X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FExprTypeConvert.cpp;h=0f80c2f8bb223fd34a769ca8a2376c7d194abc0c;hb=2a010afefc507cfcd6734435e6a404639a7f81d9;hp=3b0f3d2707443d2eb08195ea61f88b4d6c7ae79e;hpb=c0b90e7dd575ba59035334397722d677231a8f13;p=oota-llvm.git diff --git a/lib/Transforms/ExprTypeConvert.cpp b/lib/Transforms/ExprTypeConvert.cpp index 3b0f3d27074..0f80c2f8bb2 100644 --- a/lib/Transforms/ExprTypeConvert.cpp +++ b/lib/Transforms/ExprTypeConvert.cpp @@ -1,134 +1,224 @@ -//===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type ---------------=// +//===- ExprTypeConvert.cpp - Code to change an LLVM Expr Type -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file implements the part of level raising that checks to see if it is // possible to coerce an entire expression tree into a different type. If -// convertable, other routines from this file will do the conversion. +// convertible, other routines from this file will do the conversion. // //===----------------------------------------------------------------------===// #include "TransformInternals.h" -#include "llvm/Method.h" -#include "llvm/Support/STLExtras.h" -#include "llvm/iOther.h" -#include "llvm/iMemory.h" -#include "llvm/ConstPoolVals.h" -#include "llvm/Optimizations/ConstantHandling.h" -#include "llvm/Optimizations/DCE.h" -#include +#include "llvm/Constants.h" +#include "llvm/Instructions.h" +#include "llvm/Analysis/Expressions.h" +#include "Support/STLExtras.h" +#include "Support/Debug.h" #include +using namespace llvm; -#include "llvm/Assembly/Writer.h" +static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty, + ValueTypeCache &ConvertedTypes, + const TargetData &TD); -//#define DEBUG_EXPR_CONVERT 1 +static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, + ValueMapCache &VMC, const TargetData &TD); + +// Peephole Malloc instructions: we take a look at the use chain of the +// malloc instruction, and try to find out if the following conditions hold: +// 1. The malloc is of the form: 'malloc [sbyte], uint ' +// 2. The only users of the malloc are cast & add instructions +// 3. Of the cast instructions, there is only one destination pointer type +// [RTy] where the size of the pointed to object is equal to the number +// of bytes allocated. +// +// If these conditions hold, we convert the malloc to allocate an [RTy] +// element. TODO: This comment is out of date WRT arrays +// +static bool MallocConvertibleToType(MallocInst *MI, const Type *Ty, + ValueTypeCache &CTMap, + const TargetData &TD) { + if (!isa(Ty)) return false; // Malloc always returns pointers + + // Deal with the type to allocate, not the pointer type... + Ty = cast(Ty)->getElementType(); + if (!Ty->isSized()) return false; // Can only alloc something with a size + + // Analyze the number of bytes allocated... + ExprType Expr = ClassifyExpr(MI->getArraySize()); + + // Get information about the base datatype being allocated, before & after + int ReqTypeSize = TD.getTypeSize(Ty); + if (ReqTypeSize == 0) return false; + unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType()); + + // Must have a scale or offset to analyze it... + if (!Expr.Offset && !Expr.Scale && OldTypeSize == 1) return false; + + // Get the offset and scale of the allocation... + int64_t OffsetVal = Expr.Offset ? getConstantValue(Expr.Offset) : 0; + int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) :(Expr.Var != 0); + + // The old type might not be of unit size, take old size into consideration + // here... + int64_t Offset = OffsetVal * OldTypeSize; + int64_t Scale = ScaleVal * OldTypeSize; + + // In order to be successful, both the scale and the offset must be a multiple + // of the requested data type's size. + // + if (Offset/ReqTypeSize*ReqTypeSize != Offset || + Scale/ReqTypeSize*ReqTypeSize != Scale) + return false; // Nope. -static inline const Type *getTy(const Value *V, ValueTypeCache &CT) { - ValueTypeCache::iterator I = CT.find(V); - if (I == CT.end()) return V->getType(); - return I->second; + return