args[VA.getValNo()]; EVT ArgVT = ArgVTs[VA.getValNo()]; - + // Promote the value if needed. switch (VA.getLocInfo()) { - default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); - assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted; - Emitted = true; + assert(Emitted && "Failed to emit a sext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::ZExt: { + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); - assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted; - Emitted = true; + assert(Emitted && "Failed to emit a zext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::AExt: { - // We don't handle MMX parameters yet. - if (VA.getLocVT().isVector() && VA.getLocVT().getSizeInBits() == 128) - return false; + assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && + "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); if (!Emitted) @@ -1572,21 +1741,29 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { if (!Emitted) Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); - - assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted; + + assert(Emitted && "Failed to emit a aext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::BCvt: { unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(), - ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false); + ISD::BITCAST, Arg, /*TODO: Kill=*/false); assert(BC != 0 && "Failed to emit a bitcast!"); Arg = BC; ArgVT = VA.getLocVT(); break; } + case CCValAssign::VExt: + // VExt has not been implemented, so this should be impossible to reach + // for now. However, fallback to Selection DAG isel once implemented. + return false; + case CCValAssign::Indirect: + // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully + // support this. + return false; } - + if (VA.isRegLoc()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); @@ -1597,53 +1774,69 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { AM.Base.Reg = StackPtr; AM.Disp = LocMemOffset; const Value *ArgVal = ArgVals[VA.getValNo()]; - - // If this is a really simple value, emit this with the Value* version of - // X86FastEmitStore. If it isn't simple, we don't want to do this, as it - // can cause us to reevaluate the argument. - if (isa(ArgVal) || isa(ArgVal)) - X86FastEmitStore(ArgVT, ArgVal, AM); - else - X86FastEmitStore(ArgVT, Arg, AM); + ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()]; + + if (Flags.isByVal()) { + X86AddressMode SrcAM; + SrcAM.Base.Reg = Arg; + bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()); + assert(Res && "memcpy length already checked!"); (void)Res; + } else if (isa(ArgVal) || isa(ArgVal)) { + // If this is a really simple value, emit this with the Value* version + // of X86FastEmitStore. If it isn't simple, we don't want to do this, + // as it can cause us to reevaluate the argument. + if (!X86FastEmitStore(ArgVT, ArgVal, AM)) + return false; + } else { + if (!X86FastEmitStore(ArgVT, Arg, AM)) + return false; + } } } // ELF / PIC requires GOT in the EBX register before function calls via PLT - // GOT pointer. + // GOT pointer. if (Subtarget->isPICStyleGOT()) { unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); } - + + if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) { + // Count the number of XMM registers allocated. + static const uint16_t XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri), + X86::AL).addImm(NumXMMRegs); + } + // Issue the call. MachineInstrBuilder MIB; if (CalleeOp) { // Register-indirect call. unsigned CallOpc; - if (Subtarget->isTargetWin64()) - CallOpc = X86::WINCALL64r; - else if (Subtarget->is64Bit()) + if (Subtarget->is64Bit()) CallOpc = X86::CALL64r; else CallOpc = X86::CALL32r; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) .addReg(CalleeOp); - + } else { // Direct call. assert(GV && "Not a direct call"); unsigned CallOpc; - if (Subtarget->isTargetWin64()) - CallOpc = X86::WINCALL64pcrel32; - else if (Subtarget->is64Bit()) + if (Subtarget->is64Bit()) CallOpc = X86::CALL64pcrel32; else CallOpc = X86::CALLpcrel32; - + // See if we need any target-specific flags on the GV operand. unsigned char OpFlags = 0; - + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then @@ -1654,88 +1847,114 @@ bool X86FastISel::X86SelectCall(const Instruction *I) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && - Subtarget->getDarwinVers() < 9) { + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } - - - MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) - .addGlobalAddress(GV, 0, OpFlags); + + + MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)); + if (MemIntName) + MIB.addExternalSymbol(MemIntName, OpFlags); + else + MIB.addGlobalAddress(GV, 0, OpFlags); } + // Add a register mask with the call-preserved registers. + // Proper defs for return values will be added by