X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTarget%2FX86%2FX86InstrInfo.cpp;h=78b127d47141bb9b081dbd70e7d1e3a2b7d6174f;hb=8bd59f505ab88f16cc13427d8affb3e379511d40;hp=6f8405cf62c892353c357ea8144db8d66f086b17;hpb=77b557430c1315ef50c3256cdc5e73ac54d0154e;p=oota-llvm.git diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp index 6f8405cf62c..78b127d4714 100644 --- a/lib/Target/X86/X86InstrInfo.cpp +++ b/lib/Target/X86/X86InstrInfo.cpp @@ -91,7 +91,7 @@ enum { TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT }; -struct X86OpTblEntry { +struct X86MemoryFoldTableEntry { uint16_t RegOp; uint16_t MemOp; uint16_t Flags; @@ -104,9 +104,9 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) : X86GenInstrInfo( (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32)), - Subtarget(STI), RI(STI) { + Subtarget(STI), RI(STI.getTargetTriple()) { - static const X86OpTblEntry OpTbl2Addr[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable2Addr[] = { { X86::ADC32ri, X86::ADC32mi, 0 }, { X86::ADC32ri8, X86::ADC32mi8, 0 }, { X86::ADC32rr, X86::ADC32mr, 0 }, @@ -269,17 +269,17 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::XOR8rr, X86::XOR8mr, 0 } }; - for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { - unsigned RegOp = OpTbl2Addr[i].RegOp; - unsigned MemOp = OpTbl2Addr[i].MemOp; - unsigned Flags = OpTbl2Addr[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2Addr); i != e; ++i) { + unsigned RegOp = MemoryFoldTable2Addr[i].RegOp; + unsigned MemOp = MemoryFoldTable2Addr[i].MemOp; + unsigned Flags = MemoryFoldTable2Addr[i].Flags; AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable, RegOp, MemOp, // Index 0, folded load and store, no alignment requirement. Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE); } - static const X86OpTblEntry OpTbl0[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable0[] = { { X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD }, { X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD }, { X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD }, @@ -358,6 +358,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD }, { X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD }, { X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD }, + // AVX 128-bit versions of foldable instructions { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE }, { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, @@ -372,6 +373,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE }, { X86::VPEXTRDrr, X86::VPEXTRDmr, TB_FOLDED_STORE }, { X86::VPEXTRQrr, X86::VPEXTRQmr, TB_FOLDED_STORE }, + // AVX 256-bit foldable instructions { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, @@ -379,6 +381,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE }, { X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }, + // AVX-512 foldable instructions { X86::VMOVPDI2DIZrr, X86::VMOVPDI2DIZmr, TB_FOLDED_STORE }, { X86::VMOVAPDZrr, X86::VMOVAPDZmr, TB_FOLDED_STORE | TB_ALIGN_64 }, @@ -391,6 +394,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVDQU16Zrr, X86::VMOVDQU16Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU32Zrr, X86::VMOVDQU32Zmr, TB_FOLDED_STORE }, { X86::VMOVDQU64Zrr, X86::VMOVDQU64Zmr, TB_FOLDED_STORE }, + // AVX-512 foldable instructions (256-bit versions) { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256mr, TB_FOLDED_STORE | TB_ALIGN_32 }, @@ -402,6 +406,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVDQU16Z256rr, X86::VMOVDQU16Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z256rr, X86::VMOVDQU32Z256mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z256rr, X86::VMOVDQU64Z256mr, TB_FOLDED_STORE }, + // AVX-512 foldable instructions (128-bit versions) { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128mr, TB_FOLDED_STORE | TB_ALIGN_16 }, @@ -413,20 +418,27 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVDQU16Z128rr, X86::VMOVDQU16Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU32Z128rr, X86::VMOVDQU32Z128mr, TB_FOLDED_STORE }, { X86::VMOVDQU64Z128rr, X86::VMOVDQU64Z128mr, TB_FOLDED_STORE }, + // F16C foldable instructions { X86::VCVTPS2PHrr, X86::VCVTPS2PHmr, TB_FOLDED_STORE }, { X86::VCVTPS2PHYrr, X86::VCVTPS2PHYmr, TB_FOLDED_STORE } }; - for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { - unsigned RegOp = OpTbl0[i].RegOp; - unsigned MemOp = OpTbl0[i].MemOp; - unsigned Flags = OpTbl0[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable0); i != e; ++i) { + unsigned RegOp = MemoryFoldTable0[i].RegOp; + unsigned MemOp = MemoryFoldTable0[i].MemOp; + unsigned Flags = MemoryFoldTable0[i].Flags; AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable, RegOp, MemOp, TB_INDEX_0 | Flags); } - static const X86OpTblEntry OpTbl1[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable1[] = { + { X86::BSF16rr, X86::BSF16rm, 0 }, + { X86::BSF32rr, X86::BSF32rm, 0 }, + { X86::BSF64rr, X86::BSF64rm, 0 }, + { X86::BSR16rr, X86::BSR16rm, 0 }, + { X86::BSR32rr, X86::BSR32rm, 0 }, + { X86::BSR64rr, X86::BSR64rm, 0 }, { X86::CMP16rr, X86::CMP16rm, 0 }, { X86::CMP32rr, X86::CMP32rm, 0 }, { X86::CMP64rr, X86::CMP64rm, 0 }, @@ -520,11 +532,11 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 }, { X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 }, { X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 }, - { X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 }, + { X86::RCPSSr, X86::RCPSSm, 0 }, + { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 }, { X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 }, { X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 }, { X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 }, - { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 }, { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, { X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 }, @@ -540,6 +552,28 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, { X86::UCOMISSrr, X86::UCOMISSrm, 0 }, + + // MMX version of foldable instructions + { X86::MMX_CVTPD2PIirr, X86::MMX_CVTPD2PIirm, 0 }, + { X86::MMX_CVTPI2PDirr, X86::MMX_CVTPI2PDirm, 0 }, + { X86::MMX_CVTPS2PIirr, X86::MMX_CVTPS2PIirm, 0 }, + { X86::MMX_CVTTPD2PIirr, X86::MMX_CVTTPD2PIirm, 0 }, + { X86::MMX_CVTTPS2PIirr, X86::MMX_CVTTPS2PIirm, 0 }, + { X86::MMX_MOVD64to64rr, X86::MMX_MOVQ64rm, 0 }, + { X86::MMX_PABSBrr64, X86::MMX_PABSBrm64, 0 }, + { X86::MMX_PABSDrr64, X86::MMX_PABSDrm64, 0 }, + { X86::MMX_PABSWrr64, X86::MMX_PABSWrm64, 0 }, + { X86::MMX_PSHUFWri, X86::MMX_PSHUFWmi, 0 }, + + // 3DNow! version of foldable instructions + { X86::PF2IDrr, X86::PF2IDrm, 0 }, + { X86::PF2IWrr, X86::PF2IWrm, 0 }, + { X86::PFRCPrr, X86::PFRCPrm, 0 }, + { X86::PFRSQRTrr, X86::PFRSQRTrm, 0 }, + { X86::PI2FDrr, X86::PI2FDrm, 0 }, + { X86::PI2FWrr, X86::PI2FWrm, 0 }, + { X86::PSWAPDrr, X86::PSWAPDrm, 0 }, + // AVX 128-bit versions of foldable instructions { X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 }, { X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 }, @@ -606,11 +640,9 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPSHUFLWri, X86::VPSHUFLWmi, 0 }, { X86::VPTESTrr, X86::VPTESTrm, 0 }, { X86::VRCPPSr, X86::VRCPPSm, 0 }, - { X86::VRCPPSr_Int, X86::VRCPPSm_Int, 0 }, { X86::VROUNDPDr, X86::VROUNDPDm, 0 }, { X86::VROUNDPSr, X86::VROUNDPSm, 0 }, { X86::VRSQRTPSr, X86::VRSQRTPSm, 0 }, - { X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, 0 }, { X86::VSQRTPDr, X86::VSQRTPDm, 0 }, { X86::VSQRTPSr, X86::VSQRTPSm, 0 }, { X86::VTESTPDrr, X86::VTESTPDrm, 0 }, @@ -639,27 +671,92 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPERMILPSYri, X86::VPERMILPSYmi, 0 }, { X86::VPTESTYrr, X86::VPTESTYrm, 0 }, { X86::VRCPPSYr, X86::VRCPPSYm, 0 }, - { X86::VRCPPSYr_Int, X86::VRCPPSYm_Int, 0 }, { X86::VROUNDYPDr, X86::VROUNDYPDm, 0 }, { X86::VROUNDYPSr, X86::VROUNDYPSm, 0 }, { X86::VRSQRTPSYr, X86::VRSQRTPSYm, 0 }, - { X86::VRSQRTPSYr_Int, X86::VRSQRTPSYm_Int, 0 }, { X86::VSQRTPDYr, X86::VSQRTPDYm, 0 }, { X86::VSQRTPSYr, X86::VSQRTPSYm, 0 }, { X86::VTESTPDYrr, X86::VTESTPDYrm, 0 }, { X86::VTESTPSYrr, X86::VTESTPSYrm, 0 }, // AVX2 foldable instructions + + // VBROADCASTS{SD}rr register instructions were an AVX2 addition while the + // VBROADCASTS{SD}rm memory instructions were available from AVX1. + // TB_NO_REVERSE prevents unfolding from introducing an illegal instruction + // on AVX1 targets. The VPBROADCAST instructions are all AVX2 instructions + // so they don't need an equivalent limitation. { X86::VBROADCASTSSrr, X86::VBROADCASTSSrm, TB_NO_REVERSE }, { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm, TB_NO_REVERSE }, { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm, TB_NO_REVERSE }, { X86::VPABSBrr256, X86::VPABSBrm256, 0 }, { X86::VPABSDrr256, X86::VPABSDrm256, 0 }, { X86::VPABSWrr256, X86::VPABSWrm256, 0 }, + { X86::VPBROADCASTBrr, X86::VPBROADCASTBrm, 0 }, + { X86::VPBROADCASTBYrr, X86::VPBROADCASTBYrm, 0 }, + { X86::VPBROADCASTDrr, X86::VPBROADCASTDrm, 0 }, + { X86::VPBROADCASTDYrr, X86::VPBROADCASTDYrm, 0 }, + { X86::VPBROADCASTQrr, X86::VPBROADCASTQrm, 0 }, + { X86::VPBROADCASTQYrr, X86::VPBROADCASTQYrm, 0 }, + { X86::VPBROADCASTWrr, X86::VPBROADCASTWrm, 0 }, + { X86::VPBROADCASTWYrr, X86::VPBROADCASTWYrm, 