true; } -GetElementPtrInst *getAddToGEPResult(const Type *Ty, const Value *V) { - const StructType *StructTy = getPointedToStruct(Ty); - if (StructTy == 0) return 0; // Must be a pointer to a struct... - - // Must be a constant unsigned offset value... get it now... - if (!isa(V)) return 0; - unsigned Offset = cast(V)->getValue(); - - // Check to make sure the offset is somewhat legitiment w.r.t the struct - // type... - if (Offset >= TD.getTypeSize(StructTy)) return 0; - - // If we get this far, we have succeeded... TODO: We need to handle array - // indexing as well... - const StructLayout *SL = TD.getStructLayout(StructTy); - vector Offsets; - unsigned ActualOffset = Offset; - const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets); - - if (ActualOffset != Offset) return 0; // TODO: Handle Array indexing... - - // Success! Return the GEP instruction, with a dummy first argument. - ConstPoolVal *Dummy = ConstPoolVal::getNullConstant(Ty); - return new GetElementPtrInst(Dummy, Offsets); -} +static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty, + const std::string &Name, + ValueMapCache &VMC, + const TargetData &TD){ + BasicBlock *BB = MI->getParent(); + BasicBlock::iterator It = BB->end(); + // Analyze the number of bytes allocated... + ExprType Expr = ClassifyExpr(MI->getArraySize()); + const PointerType *AllocTy = cast(Ty); + const Type *ElType = AllocTy->getElementType(); -static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, - ValueTypeCache &ConvertedTypes); + unsigned DataSize = TD.getTypeSize(ElType); + unsigned OldTypeSize = TD.getTypeSize(MI->getType()->getElementType()); -static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, - ValueMapCache &VMC); + // Get the offset and scale coefficients that we are allocating... + int64_t OffsetVal = (Expr.Offset ? getConstantValue(Expr.Offset) : 0); + int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var !=0); + + // The old type might not be of unit size, take old size into consideration + // here... + unsigned Offset = (uint64_t)OffsetVal * OldTypeSize / DataSize; + unsigned Scale = (uint64_t)ScaleVal * OldTypeSize / DataSize; + + // Locate the malloc instruction, because we may be inserting instructions + It = MI; + + // If we have a scale, apply it first... + if (Expr.Var) { + // Expr.Var is not necessarily unsigned right now, insert a cast now. + if (Expr.Var->getType() != Type::UIntTy) + Expr.Var = new CastInst(Expr.Var, Type::UIntTy, + Expr.Var->getName()+"-uint", It); + + if (Scale != 1) + Expr.Var = BinaryOperator::create(Instruction::Mul, Expr.Var, + ConstantUInt::get(Type::UIntTy, Scale), + Expr.Var->getName()+"-scl", It); + } else { + // If we are not scaling anything, just make the offset be the "var"... + Expr.Var = ConstantUInt::get(Type::UIntTy, Offset); + Offset = 0; Scale = 1; + } + + // If we have an offset now, add it in... + if (Offset != 0) { + assert(Expr.Var && "Var must be nonnull by now!"); + Expr.Var = BinaryOperator::create(Instruction::Add, Expr.Var, + ConstantUInt::get(Type::UIntTy, Offset), + Expr.Var->getName()+"-off", It); + } -// ExpressionConvertableToType - Return true if it is possible -bool ExpressionConvertableToType(Value *V, const Type *Ty, - ValueTypeCache &CTMap) { + assert(AllocTy == Ty); + return new MallocInst(AllocTy->getElementType(), Expr.Var, Name); +} + + +// ExpressionConvertibleToType - Return true if it is possible +bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty, + ValueTypeCache &CTMap, const TargetData &TD) { // Expression type must be holdable in a register. - if (!isFirstClassType(Ty)) + if (!Ty->isFirstClassType()) return false; ValueTypeCache::iterator CTMI = CTMap.find(V); if (CTMI != CTMap.end()) return CTMI->second == Ty; - CTMap[V] = Ty; - // Expressions are only convertable if all of the users of the expression can - // have this value converted. This makes use of the map to avoid infinite - // recursion. + // If it's a constant... all constants can be converted to a different + // type. // - for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) - if (!OperandConvertableToType(*I, V, Ty, CTMap)) - return false; + if (Constant *CPV = dyn_cast(V)) + return true; + + CTMap[V] = Ty; + if (V->getType() == Ty) return true; // Expression already correct type! Instruction *I = dyn_cast(V); - if (I == 0) { - // It's not an instruction, check to see if it's a constant... all constants - // can be converted to an equivalent value (except pointers, they can't be - // const prop'd in general). We just ask the constant propogator to see if - // it can convert the value... - // - if (ConstPoolVal *CPV = dyn_cast(V)) - if (opt::ConstantFoldCastInstruction(CPV, Ty)) - return true; // Don't worry about deallocating, it's a constant. - - return false; // Otherwise, we can't convert! - } - if (I->getType() == Ty) return false; // Expression already correct type! + if (I == 0) return false; // Otherwise, we can't convert! switch (I->getOpcode()) { case Instruction::Cast: // We can convert the expr if the cast destination type is losslessly - // convertable to the requested type. - return losslessCastableTypes(Ty, I->getType()); + // convertible to the requested type. + if (!Ty->isLosslesslyConvertibleTo(I->getType())) return false; + + // We also do not allow conversion of a cast that casts from a ptr to array + // of X to a *X. For example: cast [4 x %List *] * %val to %List * * + // + if (const PointerType *SPT = + dyn_cast(I->getOperand(0)->getType())) + if (const PointerType *DPT = dyn_cast(I->getType())) + if (const ArrayType *AT = dyn_cast(SPT->getElementType())) + if (AT->getElementType() == DPT->getElementType()) + return false; + break; case Instruction::Add: case Instruction::Sub: - return ExpressionConvertableToType(I->getOperand(0), Ty, CTMap) && - ExpressionConvertableToType(I->getOperand(1), Ty, CTMap); + if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false; + if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD) || + !ExpressionConvertibleToType(I->getOperand(1), Ty, CTMap, TD)) + return false; + break; case Instruction::Shr: + if (!Ty->isInteger()) return false; if (Ty->isSigned() != V->getType()->isSigned()) return false; // FALL THROUGH case Instruction::Shl: - return ExpressionConvertableToType(I->getOperand(0), Ty, CTMap); + if (!Ty->isInteger()) return false; + if (!ExpressionConvertibleToType(I->getOperand(0), Ty, CTMap, TD)) + return false; + break; case Instruction::Load: { LoadInst *LI = cast(I); - if (LI->hasIndices()) return false; - - return ExpressionConvertableToType(LI->getPtrOperand(), - PointerType::get(Ty), CTMap); + if (!ExpressionConvertibleToType(LI->getPointerOperand(), + PointerType::get(Ty), CTMap, TD)) + return false; + break; } - case Instruction::PHINode: { + case Instruction::PHI: { PHINode *PN = cast(I); + // Be conservative if we find a giant PHI node. + if (PN->getNumIncomingValues() > 32) return false; + for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) - if (!ExpressionConvertableToType(PN->getIncomingValue(i), Ty, CTMap)) + if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD)) return false; - return true; + break; } + case Instruction::Malloc: + if (!MallocConvertibleToType(cast(I), Ty, CTMap, TD)) + return false; + break; + case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have + // GetElementPtr's are directly convertible to a pointer type if they have // a number of zeros at the end. Because removing these values does not // change the logical offset of the GEP, it is okay and fair to remove them. // This can change this: @@ -139,69 +229,148 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty, // GetElementPtrInst *GEP = cast(I); const PointerType *PTy = dyn_cast(Ty); - if (!PTy) return false; + if (!PTy) return false; // GEP must always return a pointer... + const Type *PVTy = PTy->getElementType(); // Check to see if there are zero elements that we can remove from the // index array. If there are, check to see if removing them causes us to // get to