setPhysRegsDeadExcept(). + MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); + // Add an implicit use GOT pointer in EBX. if (Subtarget->isPICStyleGOT()) - MIB.addReg(X86::EBX); + MIB.addReg(X86::EBX, RegState::Implicit); + + if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) + MIB.addReg(X86::AL, RegState::Implicit); // Add implicit physical register uses to the call. for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) - MIB.addReg(RegArgs[i]); + MIB.addReg(RegArgs[i], RegState::Implicit); // Issue CALLSEQ_END - unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); + unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); + const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) - .addImm(NumBytes).addImm(0); + .addImm(NumBytes).addImm(NumBytesCallee); + + // Build info for return calling conv lowering code. + // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo. + SmallVector Ins; + SmallVector RetTys; + ComputeValueVTs(TLI, I->getType(), RetTys); + for (unsigned i = 0, e = RetTys.size(); i != e; ++i) { + EVT VT = RetTys[i]; + EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); + unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT); + for (unsigned j = 0; j != NumRegs; ++j) { + ISD::InputArg MyFlags; + MyFlags.VT = RegisterVT.getSimpleVT(); + MyFlags.Used = !CS.getInstruction()->use_empty(); + if (CS.paramHasAttr(0, Attribute::SExt)) + MyFlags.Flags.setSExt(); + if (CS.paramHasAttr(0, Attribute::ZExt)) + MyFlags.Flags.setZExt(); + if (CS.paramHasAttr(0, Attribute::InReg)) + MyFlags.Flags.setInReg(); + Ins.push_back(MyFlags); + } + } - // Now handle call return value (if any). + // Now handle call return values. SmallVector UsedRegs; - if (RetVT != MVT::isVoid) { - SmallVector RVLocs; - CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext()); - CCInfo.AnalyzeCallResult(RetVT, RetCC_X86); - - // Copy all of the result registers out of their specified physreg. - assert(RVLocs.size() == 1 && "Can't handle multi-value calls!"); - EVT CopyVT = RVLocs[0].getValVT(); - TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); - + SmallVector RVLocs; + CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs, + I->getParent()->getContext()); + unsigned ResultReg = FuncInfo.CreateRegs(I->getType()); + CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0; i != RVLocs.size(); ++i) { + EVT CopyVT = RVLocs[i].getValVT(); + unsigned CopyReg = ResultReg + i; + // If this is a call to a function that returns an fp value on the x87 fp // stack, but where we prefer to use the value in xmm registers, copy it // out as F80 and use a truncate to move it from fp stack reg to xmm reg. - if ((RVLocs[0].getLocReg() == X86::ST0 || - RVLocs[0].getLocReg() == X86::ST1) && - isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) { - CopyVT = MVT::f80; - DstRC = X86::RFP80RegisterClass; + if ((RVLocs[i].getLocReg() == X86::ST0 || + RVLocs[i].getLocReg() == X86::ST1)) { + if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { + CopyVT = MVT::f80; + CopyReg = createResultReg(&X86::RFP80RegClass); + } + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL), + CopyReg); + } else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + CopyReg).addReg(RVLocs[i].getLocReg()); + UsedRegs.push_back(RVLocs[i].getLocReg()); } - unsigned ResultReg = createResultReg(DstRC); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), - ResultReg).addReg(RVLocs[0].getLocReg()); - UsedRegs.push_back(RVLocs[0].getLocReg()); - - if (CopyVT != RVLocs[0].getValVT()) { + if (CopyVT != RVLocs[i].getValVT()) { // Round the F80 the right size, which also moves to the appropriate xmm // register. This is accomplished by storing the F80 value in memory and // then loading it back. Ewww... - EVT ResVT = RVLocs[0].getValVT(); + EVT ResVT = RVLocs[i].getValVT(); unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; unsigned MemSize = ResVT.getSizeInBits()/8; int FI = MFI.CreateStackObject(MemSize, MemSize, false); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), FI) - .addReg(ResultReg); - DstRC = ResVT == MVT::f32 - ? X86::FR32RegisterClass : X86::FR64RegisterClass; + .addReg(CopyReg); Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; - ResultReg = createResultReg(DstRC); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(Opc), ResultReg), FI); - } - - if (AndToI1) { - // Mask out all but lowest bit for some call which produces an i1. - unsigned AndResult = createResultReg(X86::GR8RegisterClass); - BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, - TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); - ResultReg = AndResult; + TII.get(Opc), ResultReg + i), FI); } - - UpdateValueMap(I, ResultReg); } + if (RVLocs.size()) + UpdateValueMap(I, ResultReg, RVLocs.size()); + // Set all unused physreg defs as dead. static_cast(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); @@ -1774,8 +1993,6 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) { return X86SelectFPExt(I); case Instruction::FPTrunc: return X86SelectFPTrunc(I); - case Instruction::ExtractValue: - return X86SelectExtractValue(I); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); @@ -1797,61 +2014,68 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) { unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { MVT VT; if (!isTypeLegal(C->getType(), VT)) - return false; - + return 0; + + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return 0; + // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; switch (VT.SimpleTy) { - default: return false; + default: return 0; case MVT::i8: Opc = X86::MOV8rm; - RC = X86::GR8RegisterClass; + RC = &X86::GR8RegClass; break; case MVT::i16: Opc = X86::MOV16rm; - RC = X86::GR16RegisterClass; + RC = &X86::GR16RegClass; break; case MVT::i32: Opc = X86::MOV32rm; - RC = X86::GR32RegisterClass; + RC = &X86::GR32RegClass; break; case MVT::i64: // Must be in x86-64 mode. Opc = X86::MOV64rm; - RC = X86::GR64RegisterClass; + RC = &X86::GR64RegClass; break; case MVT::f32: - if (Subtarget->hasSSE1()) { - Opc = X86::MOVSSrm; - RC = X86::FR32RegisterClass; + if (X86ScalarSSEf32) { + Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; + RC = &X86::FR32RegClass; } else { Opc = X86::LD_Fp32m; - RC = X86::RFP32RegisterClass; + RC = &X86::RFP32RegClass; } break; case MVT::f64: - if (Subtarget->hasSSE2()) { - Opc = X86::MOVSDrm; - RC = X86::FR64RegisterClass; + if (X86ScalarSSEf64) { + Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; + RC = &X86::FR64RegClass; } else { Opc = X86::LD_Fp64m; - RC = X86::RFP64RegisterClass; + RC = &X86::RFP64RegClass; } break; case MVT::f80: // No f80 support yet. - return false; + return 0; } - + // Materialize addresses with LEA instructions. if (isa(C)) { X86AddressMode AM; if (X86SelectAddress(C, AM)) { - if (TLI.getPointerTy() == MVT::i32) - Opc = X86::LEA32r; - else - Opc = X86::LEA64r; + // If the expression is just a basereg, then we're done, otherwise we need + // to emit an LEA. + if (AM.BaseType == X86AddressMode::RegBase && + AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0) + return AM.Base.Reg; + + Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; unsigned ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); @@ -1859,14 +2083,14 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { } return 0; } - + // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(C->getType()); if (Align == 0) { // Alignment of vector types. FIXME! Align = TD.getTypeAllocSize(C->getType()); } - + // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; unsigned char OpFlag = 0; @@ -1906,13 +2130,52 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { if (!X86SelectAddress(C, AM)) return 0; unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; - TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); + const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); unsigned ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); return ResultReg; } +unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { + MVT VT; + if (!isTypeLegal(CF->getType(), VT)) + return false; + + // Get opcode and regclass for the given zero. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.SimpleTy) { + default: return false; + case MVT::f32: + if (X86ScalarSSEf32) { + Opc = X86::FsFLD0SS; + RC = &X86::FR32RegClass; + } else { + Opc = X86::LD_Fp032; + RC = &X86::RFP32RegClass; + } + break; + case MVT::f64: + if (X86ScalarSSEf64) { + Opc = X86::FsFLD0SD; + RC = &X86::FR64RegClass; + } else { + Opc = X86::LD_Fp064; + RC = &X86::RFP64RegClass; + } + break; + case MVT::f80: + // No f80 support yet. + return false; + } + + unsigned ResultReg = createResultReg(RC); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); + return ResultReg; +} + + /// TryToFoldLoad - The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if @@ -1922,27 +2185,28 @@ bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo, X86AddressMode AM; if (!X86SelectAddress(LI->getOperand(0), AM)) return false; - - X86InstrInfo &XII = (X86InstrInfo&)TII; - + + const X86InstrInfo &XII = (const X86InstrInfo&)TII; + unsigned Size = TD.getTypeAllocSize(LI->getType()); unsigned Alignment = LI->getAlignment(); SmallVector AddrOps; AM.getFullAddress(AddrOps); - + MachineInstr *Result = XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment); if (Result == 0) return false; - - MI->getParent()->insert(MI, Result); + + FuncInfo.MBB->insert(FuncInfo.InsertPt, Result); MI->eraseFromParent(); return true; } namespace llvm { - llvm::FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) { - return new X86FastISel(funcInfo); + FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) { + return new X86FastISel(funcInfo, libInfo); } }