0 }, + { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, + { X86::VPERMQYri, X86::VPERMQYmi, 0 }, + { X86::VPMOVSXBDYrr, X86::VPMOVSXBDYrm, 0 }, + { X86::VPMOVSXBQYrr, X86::VPMOVSXBQYrm, 0 }, + { X86::VPMOVSXBWYrr, X86::VPMOVSXBWYrm, 0 }, + { X86::VPMOVSXDQYrr, X86::VPMOVSXDQYrm, 0 }, + { X86::VPMOVSXWDYrr, X86::VPMOVSXWDYrm, 0 }, + { X86::VPMOVSXWQYrr, X86::VPMOVSXWQYrm, 0 }, + { X86::VPMOVZXBDYrr, X86::VPMOVZXBDYrm, 0 }, + { X86::VPMOVZXBQYrr, X86::VPMOVZXBQYrm, 0 }, + { X86::VPMOVZXBWYrr, X86::VPMOVZXBWYrm, 0 }, + { X86::VPMOVZXDQYrr, X86::VPMOVZXDQYrm, 0 }, + { X86::VPMOVZXWDYrr, X86::VPMOVZXWDYrm, 0 }, + { X86::VPMOVZXWQYrr, X86::VPMOVZXWQYrm, 0 }, { X86::VPSHUFDYri, X86::VPSHUFDYmi, 0 }, { X86::VPSHUFHWYri, X86::VPSHUFHWYmi, 0 }, { X86::VPSHUFLWYri, X86::VPSHUFLWYmi, 0 }, + // XOP foldable instructions + { X86::VFRCZPDrr, X86::VFRCZPDrm, 0 }, + { X86::VFRCZPDrrY, X86::VFRCZPDrmY, 0 }, + { X86::VFRCZPSrr, X86::VFRCZPSrm, 0 }, + { X86::VFRCZPSrrY, X86::VFRCZPSrmY, 0 }, + { X86::VFRCZSDrr, X86::VFRCZSDrm, 0 }, + { X86::VFRCZSSrr, X86::VFRCZSSrm, 0 }, + { X86::VPHADDBDrr, X86::VPHADDBDrm, 0 }, + { X86::VPHADDBQrr, X86::VPHADDBQrm, 0 }, + { X86::VPHADDBWrr, X86::VPHADDBWrm, 0 }, + { X86::VPHADDDQrr, X86::VPHADDDQrm, 0 }, + { X86::VPHADDWDrr, X86::VPHADDWDrm, 0 }, + { X86::VPHADDWQrr, X86::VPHADDWQrm, 0 }, + { X86::VPHADDUBDrr, X86::VPHADDUBDrm, 0 }, + { X86::VPHADDUBQrr, X86::VPHADDUBQrm, 0 }, + { X86::VPHADDUBWrr, X86::VPHADDUBWrm, 0 }, + { X86::VPHADDUDQrr, X86::VPHADDUDQrm, 0 }, + { X86::VPHADDUWDrr, X86::VPHADDUWDrm, 0 }, + { X86::VPHADDUWQrr, X86::VPHADDUWQrm, 0 }, + { X86::VPHSUBBWrr, X86::VPHSUBBWrm, 0 }, + { X86::VPHSUBDQrr, X86::VPHSUBDQrm, 0 }, + { X86::VPHSUBWDrr, X86::VPHSUBWDrm, 0 }, + { X86::VPROTBri, X86::VPROTBmi, 0 }, + { X86::VPROTBrr, X86::VPROTBmr, 0 }, + { X86::VPROTDri, X86::VPROTDmi, 0 }, + { X86::VPROTDrr, X86::VPROTDmr, 0 }, + { X86::VPROTQri, X86::VPROTQmi, 0 }, + { X86::VPROTQrr, X86::VPROTQmr, 0 }, + { X86::VPROTWri, X86::VPROTWmi, 0 }, + { X86::VPROTWrr, X86::VPROTWmr, 0 }, + { X86::VPSHABrr, X86::VPSHABmr, 0 }, + { X86::VPSHADrr, X86::VPSHADmr, 0 }, + { X86::VPSHAQrr, X86::VPSHAQmr, 0 }, + { X86::VPSHAWrr, X86::VPSHAWmr, 0 }, + { X86::VPSHLBrr, X86::VPSHLBmr, 0 }, + { X86::VPSHLDrr, X86::VPSHLDmr, 0 }, + { X86::VPSHLQrr, X86::VPSHLQmr, 0 }, + { X86::VPSHLWrr, X86::VPSHLWmr, 0 }, + // BMI/BMI2/LZCNT/POPCNT/TBM foldable instructions { X86::BEXTR32rr, X86::BEXTR32rm, 0 }, { X86::BEXTR64rr, X86::BEXTR64rm, 0 }, @@ -726,6 +823,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPABSQZrr, X86::VPABSQZrm, 0 }, { X86::VBROADCASTSSZr, X86::VBROADCASTSSZm, TB_NO_REVERSE }, { X86::VBROADCASTSDZr, X86::VBROADCASTSDZm, TB_NO_REVERSE }, + // AVX-512 foldable instructions (256-bit versions) { X86::VMOVAPDZ256rr, X86::VMOVAPDZ256rm, TB_ALIGN_32 }, { X86::VMOVAPSZ256rr, X86::VMOVAPSZ256rm, TB_ALIGN_32 }, @@ -739,6 +837,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVUPSZ256rr, X86::VMOVUPSZ256rm, 0 }, { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256m, TB_NO_REVERSE }, { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256m, TB_NO_REVERSE }, + // AVX-512 foldable instructions (256-bit versions) { X86::VMOVAPDZ128rr, X86::VMOVAPDZ128rm, TB_ALIGN_16 }, { X86::VMOVAPSZ128rr, X86::VMOVAPSZ128rm, TB_ALIGN_16 }, @@ -751,27 +850,29 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMOVUPDZ128rr, X86::VMOVUPDZ128rm, 0 }, { X86::VMOVUPSZ128rr, X86::VMOVUPSZ128rm, 0 }, { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128m, TB_NO_REVERSE }, + // F16C foldable instructions { X86::VCVTPH2PSrr, X86::VCVTPH2PSrm, 0 }, { X86::VCVTPH2PSYrr, X86::VCVTPH2PSYrm, 0 }, + // AES foldable instructions { X86::AESIMCrr, X86::AESIMCrm, TB_ALIGN_16 }, { X86::AESKEYGENASSIST128rr, X86::AESKEYGENASSIST128rm, TB_ALIGN_16 }, - { X86::VAESIMCrr, X86::VAESIMCrm, TB_ALIGN_16 }, - { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, TB_ALIGN_16 } + { X86::VAESIMCrr, X86::VAESIMCrm, 0 }, + { X86::VAESKEYGENASSIST128rr, X86::VAESKEYGENASSIST128rm, 0 } }; - for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { - unsigned RegOp = OpTbl1[i].RegOp; - unsigned MemOp = OpTbl1[i].MemOp; - unsigned Flags = OpTbl1[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable1); i != e; ++i) { + unsigned RegOp = MemoryFoldTable1[i].RegOp; + unsigned MemOp = MemoryFoldTable1[i].MemOp; + unsigned Flags = MemoryFoldTable1[i].Flags; AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable, RegOp, MemOp, // Index 1, folded load Flags | TB_INDEX_1 | TB_FOLDED_LOAD); } - static const X86OpTblEntry OpTbl2[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable2[] = { { X86::ADC32rr, X86::ADC32rm, 0 }, { X86::ADC64rr, X86::ADC64rm, 0 }, { X86::ADD16rr, X86::ADD16rm, 0 }, @@ -853,6 +954,8 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 }, { X86::CMPSDrr, X86::CMPSDrm, 0 }, { X86::CMPSSrr, X86::CMPSSrm, 0 }, + { X86::CRC32r32r32, X86::CRC32r32m32, 0 }, + { X86::CRC32r64r64, X86::CRC32r64m64, 0 }, { X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 }, { X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 }, { X86::DIVSDrr, X86::DIVSDrm, 0 }, @@ -861,6 +964,11 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::DIVSSrr_Int, X86::DIVSSrm_Int, 0 }, { X86::DPPDrri, X86::DPPDrmi, TB_ALIGN_16 }, { X86::DPPSrri, X86::DPPSrmi, TB_ALIGN_16 }, + + // FIXME: We should not be folding Fs* scalar loads into vector + // instructions because the vector instructions require vector-sized + // loads. Lowering should create vector-sized instructions (the Fv* + // variants below) to allow load folding. { X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 }, { X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 }, { X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 }, @@ -869,6 +977,15 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 }, { X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 }, { X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 }, + + { X86::FvANDNPDrr, X86::FvANDNPDrm, TB_ALIGN_16 }, + { X86::FvANDNPSrr, X86::FvANDNPSrm, TB_ALIGN_16 }, + { X86::FvANDPDrr, X86::FvANDPDrm, TB_ALIGN_16 }, + { X86::FvANDPSrr, X86::FvANDPSrm, TB_ALIGN_16 }, + { X86::FvORPDrr, X86::FvORPDrm, TB_ALIGN_16 }, + { X86::FvORPSrr, X86::FvORPSrm, TB_ALIGN_16 }, + { X86::FvXORPDrr, X86::FvXORPDrm, TB_ALIGN_16 }, + { X86::FvXORPSrr, X86::FvXORPSrm, TB_ALIGN_16 }, { X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 }, { X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 }, { X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 }, @@ -1024,6 +1141,98 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::XOR8rr, X86::XOR8rm, 0 }, { X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 }, { X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 }, + + // MMX version of foldable instructions + { X86::MMX_CVTPI2PSirr, X86::MMX_CVTPI2PSirm, 0 }, + { X86::MMX_PACKSSDWirr, X86::MMX_PACKSSDWirm, 0 }, + { X86::MMX_PACKSSWBirr, X86::MMX_PACKSSWBirm, 0 }, + { X86::MMX_PACKUSWBirr, X86::MMX_PACKUSWBirm, 0 }, + { X86::MMX_PADDBirr, X86::MMX_PADDBirm, 0 }, + { X86::MMX_PADDDirr, X86::MMX_PADDDirm, 0 }, + { X86::MMX_PADDQirr, X86::MMX_PADDQirm, 0 }, + { X86::MMX_PADDSBirr, X86::MMX_PADDSBirm, 0 }, + { X86::MMX_PADDSWirr, X86::MMX_PADDSWirm, 0 }, + { X86::MMX_PADDUSBirr, X86::MMX_PADDUSBirm, 0 }, + { X86::MMX_PADDUSWirr, X86::MMX_PADDUSWirm, 0 }, + { X86::MMX_PADDWirr, X86::MMX_PADDWirm, 0 }, + { X86::MMX_PALIGNR64irr, X86::MMX_PALIGNR64irm, 0 }, + { X86::MMX_PANDNirr, X86::MMX_PANDNirm, 0 }, + { X86::MMX_PANDirr, X86::MMX_PANDirm, 0 }, + { X86::MMX_PAVGBirr, X86::MMX_PAVGBirm, 0 }, + { X86::MMX_PAVGWirr, X86::MMX_PAVGWirm, 0 }, + { X86::MMX_PCMPEQBirr, X86::MMX_PCMPEQBirm, 0 }, + { X86::MMX_PCMPEQDirr, X86::MMX_PCMPEQDirm, 0 }, + { X86::MMX_PCMPEQWirr, X86::MMX_PCMPEQWirm, 0 }, + { X86::MMX_PCMPGTBirr, X86::MMX_PCMPGTBirm, 0 }, + { X86::MMX_PCMPGTDirr, X86::MMX_PCMPGTDirm, 0 }, + { X86::MMX_PCMPGTWirr, X86::MMX_PCMPGTWirm, 0 }, + { X86::MMX_PHADDSWrr64, X86::MMX_PHADDSWrm64, 0 }, + { X86::MMX_PHADDWrr64, X86::MMX_PHADDWrm64, 0 }, + { X86::MMX_PHADDrr64, X86::MMX_PHADDrm64, 0 }, + { X86::MMX_PHSUBDrr64, X86::MMX_PHSUBDrm64, 0 }, + { X86::MMX_PHSUBSWrr64, X86::MMX_PHSUBSWrm64, 0 }, + { X86::MMX_PHSUBWrr64, X86::MMX_PHSUBWrm64, 0 }, + { X86::MMX_PINSRWirri, X86::MMX_PINSRWirmi, 0 }, + { X86::MMX_PMADDUBSWrr64, X86::MMX_PMADDUBSWrm64, 0 }, + { X86::MMX_PMADDWDirr, X86::MMX_PMADDWDirm, 0 }, + { X86::MMX_PMAXSWirr, X86::MMX_PMAXSWirm, 0 }, + { X86::MMX_PMAXUBirr, X86::MMX_PMAXUBirm, 0 }, + { X86::MMX_PMINSWirr, X86::MMX_PMINSWirm, 0 }, + { X86::MMX_PMINUBirr, X86::MMX_PMINUBirm, 0 }, + { X86::MMX_PMULHRSWrr64, X86::MMX_PMULHRSWrm64, 0 }, + { X86::MMX_PMULHUWirr, X86::MMX_PMULHUWirm, 0 }, + { X86::MMX_PMULHWirr, X86::MMX_PMULHWirm, 0 }, + { X86::MMX_PMULLWirr, X86::MMX_PMULLWirm, 0 }, + { X86::MMX_PMULUDQirr, X86::MMX_PMULUDQirm, 0 }, + { X86::MMX_PORirr, X86::MMX_PORirm, 0 }, + { X86::MMX_PSADBWirr, X86::MMX_PSADBWirm, 0 }, + { X86::MMX_PSHUFBrr64, X86::MMX_PSHUFBrm64, 0 }, + { X86::MMX_PSIGNBrr64, X86::MMX_PSIGNBrm64, 0 }, + { X86::MMX_PSIGNDrr64, X86::MMX_PSIGNDrm64, 0 }, + { X86::MMX_PSIGNWrr64, X86::MMX_PSIGNWrm64, 