the right type... // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPtrOperand()->getType(); + std::vector Indices(GEP->idx_begin(), GEP->idx_end()); + const Type *BaseType = GEP->getPointerOperand()->getType(); + const Type *ElTy = 0; - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { + while (!Indices.empty() && + Indices.back() == Constant::getNullValue(Indices.back()->getType())){ Indices.pop_back(); - const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, - true); - if (ElTy == PTy->getValueType()) - return true; // Found a match!! + ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, true); + if (ElTy == PVTy) + break; // Found a match!! + ElTy = 0; } - break; // No match, maybe next time. + + if (ElTy) break; // Found a number of zeros we can strip off! + + // Otherwise, we can convert a GEP from one form to the other iff the + // current gep is of the form 'getelementptr sbyte*, long N + // and we could convert this to an appropriate GEP for the new type. + // + if (GEP->getNumOperands() == 2 && + GEP->getType() == PointerType::get(Type::SByteTy)) { + + // Do not Check to see if our incoming pointer can be converted + // to be a ptr to an array of the right type... because in more cases than + // not, it is simply not analyzable because of pointer/array + // discrepancies. To fix this, we will insert a cast before the GEP. + // + + // Check to see if 'N' is an expression that can be converted to + // the appropriate size... if so, allow it. + // + std::vector Indices; + const Type *ElTy = ConvertibleToGEP(PTy, I->getOperand(1), Indices, TD); + if (ElTy == PVTy) { + if (!ExpressionConvertibleToType(I->getOperand(0), + PointerType::get(ElTy), CTMap, TD)) + return false; // Can't continue, ExConToTy might have polluted set! + break; + } + } + + // Otherwise, it could be that we have something like this: + // getelementptr [[sbyte] *] * %reg115, long %reg138 ; [sbyte]** + // and want to convert it into something like this: + // getelemenptr [[int] *] * %reg115, long %reg138 ; [int]** + // + if (GEP->getNumOperands() == 2 && + PTy->getElementType()->isSized() && + TD.getTypeSize(PTy->getElementType()) == + TD.getTypeSize(GEP->getType()->getElementType())) { + const PointerType *NewSrcTy = PointerType::get(PVTy); + if (!ExpressionConvertibleToType(I->getOperand(0), NewSrcTy, CTMap, TD)) + return false; + break; + } + + return false; // No match, maybe next time. + } + + case Instruction::Call: { + if (isa(I->getOperand(0))) + return false; // Don't even try to change direct calls. + + // If this is a function pointer, we can convert the return type if we can + // convert the source function pointer. + // + const PointerType *PT = cast(I->getOperand(0)->getType()); + const FunctionType *FT = cast(PT->getElementType()); + std::vector ArgTys(FT->param_begin(), FT->param_end()); + const FunctionType *NewTy = + FunctionType::get(Ty, ArgTys, FT->isVarArg()); + if (!ExpressionConvertibleToType(I->getOperand(0), + PointerType::get(NewTy), CTMap, TD)) + return false; + break; } + default: + return false; } - return false; -} + // Expressions are only convertible if all of the users of the expression can + // have this value converted. This makes use of the map to avoid infinite + // recursion. + // + for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It) + if (!OperandConvertibleToType(*It, I, Ty, CTMap, TD)) + return false; + + return true; +} +Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty, + ValueMapCache &VMC, const TargetData &TD) { + if (V->getType() == Ty) return V; // Already where we need to be? -Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { ValueMapCache::ExprMapTy::iterator VMCI = VMC.ExprMap.find(V); - if (VMCI != VMC.ExprMap.end()) + if (VMCI != VMC.ExprMap.end()) { + const Value *GV = VMCI->second; + const Type *GTy = VMCI->second->getType(); + assert(VMCI->second->getType() == Ty); + + if (Instruction *I = dyn_cast(V)) + ValueHandle IHandle(VMC, I); // Remove I if it is unused now! + return VMCI->second; + } -#ifdef DEBUG_EXPR_CONVERT - cerr << "CETT: " << (void*)V << " " << V; -#endif + DEBUG(std::cerr << "CETT: " << (void*)V << " " << *V); Instruction *I = dyn_cast(V); - if (I == 0) - if (ConstPoolVal *CPV = cast(V)) { - // Constants are converted by constant folding the cast that is required. - // We assume here that all casts are implemented for constant prop. - Value *Result = opt::ConstantFoldCastInstruction(CPV, Ty); - assert(Result && "ConstantFoldCastInstruction Failed!!!"); - - // Add the instruction to the expression map - VMC.ExprMap[V] = Result; - return Result; - } + if (I == 0) { + Constant *CPV = cast(V); + // Constants are converted by constant folding the cast that is required. + // We assume here that all casts are implemented for constant prop. + Value *Result = ConstantExpr::getCast(CPV, Ty); + // Add the instruction to the expression map + //VMC.ExprMap[V] = Result; + return Result; + } BasicBlock *BB = I->getParent(); - BasicBlock::InstListType &BIL = BB->getInstList(); - string Name = I->getName(); if (!Name.empty()) I->setName(""); + std::string Name = I->getName(); if (!Name.empty()) I->setName(""); Instruction *Res; // Result of conversion - ValueHandle IHandle(I); // Prevent I from being removed! + ValueHandle IHandle(VMC, I); // Prevent I from being removed! - ConstPoolVal *Dummy = ConstPoolVal::getNullConstant(Ty); - - //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl; + Constant *Dummy = Constant::getNullValue(Ty); switch (I->getOpcode()) { case Instruction::Cast: + assert(VMC.NewCasts.count(ValueHandle(VMC, I)) == 0); Res = new CastInst(I->getOperand(0), Ty, Name); + VMC.NewCasts.insert(ValueHandle(VMC, Res)); break; case Instruction::Add: @@ -210,8 +379,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { Dummy, Dummy, Name); VMC.ExprMap[I] = Res; // Add node to expression eagerly - Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC)); - Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC)); + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD)); + Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), Ty, VMC, TD)); break; case Instruction::Shl: @@ -219,21 +388,23 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { Res = new ShiftInst(cast(I)->getOpcode(), Dummy, I->getOperand(1), Name); VMC.ExprMap[I] = Res; - Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC)); + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), Ty, VMC, TD)); break; case Instruction::Load: { LoadInst *LI = cast(I); - assert(!LI->hasIndices()); - Res = new LoadInst(ConstPoolVal::getNullConstant(PointerType::get(Ty)), - Name); + + Res = new LoadInst(Constant::getNullValue(PointerType::get(Ty)), Name); VMC.ExprMap[I] = Res; - Res->setOperand(0, ConvertExpressionToType(LI->getPtrOperand(), - PointerType::get(Ty), VMC)); + Res->setOperand(0, ConvertExpressionToType(LI->getPointerOperand(), + PointerType::get(Ty), VMC, TD)); + assert(Res->getOperand(0)->getType() == PointerType::get(Ty)); + assert(Ty == Res->getType()); + assert(Res->getType()->isFirstClassType() && "Load of structure or array!"); break; } - case Instruction::PHINode: { + case Instruction::PHI: { PHINode *OldPN = cast(I); PHINode *NewPN = new PHINode(Ty, Name); @@ -241,17 +412,22 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { while (OldPN->getNumOperands()) { BasicBlock *BB = OldPN->getIncomingBlock(0); Value *OldVal = OldPN->getIncomingValue(0); - ValueHandle OldValHandle(OldVal); - OldPN->removeIncomingValue(BB); - Value *V = ConvertExpressionToType(OldVal, Ty, VMC); + ValueHandle OldValHandle(VMC, OldVal); + OldPN->removeIncomingValue(BB, false); + Value *V = ConvertExpressionToType(OldVal, Ty, VMC, TD); NewPN->addIncoming(V, BB); } Res = NewPN; break; } + case Instruction::Malloc: { + Res = ConvertMallocToType(cast(I), Ty, Name, VMC, TD); + break; + } + case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have + // GetElementPtr's are directly convertible to a pointer type if they have // a number of zeros at the end. Because removing