0 }, + { X86::MMX_PSLLDrr, X86::MMX_PSLLDrm, 0 }, + { X86::MMX_PSLLQrr, X86::MMX_PSLLQrm, 0 }, + { X86::MMX_PSLLWrr, X86::MMX_PSLLWrm, 0 }, + { X86::MMX_PSRADrr, X86::MMX_PSRADrm, 0 }, + { X86::MMX_PSRAWrr, X86::MMX_PSRAWrm, 0 }, + { X86::MMX_PSRLDrr, X86::MMX_PSRLDrm, 0 }, + { X86::MMX_PSRLQrr, X86::MMX_PSRLQrm, 0 }, + { X86::MMX_PSRLWrr, X86::MMX_PSRLWrm, 0 }, + { X86::MMX_PSUBBirr, X86::MMX_PSUBBirm, 0 }, + { X86::MMX_PSUBDirr, X86::MMX_PSUBDirm, 0 }, + { X86::MMX_PSUBQirr, X86::MMX_PSUBQirm, 0 }, + { X86::MMX_PSUBSBirr, X86::MMX_PSUBSBirm, 0 }, + { X86::MMX_PSUBSWirr, X86::MMX_PSUBSWirm, 0 }, + { X86::MMX_PSUBUSBirr, X86::MMX_PSUBUSBirm, 0 }, + { X86::MMX_PSUBUSWirr, X86::MMX_PSUBUSWirm, 0 }, + { X86::MMX_PSUBWirr, X86::MMX_PSUBWirm, 0 }, + { X86::MMX_PUNPCKHBWirr, X86::MMX_PUNPCKHBWirm, 0 }, + { X86::MMX_PUNPCKHDQirr, X86::MMX_PUNPCKHDQirm, 0 }, + { X86::MMX_PUNPCKHWDirr, X86::MMX_PUNPCKHWDirm, 0 }, + { X86::MMX_PUNPCKLBWirr, X86::MMX_PUNPCKLBWirm, 0 }, + { X86::MMX_PUNPCKLDQirr, X86::MMX_PUNPCKLDQirm, 0 }, + { X86::MMX_PUNPCKLWDirr, X86::MMX_PUNPCKLWDirm, 0 }, + { X86::MMX_PXORirr, X86::MMX_PXORirm, 0 }, + + // 3DNow! version of foldable instructions + { X86::PAVGUSBrr, X86::PAVGUSBrm, 0 }, + { X86::PFACCrr, X86::PFACCrm, 0 }, + { X86::PFADDrr, X86::PFADDrm, 0 }, + { X86::PFCMPEQrr, X86::PFCMPEQrm, 0 }, + { X86::PFCMPGErr, X86::PFCMPGErm, 0 }, + { X86::PFCMPGTrr, X86::PFCMPGTrm, 0 }, + { X86::PFMAXrr, X86::PFMAXrm, 0 }, + { X86::PFMINrr, X86::PFMINrm, 0 }, + { X86::PFMULrr, X86::PFMULrm, 0 }, + { X86::PFNACCrr, X86::PFNACCrm, 0 }, + { X86::PFPNACCrr, X86::PFPNACCrm, 0 }, + { X86::PFRCPIT1rr, X86::PFRCPIT1rm, 0 }, + { X86::PFRCPIT2rr, X86::PFRCPIT2rm, 0 }, + { X86::PFRSQIT1rr, X86::PFRSQIT1rm, 0 }, + { X86::PFSUBrr, X86::PFSUBrm, 0 }, + { X86::PFSUBRrr, X86::PFSUBRrm, 0 }, + { X86::PMULHRWrr, X86::PMULHRWrm, 0 }, + // AVX 128-bit versions of foldable instructions { X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 }, { X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 }, @@ -1038,9 +1247,13 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 }, { X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 }, { X86::VRCPSSr, X86::VRCPSSm, 0 }, + { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 }, { X86::VRSQRTSSr, X86::VRSQRTSSm, 0 }, + { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 }, { X86::VSQRTSDr, X86::VSQRTSDm, 0 }, + { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 }, { X86::VSQRTSSr, X86::VSQRTSSm, 0 }, + { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 }, { X86::VADDPDrr, X86::VADDPDrm, 0 }, { X86::VADDPSrr, X86::VADDPSrm, 0 }, { X86::VADDSDrr, X86::VADDSDrm, 0 }, @@ -1069,14 +1282,17 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VDIVSSrr_Int, X86::VDIVSSrm_Int, 0 }, { X86::VDPPDrri, X86::VDPPDrmi, 0 }, { X86::VDPPSrri, X86::VDPPSrmi, 0 }, - { X86::VFsANDNPDrr, X86::VFsANDNPDrm, 0 }, - { X86::VFsANDNPSrr, X86::VFsANDNPSrm, 0 }, - { X86::VFsANDPDrr, X86::VFsANDPDrm, 0 }, - { X86::VFsANDPSrr, X86::VFsANDPSrm, 0 }, - { X86::VFsORPDrr, X86::VFsORPDrm, 0 }, - { X86::VFsORPSrr, X86::VFsORPSrm, 0 }, - { X86::VFsXORPDrr, X86::VFsXORPDrm, 0 }, - { X86::VFsXORPSrr, X86::VFsXORPSrm, 0 }, + // Do not fold VFs* loads because there are no scalar load variants for + // these instructions. When folded, the load is required to be 128-bits, so + // the load size would not match. + { X86::VFvANDNPDrr, X86::VFvANDNPDrm, 0 }, + { X86::VFvANDNPSrr, X86::VFvANDNPSrm, 0 }, + { X86::VFvANDPDrr, X86::VFvANDPDrm, 0 }, + { X86::VFvANDPSrr, X86::VFvANDPSrm, 0 }, + { X86::VFvORPDrr, X86::VFvORPDrm, 0 }, + { X86::VFvORPSrr, X86::VFvORPSrm, 0 }, + { X86::VFvXORPDrr, X86::VFvXORPDrm, 0 }, + { X86::VFvXORPSrr, X86::VFvXORPSrm, 0 }, { X86::VHADDPDrr, X86::VHADDPDrm, 0 }, { X86::VHADDPSrr, X86::VHADDPSrm, 0 }, { X86::VHSUBPDrr, X86::VHSUBPDrm, 0 }, @@ -1210,6 +1426,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, 0 }, { X86::VXORPDrr, X86::VXORPDrm, 0 }, { X86::VXORPSrr, X86::VXORPSrm, 0 }, + // AVX 256-bit foldable instructions { X86::VADDPDYrr, X86::VADDPDYrm, 0 }, { X86::VADDPSYrr, X86::VADDPSYrm, 0 }, @@ -1254,6 +1471,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrm, 0 }, { X86::VXORPDYrr, X86::VXORPDYrm, 0 }, { X86::VXORPSYrr, X86::VXORPSYrm, 0 }, + // AVX2 foldable instructions { X86::VINSERTI128rr, X86::VINSERTI128rm, 0 }, { X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, 0 }, @@ -1275,6 +1493,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPAVGWYrr, X86::VPAVGWYrm, 0 }, { X86::VPBLENDDrri, X86::VPBLENDDrmi, 0 }, { X86::VPBLENDDYrri, X86::VPBLENDDYrmi, 0 }, + { X86::VPBLENDVBYrr, X86::VPBLENDVBYrm, 0 }, { X86::VPBLENDWYrri, X86::VPBLENDWYrmi, 0 }, { X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, 0 }, { X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, 0 }, @@ -1286,9 +1505,7 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, 0 }, { X86::VPERM2I128rr, X86::VPERM2I128rm, 0 }, { X86::VPERMDYrr, X86::VPERMDYrm, 0 }, - { X86::VPERMPDYri, X86::VPERMPDYmi, 0 }, { X86::VPERMPSYrr, X86::VPERMPSYrm, 0 }, - { X86::VPERMQYri, X86::VPERMQYmi, 0 }, { X86::VPHADDDYrr, X86::VPHADDDYrm, 0 }, { X86::VPHADDSWrr256, X86::VPHADDSWrm256, 0 }, { X86::VPHADDWYrr, X86::VPHADDWYrm, 0 }, @@ -1343,8 +1560,11 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPSRLVQYrr, X86::VPSRLVQYrm, 0 }, { X86::VPSUBBYrr, X86::VPSUBBYrm, 0 }, { X86::VPSUBDYrr, X86::VPSUBDYrm, 0 }, + { X86::VPSUBQYrr, X86::VPSUBQYrm, 0 }, { X86::VPSUBSBYrr, X86::VPSUBSBYrm, 0 }, { X86::VPSUBSWYrr, X86::VPSUBSWYrm, 0 }, + { X86::VPSUBUSBYrr, X86::VPSUBUSBYrm, 0 }, + { X86::VPSUBUSWYrr, X86::VPSUBUSWYrm, 0 }, { X86::VPSUBWYrr, X86::VPSUBWYrm, 0 }, { X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, 0 }, { X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, 0 }, @@ -1355,41 +1575,81 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, 0 }, { X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, 0 }, { X86::VPXORYrr, X86::VPXORYrm, 0 }, - // FIXME: add AVX 256-bit foldable instructions // FMA4 foldable patterns - { X86::VFMADDSS4rr, X86::VFMADDSS4mr, 0 }, - { X86::VFMADDSD4rr, X86::VFMADDSD4mr, 0 }, - { X86::VFMADDPS4rr, X86::VFMADDPS4mr, 0 }, - { X86::VFMADDPD4rr, X86::VFMADDPD4mr, 0 }, - { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, 0 }, - { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, 0 }, - { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, 0 }, - { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, 0 }, - { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, 0 }, - { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, 0 }, - { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, 0 }, - { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, 0 }, - { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, 0 }, - { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, 0 }, - { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, 0 }, - { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, 0 }, - { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, 0 }, - { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, 0 }, - { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, 0 }, - { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, 0 }, - { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, 0 }, - { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, 0 }, - { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, 0 }, - { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, 0 }, - { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, 0 }, - { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, 0 }, - { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, 0 }, - { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, 0 }, - { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, 0 }, - { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, 0 }, - { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, 0 }, - { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, 0 }, + { X86::VFMADDSS4rr, X86::VFMADDSS4mr, TB_ALIGN_NONE }, + { X86::VFMADDSD4rr, X86::VFMADDSD4mr, TB_ALIGN_NONE }, + { X86::VFMADDPS4rr, X86::VFMADDPS4mr, TB_ALIGN_NONE }, + { X86::VFMADDPD4rr, X86::VFMADDPD4mr, TB_ALIGN_NONE }, + { X86::VFMADDPS4rrY, X86::VFMADDPS4mrY, TB_ALIGN_NONE }, + { X86::VFMADDPD4rrY, X86::VFMADDPD4mrY, TB_ALIGN_NONE }, + { X86::VFNMADDSS4rr, X86::VFNMADDSS4mr, TB_ALIGN_NONE }, + { X86::VFNMADDSD4rr, X86::VFNMADDSD4mr, TB_ALIGN_NONE }, + { X86::VFNMADDPS4rr, X86::VFNMADDPS4mr, TB_ALIGN_NONE }, + { X86::VFNMADDPD4rr, X86::VFNMADDPD4mr, TB_ALIGN_NONE }, + { X86::VFNMADDPS4rrY, X86::VFNMADDPS4mrY, TB_ALIGN_NONE }, + { X86::VFNMADDPD4rrY, X86::VFNMADDPD4mrY, TB_ALIGN_NONE }, + { X86::VFMSUBSS4rr, X86::VFMSUBSS4mr, TB_ALIGN_NONE }, + { X86::VFMSUBSD4rr, X86::VFMSUBSD4mr, TB_ALIGN_NONE }, + { X86::VFMSUBPS4rr, X86::VFMSUBPS4mr, TB_ALIGN_NONE }, + { X86::VFMSUBPD4rr, X86::VFMSUBPD4mr, TB_ALIGN_NONE }, + { X86::VFMSUBPS4rrY, X86::VFMSUBPS4mrY, TB_ALIGN_NONE }, + { X86::VFMSUBPD4rrY, X86::VFMSUBPD4mrY, TB_ALIGN_NONE }, + { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4mr, TB_ALIGN_NONE }, + { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4mr, TB_ALIGN_NONE }, + { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4mr, TB_ALIGN_NONE }, + { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4mr, TB_ALIGN_NONE }, + { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4mrY, TB_ALIGN_NONE }, + { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4mrY, TB_ALIGN_NONE }, + { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4mr, TB_ALIGN_NONE }, + { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4mr, TB_ALIGN_NONE }, + { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4mrY, TB_ALIGN_NONE }, + { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4mrY, TB_ALIGN_NONE }, + { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4mr, TB_ALIGN_NONE }, + { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4mr, TB_ALIGN_NONE }, + { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4mrY, TB_ALIGN_NONE }, + { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4mrY, TB_ALIGN_NONE }, + + // XOP foldable instructions + { X86::VPCMOVrr, X86::VPCMOVmr, 0 }, + { X86::VPCMOVrrY, X86::VPCMOVmrY, 0 }, + { X86::VPCOMBri, X86::VPCOMBmi, 0 }, + { X86::VPCOMDri, X86::VPCOMDmi, 0 }, + { X86::VPCOMQri, X86::VPCOMQmi, 0 }, + { X86::VPCOMWri, X86::VPCOMWmi, 0 }, + { X86::VPCOMUBri, X86::VPCOMUBmi, 0 }, + { X86::VPCOMUDri, X86::VPCOMUDmi, 0 }, + { X86::VPCOMUQri, X86::VPCOMUQmi, 0 }, + { X86::VPCOMUWri, X86::VPCOMUWmi, 0 }, + { X86::VPERMIL2PDrr, X86::VPERMIL2PDmr, 0 }, + { X86::VPERMIL2PDrrY, X86::VPERMIL2PDmrY, 0 }, + { X86::VPERMIL2PSrr, X86::VPERMIL2PSmr, 0 }, + { X86::VPERMIL2PSrrY, X86::VPERMIL2PSmrY, 0 }, + { X86::VPMACSDDrr, X86::VPMACSDDrm, 0 }, + { X86::VPMACSDQHrr, X86::VPMACSDQHrm, 0 }, + { X86::VPMACSDQLrr, X86::VPMACSDQLrm, 0 }, + { X86::VPMACSSDDrr, X86::VPMACSSDDrm, 0 }, + { X86::VPMACSSDQHrr, X86::VPMACSSDQHrm, 0 }, + { X86::VPMACSSDQLrr, X86::VPMACSSDQLrm, 0 }, + { X86::VPMACSSWDrr, X86::VPMACSSWDrm, 0 }, + { X86::VPMACSSWWrr, X86::VPMACSSWWrm, 0 }, + { X86::VPMACSWDrr, X86::VPMACSWDrm, 0 }, + { X86::VPMACSWWrr, X86::VPMACSWWrm, 0 }, + { X86::VPMADCSSWDrr, X86::VPMADCSSWDrm, 0 }, + { X86::VPMADCSWDrr, X86::VPMADCSWDrm, 0 }, + { X86::VPPERMrr, X86::VPPERMmr, 0 }, + { X86::VPROTBrr, X86::VPROTBrm, 0 }, + { X86::VPROTDrr, X86::VPROTDrm, 0 }, + { X86::VPROTQrr, X86::VPROTQrm, 0 }, + { X86::VPROTWrr, X86::VPROTWrm, 0 }, + { X86::VPSHABrr, X86::VPSHABrm, 0 }, + { X86::VPSHADrr, X86::VPSHADrm, 0 }, + { X86::VPSHAQrr, X86::VPSHAQrm, 0 }, + { X86::VPSHAWrr, X86::VPSHAWrm, 0 }, + { X86::VPSHLBrr, X86::VPSHLBrm, 0 }, + { X86::VPSHLDrr, X86::VPSHLDrm, 0 }, + { X86::VPSHLQrr, X86::VPSHLQrm, 0 }, + { X86::VPSHLWrr, X86::VPSHLWrm, 0 }, // BMI/BMI2 foldable instructions { X86::ANDN32rr, X86::ANDN32rm, 0 }, @@ -1436,8 +1696,8 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VPSUBQZrr, X86::VPSUBQZrm, 0 }, { X86::VSHUFPDZrri, X86::VSHUFPDZrmi, 0 }, { X86::VSHUFPSZrri, X86::VSHUFPSZrmi, 0 }, - { X86::VALIGNQrri, X86::VALIGNQrmi, 0 }, - { X86::VALIGNDrri, X86::VALIGNDrmi, 0 }, + { X86::VALIGNQZrri, X86::VALIGNQZrmi, 0 }, + { X86::VALIGNDZrri, X86::VALIGNDZrmi, 0 }, { X86::VPMULUDQZrr, X86::VPMULUDQZrm, 0 }, { X86::VBROADCASTSSZrkz, X86::VBROADCASTSSZmkz, TB_NO_REVERSE }, { X86::VBROADCASTSDZrkz, X86::VBROADCASTSDZmkz, TB_NO_REVERSE }, @@ -1470,20 +1730,20 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::SHA1RNDS4rri, X86::SHA1RNDS4rmi, TB_ALIGN_16 }, { X86::SHA256MSG1rr, X86::SHA256MSG1rm, TB_ALIGN_16 }, { X86::SHA256MSG2rr, X86::SHA256MSG2rm, TB_ALIGN_16 }, - { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 }, + { X86::SHA256RNDS2rr, X86::SHA256RNDS2rm, TB_ALIGN_16 } }; - for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { - unsigned RegOp = OpTbl2[i].RegOp; - unsigned MemOp = OpTbl2[i].MemOp; - unsigned Flags = OpTbl2[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable2); i != e; ++i) { + unsigned RegOp = MemoryFoldTable2[i].RegOp; + unsigned MemOp = MemoryFoldTable2[i].MemOp; + unsigned Flags = MemoryFoldTable2[i].Flags; AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable, RegOp, MemOp, // Index 2, folded load Flags | TB_INDEX_2 | TB_FOLDED_LOAD); } - static const X86OpTblEntry OpTbl3[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable3[] = { // FMA foldable instructions { X86::VFMADDSSr231r, X86::VFMADDSSr231m, TB_ALIGN_NONE }, { X86::VFMADDSDr231r, X86::VFMADDSDr231m, TB_ALIGN_NONE }, @@ -1592,38 +1852,48 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VFMSUBADDPDr213rY, X86::VFMSUBADDPDr213mY, TB_ALIGN_NONE }, // FMA4 foldable patterns - { X86::VFMADDSS4rr, X86::VFMADDSS4rm, 0 }, - { X86::VFMADDSD4rr, X86::VFMADDSD4rm, 0 }, - { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_16 }, - { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_16 }, - { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_32 }, - { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_32 }, - { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, 0 }, - { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, 0 }, - { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_16 }, - { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_16 }, - { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_32 }, - { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_32 }, - { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, 0 }, - { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, 0 }, - { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_16 }, - { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_16 }, - { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_32 }, - { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_32 }, - { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, 0 }, - { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, 0 }, - { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_16 }, - { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_16 }, - { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_32 }, - { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_32 }, - { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_16 }, - { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_16 }, - { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_32 }, - { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_32 }, - { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_16 }, - { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_16 }, - { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_32 }, - { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_32 }, + { X86::VFMADDSS4rr, X86::VFMADDSS4rm, TB_ALIGN_NONE }, + { X86::VFMADDSD4rr, X86::VFMADDSD4rm, TB_ALIGN_NONE }, + { X86::VFMADDPS4rr, X86::VFMADDPS4rm, TB_ALIGN_NONE }, + { X86::VFMADDPD4rr, X86::VFMADDPD4rm, TB_ALIGN_NONE }, + { X86::VFMADDPS4rrY, X86::VFMADDPS4rmY, TB_ALIGN_NONE }, + { X86::VFMADDPD4rrY, X86::VFMADDPD4rmY, TB_ALIGN_NONE }, + { X86::VFNMADDSS4rr, X86::VFNMADDSS4rm, TB_ALIGN_NONE }, + { X86::VFNMADDSD4rr, X86::VFNMADDSD4rm, TB_ALIGN_NONE }, + { X86::VFNMADDPS4rr, X86::VFNMADDPS4rm, TB_ALIGN_NONE }, + { X86::VFNMADDPD4rr, X86::VFNMADDPD4rm, TB_ALIGN_NONE }, + { X86::VFNMADDPS4rrY, X86::VFNMADDPS4rmY, TB_ALIGN_NONE }, + { X86::VFNMADDPD4rrY, X86::VFNMADDPD4rmY, TB_ALIGN_NONE }, + { X86::VFMSUBSS4rr, X86::VFMSUBSS4rm, TB_ALIGN_NONE }, + { X86::VFMSUBSD4rr, X86::VFMSUBSD4rm, TB_ALIGN_NONE }, + { X86::VFMSUBPS4rr, X86::VFMSUBPS4rm, TB_ALIGN_NONE }, + { X86::VFMSUBPD4rr, X86::VFMSUBPD4rm, TB_ALIGN_NONE }, + { X86::VFMSUBPS4rrY, X86::VFMSUBPS4rmY, TB_ALIGN_NONE }, + { X86::VFMSUBPD4rrY, X86::VFMSUBPD4rmY, TB_ALIGN_NONE }, + { X86::VFNMSUBSS4rr, X86::VFNMSUBSS4rm, TB_ALIGN_NONE }, + { X86::VFNMSUBSD4rr, X86::VFNMSUBSD4rm, TB_ALIGN_NONE }, + { X86::VFNMSUBPS4rr, X86::VFNMSUBPS4rm, TB_ALIGN_NONE }, + { X86::VFNMSUBPD4rr, X86::VFNMSUBPD4rm, TB_ALIGN_NONE }, + { X86::VFNMSUBPS4rrY, X86::VFNMSUBPS4rmY, TB_ALIGN_NONE }, + { X86::VFNMSUBPD4rrY, X86::VFNMSUBPD4rmY, TB_ALIGN_NONE }, + { X86::VFMADDSUBPS4rr, X86::VFMADDSUBPS4rm, TB_ALIGN_NONE }, + { X86::VFMADDSUBPD4rr, X86::VFMADDSUBPD4rm, TB_ALIGN_NONE }, + { X86::VFMADDSUBPS4rrY, X86::VFMADDSUBPS4rmY, TB_ALIGN_NONE }, + { X86::VFMADDSUBPD4rrY, X86::VFMADDSUBPD4rmY, TB_ALIGN_NONE }, + { X86::VFMSUBADDPS4rr, X86::VFMSUBADDPS4rm, TB_ALIGN_NONE }, + { X86::VFMSUBADDPD4rr, X86::VFMSUBADDPD4rm, TB_ALIGN_NONE }, + { X86::VFMSUBADDPS4rrY, X86::VFMSUBADDPS4rmY, TB_ALIGN_NONE }, + { X86::VFMSUBADDPD4rrY, X86::VFMSUBADDPD4rmY, TB_ALIGN_NONE }, + + // XOP foldable instructions + { X86::VPCMOVrr, X86::VPCMOVrm, 0 }, + { X86::VPCMOVrrY, X86::VPCMOVrmY, 0 }, + { X86::VPERMIL2PDrr, X86::VPERMIL2PDrm, 0 }, + { X86::VPERMIL2PDrrY, X86::VPERMIL2PDrmY, 0 }, + { X86::VPERMIL2PSrr, X86::VPERMIL2PSrm, 0 }, + { X86::VPERMIL2PSrrY, X86::VPERMIL2PSrmY, 0 }, + { X86::VPPERMrr, X86::VPPERMrm, 0 }, + // AVX-512 VPERMI instructions with 3 source operands. { X86::VPERMI2Drr, X86::VPERMI2Drm, 0 }, { X86::VPERMI2Qrr, X86::VPERMI2Qrm, 0 }, @@ -1679,17 +1949,17 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMAXPDZ128rrkz, X86::VMAXPDZ128rmkz, 0 } }; - for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) { - unsigned RegOp = OpTbl3[i].RegOp; - unsigned MemOp = OpTbl3[i].MemOp; - unsigned Flags = OpTbl3[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable3); i != e; ++i) { + unsigned RegOp = MemoryFoldTable3[i].RegOp; + unsigned MemOp = MemoryFoldTable3[i].MemOp; + unsigned Flags = MemoryFoldTable3[i].Flags; AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable, RegOp, MemOp, // Index 3, folded load Flags | TB_INDEX_3 | TB_FOLDED_LOAD); } - static const X86OpTblEntry OpTbl4[] = { + static const X86MemoryFoldTableEntry MemoryFoldTable4[] = { // AVX-512 foldable instructions { X86::VADDPSZrrk, X86::VADDPSZrmk, 0 }, { X86::VADDPDZrrk, X86::VADDPDZrmk, 0 }, @@ -1731,10 +2001,10 @@ X86InstrInfo::X86InstrInfo(X86Subtarget &STI) { X86::VMAXPDZ128rrk, X86::VMAXPDZ128rmk, 0 } }; - for (unsigned i = 0, e = array_lengthof(OpTbl4); i != e; ++i) { - unsigned RegOp = OpTbl4[i].RegOp; - unsigned MemOp = OpTbl4[i].MemOp; - unsigned Flags = OpTbl4[i].Flags; + for (unsigned i = 0, e = array_lengthof(MemoryFoldTable4); i != e; ++i) { + unsigned RegOp = MemoryFoldTable4[i].RegOp; + unsigned MemOp = MemoryFoldTable4[i].MemOp; + unsigned Flags = MemoryFoldTable4[i].Flags; AddTableEntry(RegOp2MemOpTable4, MemOp2RegOpTable, RegOp, MemOp, // Index 4, folded load @@ -1812,7 +2082,7 @@ int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { if (MI->getOpcode() == getCallFrameSetupOpcode() || MI->getOpcode() == getCallFrameDestroyOpcode()) { unsigned StackAlign = TFI->getStackAlignment(); - int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign * + int SPAdj = (MI->getOperand(0).getImm() + StackAlign - 1) / StackAlign * StackAlign; SPAdj -= MI->getOperand(1).getImm(); @@ -1822,8 +2092,8 @@ int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { else return -SPAdj; } - - // To know whether a call adjusts the stack, we need information + + // To know whether a call adjusts the stack, we need information // that is bound to the following ADJCALLSTACKUP pseudo. // Look for the next ADJCALLSTACKUP that follows the call. if (MI->isCall()) { @@ -1846,7 +2116,7 @@ int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { // Currently handle only PUSHes we can reasonably expect to see // in call sequences switch (MI->getOpcode()) { - default: + default: return 0; case X86::PUSH32i8: case X86::PUSH32r: @@ -1857,7 +2127,7 @@ int X86InstrInfo::getSPAdjust(const MachineInstr *MI) const { } } -/// isFrameOperand - Return true and the FrameIndex if the specified +/// Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, int &FrameIndex) const { @@ -1984,8 +2254,7 @@ unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, return 0; } -/// regIsPICBase - Return true if register is PIC base (i.e.g defined by -/// X86::MOVPC32r. +/// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { // Don't waste compile time scanning use-def chains of physregs. if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) @@ -2181,8 +2450,7 @@ void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI); } -/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that -/// is not marked dead. +/// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. static bool hasLiveCondCodeDef(MachineInstr *MI) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); @@ -2194,8 +2462,7 @@ static bool hasLiveCondCodeDef(MachineInstr *MI) { return false; } -/// getTruncatedShiftCount - check whether the shift count for a machine operand -/// is non-zero. +/// Check whether the shift count for a machine operand is non-zero. inline static unsigned getTruncatedShiftCount(MachineInstr *MI, unsigned ShiftAmtOperandIdx) { // The shift count is six bits with the REX.W prefix and five bits without. @@ -2204,7 +2471,7 @@ inline static unsigned getTruncatedShiftCount(MachineInstr *MI, return Imm & ShiftCountMask; } -/// isTruncatedShiftCountForLEA - check whether the given shift count is appropriate +/// Check whether the given shift count is appropriate /// can be represented by a LEA instruction. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { // Left shift instructions can be transformed into load-effective-address @@ -2286,10 +2553,9 @@ bool X86InstrInfo::classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, return true; } -/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when -/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting -/// to a 32-bit superregister and then truncating back down to a 16-bit -/// subregister. +/// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit +/// LEA to form 3-address code by promoting to a 32-bit superregister and then +/// truncating back down to a 16-bit subregister. MachineInstr * X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, MachineFunction::iterator &MFI, @@ -2396,7 +2662,7 @@ X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, return ExtMI; } -/// convertToThreeAddress - This method must be implemented by targets that +/// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for @@ -2671,8 +2937,7 @@ X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, return NewMI; } -/// commuteInstruction - We have a few instructions that must be hacked on to -/// commute them. +/// We have a few instructions that must be hacked on to commute them. /// MachineInstr * X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { @@ -2779,6 +3044,32 @@ X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { return nullptr; } } + case X86::VPCOMBri: case X86::VPCOMUBri: + case X86::VPCOMDri: case X86::VPCOMUDri: + case X86::VPCOMQri: case X86::VPCOMUQri: + case X86::VPCOMWri: case X86::VPCOMUWri: { + // Flip comparison mode immediate (if necessary). + unsigned Imm = MI->getOperand(3).getImm() & 0x7; + switch (Imm) { + case 0x00: Imm = 0x02; break; // LT -> GT + case 0x01: Imm = 0x03; break; // LE -> GE + case 0x02: Imm = 0x00; break; // GT -> LT + case 0x03: Imm = 0x01; break; // GE -> LE + case 0x04: // EQ + case 0x05: // NE + case 0x06: // FALSE + case 0x07: // TRUE + default: + break; + } + if (NewMI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MI = MF.CloneMachineInstr(MI); + NewMI = false; + } + MI->getOperand(3).setImm(Imm); + return TargetInstrInfo::commuteInstruction(MI, NewMI); + } case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: @@ -2937,7 +3228,7 @@ static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) { } } -/// getCondFromSETOpc - return condition code of a SET opcode. +/// Return condition code of a SET opcode. static X86::CondCode getCondFromSETOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; @@ -2960,7 +3251,7 @@ static X86::CondCode getCondFromSETOpc(unsigned Opc) { } } -/// getCondFromCmovOpc - return condition code of a CMov opcode. +/// Return condition code of a CMov opcode. X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { switch (Opc) { default: return X86::COND_INVALID; @@ -3037,7 +3328,7 @@ unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { } } -/// GetOppositeBranchCondition - Return the inverse of the specified condition, +/// Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { @@ -3061,9 +3352,8 @@ X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { } } -/// getSwappedCondition - assume the flags are set by MI(a,b), return -/// the condition code if we modify the instructions such that flags are -/// set by MI(b,a). +/// Assuming the flags are set by MI(a,b), return the condition code if we +/// modify the instructions such that flags are set by MI(b,a). static X86::CondCode getSwappedCondition(X86::CondCode CC) { switch (CC) { default: return X86::COND_INVALID; @@ -3080,7 +3370,7 @@ static X86::CondCode getSwappedCondition(X86::CondCode CC) { } } -/// getSETFromCond - Return a set opcode for the given condition and +/// Return a set opcode for the given condition and /// whether it has memory operand. unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { static const uint16_t Opc[16][2] = { @@ -3106,7 +3396,7 @@ unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { return Opc[CC][HasMemoryOperand ? 1 : 0]; } -/// getCMovFromCond - Return a cmov opcode for the given condition, +/// Return a cmov opcode for the given condition, /// register size in bytes, and operand type. unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, bool HasMemoryOperand) { @@ -3166,11 +3456,11 @@ bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { return !isPredicated(MI); } -bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, - MachineBasicBlock *&TBB, - MachineBasicBlock *&FBB, - SmallVectorImpl &Cond, - bool AllowModify) const { +bool X86InstrInfo::AnalyzeBranchImpl( + MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, + SmallVectorImpl &Cond, + SmallVectorImpl &CondBranches, bool AllowModify) const { + // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); @@ -3268,6 +3558,7 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); + CondBranches.push_back(I); continue; } @@ -3305,11 +3596,90 @@ bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, // Update the MachineOperand. Cond[0].setImm(BranchCode); + CondBranches.push_back(I); } return false; } +bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl &Cond, + bool AllowModify) const { + SmallVector CondBranches; + return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); +} + +bool X86InstrInfo::AnalyzeBranchPredicate(MachineBasicBlock &MBB, + MachineBranchPredicate &MBP, + bool AllowModify) const { + using namespace std::placeholders; + + SmallVector Cond; + SmallVector CondBranches; + if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, + AllowModify)) + return true; + + if (Cond.size() != 1) + return true; + + assert(MBP.TrueDest && "expected!"); + + if (!MBP.FalseDest) + MBP.FalseDest = MBB.getNextNode(); + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + + MachineInstr *ConditionDef = nullptr; + bool SingleUseCondition = true; + + for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { + if (I->modifiesRegister(X86::EFLAGS, TRI)) { + ConditionDef = &*I; + break; + } + + if (I->readsRegister(X86::EFLAGS, TRI)) + SingleUseCondition = false; + } + + if (!ConditionDef) + return true; + + if (SingleUseCondition) { + for (auto *Succ : MBB.successors()) + if (Succ->isLiveIn(X86::EFLAGS)) + SingleUseCondition = false; + } + + MBP.ConditionDef = ConditionDef; + MBP.SingleUseCondition = SingleUseCondition; + + // Currently we only recognize the simple pattern: + // + // test %reg, %reg + // je %label + // + const unsigned TestOpcode = + Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; + + if (ConditionDef->getOpcode() == TestOpcode && + ConditionDef->getNumOperands() == 3 && + ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && + (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { + MBP.LHS = ConditionDef->getOperand(0); + MBP.RHS = MachineOperand::CreateImm(0); + MBP.Predicate = Cond[0].getImm() == X86::COND_NE + ? MachineBranchPredicate::PRED_NE + : MachineBranchPredicate::PRED_EQ; + return false; + } + + return true; +} + unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; @@ -3332,8 +3702,7 @@ unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { unsigned X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, - MachineBasicBlock *FBB, - const SmallVectorImpl &Cond, + MachineBasicBlock *FBB, ArrayRef Cond, DebugLoc DL) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); @@ -3381,7 +3750,7 @@ X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, bool X86InstrInfo:: canInsertSelect(const MachineBasicBlock &MBB, - const SmallVectorImpl &Cond, + ArrayRef Cond, unsigned TrueReg, unsigned FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have cmov instructions. @@ -3418,8 +3787,7 @@ canInsertSelect(const MachineBasicBlock &MBB, void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, DebugLoc DL, - unsigned DstReg, - const SmallVectorImpl &Cond, + unsigned DstReg, ArrayRef Cond, unsigned TrueReg, unsigned FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); assert(Cond.size() == 1 && "Invalid Cond array"); @@ -3429,7 +3797,7 @@ void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); } -/// isHReg - Test if the given register is a physical h register. +/// Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } @@ -3677,6 +4045,36 @@ static unsigned getLoadStoreRegOpcode(unsigned Reg, } } +bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr *MemOp, unsigned &BaseReg, + unsigned &Offset, + const TargetRegisterInfo *TRI) const { + const MCInstrDesc &Desc = MemOp->getDesc(); + int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags, MemOp->getOpcode()); + if (MemRefBegin < 0) + return false; + + MemRefBegin += X86II::getOperandBias(Desc); + + BaseReg = MemOp->getOperand(MemRefBegin + X86::AddrBaseReg).getReg(); + if (MemOp->getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) + return false; + + if (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != + X86::NoRegister) + return false; + + const MachineOperand &DispMO = MemOp->getOperand(MemRefBegin + X86::AddrDisp); + + // Displacement can be symbolic + if (!DispMO.isImm()) + return false; + + Offset = DispMO.getImm(); + + return (MemOp->getOperand(MemRefBegin + X86::AddrIndexReg).getReg() == + X86::NoRegister); +} + static unsigned getStoreRegOpcode(unsigned SrcReg, const TargetRegisterClass *RC, bool isStackAligned, @@ -3836,7 +4234,7 @@ analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2, return false; } -/// isRedundantFlagInstr - check whether the first instruction, whose only +/// Check whether the first instruction, whose only /// purpose is to update flags, can be made redundant. /// CMPrr can be made redundant by SUBrr if the operands are the same. /// This function can be extended later on. @@ -3879,7 +4277,7 @@ inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg, return false; } -/// isDefConvertible - check whether the definition can be converted +/// Check whether the definition can be converted /// to remove a comparison against zero. inline static bool isDefConvertible(MachineInstr *MI) { switch (MI->getOpcode()) { @@ -3965,8 +4363,7 @@ inline static bool isDefConvertible(MachineInstr *MI) { } } -/// isUseDefConvertible - check whether the use can be converted -/// to remove a comparison against zero. +/// Check whether the use can be converted to remove a comparison against zero. static X86::CondCode isUseDefConvertible(MachineInstr *MI) { switch (MI->getOpcode()) { default: return X86::COND_INVALID; @@ -3985,7 +4382,7 @@ static X86::CondCode isUseDefConvertible(MachineInstr *MI) { } } -/// optimizeCompareInstr - Check if there exists an earlier instruction that +/// Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. bool X86InstrInfo:: @@ -4276,7 +4673,7 @@ optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2, return true; } -/// optimizeLoadInstr - Try to remove the load by folding it to a register +/// Try to remove the load by folding it to a register /// operand at the use. We fold the load instructions if load defines a virtual /// register, the virtual register is used once in the same BB, and the /// instructions in-between do not load or store, and have no side effects. @@ -4296,7 +4693,7 @@ MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI, DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; - if (!DefMI->isSafeToMove(this, nullptr, SawStore)) + if (!DefMI->isSafeToMove(nullptr, SawStore)) return nullptr; // Collect information about virtual register operands of MI. @@ -4320,9 +4717,7 @@ MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI, return nullptr; // Check whether we can fold the def into SrcOperandId. - SmallVector Ops; - Ops.push_back(SrcOperandId); - MachineInstr *FoldMI = foldMemoryOperand(MI, Ops, DefMI); + MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandId, DefMI); if (FoldMI) { FoldAsLoadDefReg = 0; return FoldMI; @@ -4331,9 +4726,9 @@ MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr *MI, return nullptr; } -/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr -/// instruction with two undef reads of the register being defined. This is -/// used for mapping: +/// Expand a single-def pseudo instruction to a two-addr +/// instruction with two undef reads of the register being defined. +/// This is used for mapping: /// %xmm4 = V_SET0 /// to: /// %xmm4 = PXORrr %xmm4, %xmm4 @@ -4416,8 +4811,17 @@ bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { return false; } +static void addOperands(MachineInstrBuilder &MIB, ArrayRef MOs) { + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); +} + static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, - const SmallVectorImpl &MOs, + ArrayRef MOs, + MachineBasicBlock::iterator InsertPt, MachineInstr *MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. @@ -4425,11 +4829,7 @@ static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI->getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); - unsigned NumAddrOps = MOs.size(); - for (unsigned i = 0; i != NumAddrOps; ++i) - MIB.addOperand(MOs[i]); - if (NumAddrOps < 4) // FrameIndex only - addOffset(MIB, 0); + addOperands(MIB, MOs); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI->getDesc().getNumOperands()-2; @@ -4441,12 +4841,16 @@ static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, MachineOperand &MO = MI->getOperand(i); MIB.addOperand(MO); } + + MachineBasicBlock *MBB = InsertPt->getParent(); + MBB->insert(InsertPt, NewMI); + return MIB; } -static MachineInstr *FuseInst(MachineFunction &MF, - unsigned Opcode, unsigned OpNo, - const SmallVectorImpl &MOs, +static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, + unsigned OpNo, ArrayRef MOs, + MachineBasicBlock::iterator InsertPt, MachineInstr *MI, const TargetInstrInfo &TII) { // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), @@ -4457,38 +4861,32 @@ static MachineInstr *FuseInst(MachineFunction &MF, MachineOperand &MO = MI->getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); - unsigned NumAddrOps = MOs.size(); - for (unsigned i = 0; i != NumAddrOps; ++i) - MIB.addOperand(MOs[i]); - if (NumAddrOps < 4) // FrameIndex only - addOffset(MIB, 0); + addOperands(MIB, MOs); } else { MIB.addOperand(MO); } } + + MachineBasicBlock *MBB = InsertPt->getParent(); + MBB->insert(InsertPt, NewMI); + return MIB; } static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, - const SmallVectorImpl &MOs, + ArrayRef MOs, + MachineBasicBlock::iterator InsertPt, MachineInstr *MI) { - MachineFunction &MF = *MI->getParent()->getParent(); - MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); - - unsigned NumAddrOps = MOs.size(); - for (unsigned i = 0; i != NumAddrOps; ++i) - MIB.addOperand(MOs[i]); - if (NumAddrOps < 4) // FrameIndex only - addOffset(MIB, 0); + MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, + MI->getDebugLoc(), TII.get(Opcode)); + addOperands(MIB, MOs); return MIB.addImm(0); } -MachineInstr* -X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, - MachineInstr *MI, unsigned OpNum, - const SmallVectorImpl &MOs, - unsigned Size, unsigned Align, - bool AllowCommute) const { +MachineInstr *X86InstrInfo::foldMemoryOperandImpl( + MachineFunction &MF, MachineInstr *MI, unsigned OpNum, + ArrayRef MOs, MachineBasicBlock::iterator InsertPt, + unsigned Size, unsigned Align, bool AllowCommute) const { const DenseMap > *OpcodeTablePtr = nullptr; bool isCallRegIndirect = Subtarget.callRegIndirect(); @@ -4522,7 +4920,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, isTwoAddrFold = true; } else if (OpNum == 0) { if (MI->getOpcode() == X86::MOV32r0) { - NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); + NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); if (NewMI) return NewMI; } @@ -4567,9 +4965,9 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, } if (isTwoAddrFold) - NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); + NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); else - NewMI = FuseInst(MF, Opcode, OpNum, MOs, MI, *this); + NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit @@ -4621,8 +5019,9 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Attempt to fold with the commuted version of the instruction. unsigned CommuteOp = (CommuteOpIdx1 == OriginalOpIdx ? CommuteOpIdx2 : CommuteOpIdx1); - NewMI = foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, Size, Align, - /*AllowCommute=*/false); + NewMI = + foldMemoryOperandImpl(MF, MI, CommuteOp, MOs, InsertPt, Size, Align, + /*AllowCommute=*/false); if (NewMI) return NewMI; @@ -4650,7 +5049,7 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, return nullptr; } -/// hasPartialRegUpdate - Return true for all instructions that only update +/// Return true for all instructions that only update /// the first 32 or 64-bits of the destination register and leave the rest /// unmodified. This can be used to avoid folding loads if the instructions /// only update part of the destination register, and the non-updated part is @@ -4712,7 +5111,7 @@ static bool hasPartialRegUpdate(unsigned Opcode) { return false; } -/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle +/// Inform the ExeDepsFix pass how many idle /// instructions we would like before a partial register update. unsigned X86InstrInfo:: getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, @@ -4851,17 +5250,15 @@ breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, MI->addRegisterKilled(Reg, TRI, true); } -MachineInstr* -X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, - const SmallVectorImpl &Ops, - int FrameIndex) const { +MachineInstr *X86InstrInfo::foldMemoryOperandImpl( + MachineFunction &MF, MachineInstr *MI, ArrayRef Ops, + MachineBasicBlock::iterator InsertPt, int FrameIndex) const { // Check switch flag if (NoFusing) return nullptr; // Unless optimizing for size, don't fold to avoid partial // register update stalls - if (!MF.getFunction()->getAttributes(). - hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && + if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) return nullptr; @@ -4893,42 +5290,76 @@ X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, } else if (Ops.size() != 1) return nullptr; - SmallVector MOs; - MOs.push_back(MachineOperand::CreateFI(FrameIndex)); - return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, + return foldMemoryOperandImpl(MF, MI, Ops[0], + MachineOperand::CreateFI(FrameIndex), InsertPt, Size, Alignment, /*AllowCommute=*/true); } -static bool isPartialRegisterLoad(const MachineInstr &LoadMI, - const MachineFunction &MF) { +/// Check if \p LoadMI is a partial register load that we can't fold into \p MI +/// because the latter uses contents that wouldn't be defined in the folded +/// version. For instance, this transformation isn't legal: +/// movss (%rdi), %xmm0 +/// addps %xmm0, %xmm0 +/// -> +/// addps (%rdi), %xmm0 +/// +/// But this one is: +/// movss (%rdi), %xmm0 +/// addss %xmm0, %xmm0 +/// -> +/// addss (%rdi), %xmm0 +/// +static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, + const MachineInstr &UserMI, + const MachineFunction &MF) { unsigned Opc = LoadMI.getOpcode(); + unsigned UserOpc = UserMI.getOpcode(); unsigned RegSize = MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg())->getSize(); - if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) + if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm) && RegSize > 4) { // These instructions only load 32 bits, we can't fold them if the - // destination register is wider than 32 bits (4 bytes). - return true; + // destination register is wider than 32 bits (4 bytes), and its user + // instruction isn't scalar (SS). + switch (UserOpc) { + case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: + case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: + case X86::MULSSrr_Int: case X86::VMULSSrr_Int: + case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: + return false; + default: + return true; + } + } - if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) + if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm) && RegSize > 8) { // These instructions only load 64 bits, we can't fold them if the - // destination register is wider than 64 bits (8 bytes). - return true; + // destination register is wider than 64 bits (8 bytes), and its user + // instruction isn't scalar (SD). + switch (UserOpc) { + case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: + case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: + case X86::MULSDrr_Int: case X86::VMULSDrr_Int: + case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: + return false; + default: + return true; + } + } return false; } -MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, - MachineInstr *MI, - const SmallVectorImpl &Ops, - MachineInstr *LoadMI) const { +MachineInstr *X86InstrInfo::foldMemoryOperandImpl( + MachineFunction &MF, MachineInstr *MI, ArrayRef Ops, + MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { // If loading from a FrameIndex, fold directly from the FrameIndex. unsigned NumOps = LoadMI->getDesc().getNumOperands(); int FrameIndex; if (isLoadFromStackSlot(LoadMI, FrameIndex)) { - if (isPartialRegisterLoad(*LoadMI, MF)) + if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) return nullptr; - return foldMemoryOperandImpl(MF, MI, Ops, FrameIndex); + return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex); } // Check switch flag @@ -4936,8 +5367,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, // Unless optimizing for size, don't fold to avoid partial // register update stalls - if (!MF.getFunction()->getAttributes(). - hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && + if (!MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) && hasPartialRegUpdate(MI->getOpcode())) return nullptr; @@ -5040,22 +5470,21 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, break; } default: { - if (isPartialRegisterLoad(*LoadMI, MF)) + if (isNonFoldablePartialRegisterLoad(*LoadMI, *MI, MF)) return nullptr; // Folding a normal load. Just copy the load's address operands. - for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) - MOs.push_back(LoadMI->getOperand(i)); + MOs.append(LoadMI->operands_begin() + NumOps - X86::AddrNumOperands, + LoadMI->operands_begin() + NumOps); break; } } - return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, + return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/0, Alignment, /*AllowCommute=*/true); } - bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, - const SmallVectorImpl &Ops) const { + ArrayRef Ops) const { // Check switch flag if (NoFusing) return 0; @@ -5308,7 +5737,7 @@ X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, } if (Load) BeforeOps.push_back(SDValue(Load, 0)); - std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); + BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); NewNodes.push_back(NewNode); @@ -5690,7 +6119,7 @@ isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } -/// getGlobalBaseReg - Return a virtual register initialized with the +/// Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// @@ -5723,6 +6152,7 @@ static const uint16_t ReplaceableInstrs[][3] = { { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, + { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, @@ -5738,6 +6168,7 @@ static const uint16_t ReplaceableInstrs[][3] = { { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, + { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, @@ -5823,7 +6254,7 @@ void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const { MI->setDesc(get(table[Domain-1])); } -/// getNoopForMachoTarget - Return the noop instruction to use for a noop. +/// Return the noop instruction to use for a noop. void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { NopInst.setOpcode(X86::NOOP); } @@ -5835,7 +6266,7 @@ void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { void X86InstrInfo::getUnconditionalBranch( MCInst &Branch, const MCSymbolRefExpr *BranchTarget) const { Branch.setOpcode(X86::JMP_1); - Branch.addOperand(MCOperand::CreateExpr(BranchTarget)); + Branch.addOperand(MCOperand::createExpr(BranchTarget)); } // This code must remain in sync with getJumpInstrTableEntryBound in this class! @@ -5932,15 +6363,229 @@ bool X86InstrInfo::isHighLatencyDef(int opc) const { } bool X86InstrInfo:: -hasHighOperandLatency(const InstrItineraryData *ItinData, +hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr *DefMI, unsigned DefIdx, const MachineInstr *UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI->getOpcode()); } +static bool hasVirtualRegDefsInBasicBlock(const MachineInstr &Inst, + const MachineBasicBlock *MBB) { + assert(Inst.getNumOperands() == 3 && "Reassociation needs binary operators"); + const MachineOperand &Op1 = Inst.getOperand(1); + const MachineOperand &Op2 = Inst.getOperand(2); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + + // We need virtual register definitions. + MachineInstr *MI1 = nullptr; + MachineInstr *MI2 = nullptr; + if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg())) + MI1 = MRI.getUniqueVRegDef(Op1.getReg()); + if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg())) + MI2 = MRI.getUniqueVRegDef(Op2.getReg()); + + // And they need to be in the trace (otherwise, they won't have a depth). + if (MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB) + return true; + + return false; +} + +static bool hasReassocSibling(const MachineInstr &Inst, bool &Commuted) { + const MachineBasicBlock *MBB = Inst.getParent(); + const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); + MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); + unsigned AssocOpcode = Inst.getOpcode(); + + // If only one operand has the same opcode and it's the second source operand, + // the operands must be commuted. + Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; + if (Commuted) + std::swap(MI1, MI2); + + // 1. The previous instruction must be the same type as Inst. + // 2. The previous instruction must have virtual register definitions for its + // operands in the same basic block as Inst. + // 3. The previous instruction's result must only be used by Inst. + if (MI1->getOpcode() == AssocOpcode && + hasVirtualRegDefsInBasicBlock(*MI1, MBB) && + MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg())) + return true; + + return false; +} + +/// Return true if the input instruction is part of a chain of dependent ops +/// that are suitable for reassociation, otherwise return false. +/// If the instruction's operands must be commuted to have a previous +/// instruction of the same type define the first source operand, Commuted will +/// be set to true. +static bool isReassocCandidate(const MachineInstr &Inst, unsigned AssocOpcode, + bool &Commuted) { + // 1. The instruction must have the correct type. + // 2. The instruction must have virtual register definitions for its + // operands in the same basic block. + // 3. The instruction must have a reassociatable sibling. + if (Inst.getOpcode() == AssocOpcode && + hasVirtualRegDefsInBasicBlock(Inst, Inst.getParent()) && + hasReassocSibling(Inst, Commuted)) + return true; + + return false; +} + +// FIXME: This has the potential to be expensive (compile time) while not +// improving the code at all. Some ways to limit the overhead: +// 1. Track successful transforms; bail out if hit rate gets too low. +// 2. Only enable at -O3 or some other non-default optimization level. +// 3. Pre-screen pattern candidates here: if an operand of the previous +// instruction is known to not increase the critical path, then don't match +// that pattern. +bool X86InstrInfo::getMachineCombinerPatterns(MachineInstr &Root, + SmallVectorImpl &Patterns) const { + if (!Root.getParent()->getParent()->getTarget().Options.UnsafeFPMath) + return false; + + // TODO: There is nothing x86-specific here except the instruction type. + // This logic could be hoisted into the machine combiner pass itself. + + // Look for this reassociation pattern: + // B = A op X (Prev) + // C = B op Y (Root) + + // TODO: There are many more associative instruction types to match: + // 1. Other forms of scalar FP add (non-AVX) + // 2. Other data types (double, integer, vectors) + // 3. Other math / logic operations (mul, and, or) + unsigned AssocOpcode = X86::VADDSSrr; + + bool Commute = false; + if (isReassocCandidate(Root, AssocOpcode, Commute)) { + // We found a sequence of instructions that may be suitable for a + // reassociation of operands to increase ILP. Specify each commutation + // possibility for the Prev instruction in the sequence and let the + // machine combiner decide if changing the operands is worthwhile. + if (Commute) { + Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_YB); + Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_YB); + } else { + Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_BY); + Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_BY); + } + return true; + } + + return false; +} + +/// Attempt the following reassociation to reduce critical path length: +/// B = A op X (Prev) +/// C = B op Y (Root) +/// ===> +/// B = X op Y +/// C = A op B +static void reassociateOps(MachineInstr &Root, MachineInstr &Prev, + MachineCombinerPattern::MC_PATTERN Pattern, + SmallVectorImpl &InsInstrs, + SmallVectorImpl &DelInstrs, + DenseMap &InstrIdxForVirtReg) { + MachineFunction *MF = Root.getParent()->getParent(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); + + // This array encodes the operand index for each parameter because the + // operands may be commuted. Each row corresponds to a pattern value, + // and each column specifies the index of A, B, X, Y. + unsigned OpIdx[4][4] = { + { 1, 1, 2, 2 }, + { 1, 2, 2, 1 }, + { 2, 1, 1, 2 }, + { 2, 2, 1, 1 } + }; + + MachineOperand &OpA = Prev.getOperand(OpIdx[Pattern][0]); + MachineOperand &OpB = Root.getOperand(OpIdx[Pattern][1]); + MachineOperand &OpX = Prev.getOperand(OpIdx[Pattern][2]); + MachineOperand &OpY = Root.getOperand(OpIdx[Pattern][3]); + MachineOperand &OpC = Root.getOperand(0); + + unsigned RegA = OpA.getReg(); + unsigned RegB = OpB.getReg(); + unsigned RegX = OpX.getReg(); + unsigned RegY = OpY.getReg(); + unsigned RegC = OpC.getReg(); + + if (TargetRegisterInfo::isVirtualRegister(RegA)) + MRI.constrainRegClass(RegA, RC); + if (TargetRegisterInfo::isVirtualRegister(RegB)) + MRI.constrainRegClass(RegB, RC); + if (TargetRegisterInfo::isVirtualRegister(RegX)) + MRI.constrainRegClass(RegX, RC); + if (TargetRegisterInfo::isVirtualRegister(RegY)) + MRI.constrainRegClass(RegY, RC); + if (TargetRegisterInfo::isVirtualRegister(RegC)) + MRI.constrainRegClass(RegC, RC); + + // Create a new virtual register for the result of (X op Y) instead of + // recycling RegB because the MachineCombiner's computation of the critical + // path requires a new register definition rather than an existing one. + unsigned NewVR = MRI.createVirtualRegister(RC); + InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); + + unsigned Opcode = Root.getOpcode(); + bool KillA = OpA.isKill(); + bool KillX = OpX.isKill(); + bool KillY = OpY.isKill(); + + // Create new instructions for insertion. + MachineInstrBuilder MIB1 = + BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) + .addReg(RegX, getKillRegState(KillX)) + .addReg(RegY, getKillRegState(KillY)); + InsInstrs.push_back(MIB1); + + MachineInstrBuilder MIB2 = + BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) + .addReg(RegA, getKillRegState(KillA)) + .addReg(NewVR, getKillRegState(true)); + InsInstrs.push_back(MIB2); + + // Record old instructions for deletion. + DelInstrs.push_back(&Prev); + DelInstrs.push_back(&Root); +} + +void X86InstrInfo::genAlternativeCodeSequence( + MachineInstr &Root, + MachineCombinerPattern::MC_PATTERN Pattern, + SmallVectorImpl &InsInstrs, + SmallVectorImpl &DelInstrs, + DenseMap &InstIdxForVirtReg) const { + MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo(); + + // Select the previous instruction in the sequence based on the input pattern. + MachineInstr *Prev = nullptr; + switch (Pattern) { + case MachineCombinerPattern::MC_REASSOC_AX_BY: + case MachineCombinerPattern::MC_REASSOC_XA_BY: + Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); + break; + case MachineCombinerPattern::MC_REASSOC_AX_YB: + case MachineCombinerPattern::MC_REASSOC_XA_YB: + Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); + } + assert(Prev && "Unknown pattern for machine combiner"); + + reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); + return; +} + namespace { - /// CGBR - Create Global Base Reg pass. This initializes the PIC + /// Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; @@ -6005,7 +6650,7 @@ namespace { MachineFunctionPass::getAnalysisUsage(AU); } }; -} +} // namespace char CGBR::ID = 0; FunctionPass* @@ -6117,7 +6762,7 @@ namespace { MachineFunctionPass::getAnalysisUsage(AU); } }; -} +} // namespace char LDTLSCleanup::ID = 0; FunctionPass*