these values does not // change the logical offset of the GEP, it is okay and fair to remove them. // This can change this: @@ -266,72 +442,125 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) { // index array. If there are, check to see if removing them causes us to // get to the right type... // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPtrOperand()->getType(); - const Type *PVTy = cast(Ty)->getValueType(); + std::vector Indices(GEP->idx_begin(), GEP->idx_end()); + const Type *BaseType = GEP->getPointerOperand()->getType(); + const Type *PVTy = cast(Ty)->getElementType(); Res = 0; - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { + while (!Indices.empty() && + Indices.back() == Constant::getNullValue(Indices.back()->getType())){ Indices.pop_back(); if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) { - if (Indices.size() == 0) { - Res = new CastInst(GEP->getPtrOperand(), BaseType); // NOOP - } else { - Res = new GetElementPtrInst(GEP->getPtrOperand(), Indices, Name); - } + if (Indices.size() == 0) + Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP CAST + else + Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name); break; } } + + if (Res == 0 && GEP->getNumOperands() == 2 && + GEP->getType() == PointerType::get(Type::SByteTy)) { + + // Otherwise, we can convert a GEP from one form to the other iff the + // current gep is of the form 'getelementptr sbyte*, unsigned N + // and we could convert this to an appropriate GEP for the new type. + // + const PointerType *NewSrcTy = PointerType::get(PVTy); + BasicBlock::iterator It = I; + + // Check to see if 'N' is an expression that can be converted to + // the appropriate size... if so, allow it. + // + std::vector Indices; + const Type *ElTy = ConvertibleToGEP(NewSrcTy, I->getOperand(1), + Indices, TD, &It); + if (ElTy) { + assert(ElTy == PVTy && "Internal error, setup wrong!"); + Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy), + Indices, Name); + VMC.ExprMap[I] = Res; + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), + NewSrcTy, VMC, TD)); + } + } + + // Otherwise, it could be that we have something like this: + // getelementptr [[sbyte] *] * %reg115, uint %reg138 ; [sbyte]** + // and want to convert it into something like this: + // getelemenptr [[int] *] * %reg115, uint %reg138 ; [int]** + // + if (Res == 0) { + const PointerType *NewSrcTy = PointerType::get(PVTy); + std::vector Indices(GEP->idx_begin(), GEP->idx_end()); + Res = new GetElementPtrInst(Constant::getNullValue(NewSrcTy), + Indices, Name); + VMC.ExprMap[I] = Res; + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), + NewSrcTy, VMC, TD)); + } + + assert(Res && "Didn't find match!"); - break; // No match, maybe next time. + break; } + case Instruction::Call: { + assert(!isa(I->getOperand(0))); + + // If this is a function pointer, we can convert the return type if we can + // convert the source function pointer. + // + const PointerType *PT = cast(I->getOperand(0)->getType()); + const FunctionType *FT = cast(PT->getElementType()); + std::vector ArgTys(FT->param_begin(), FT->param_end()); + const FunctionType *NewTy = + FunctionType::get(Ty, ArgTys, FT->isVarArg()); + const PointerType *NewPTy = PointerType::get(NewTy); + if (Ty == Type::VoidTy) + Name = ""; // Make sure not to name calls that now return void! + + Res = new CallInst(Constant::getNullValue(NewPTy), + std::vector(I->op_begin()+1, I->op_end()), + Name); + VMC.ExprMap[I] = Res; + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0),NewPTy,VMC,TD)); + break; + } default: - assert(0 && "Expression convertable, but don't know how to convert?"); + assert(0 && "Expression convertible, but don't know how to convert?"); return 0; } - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); - assert(It != BIL.end() && "Instruction not in own basic block??"); - BIL.insert(It, Res); + assert(Res->getType() == Ty && "Didn't convert expr to correct type!"); + + BB->getInstList().insert(I, Res); // Add the instruction to the expression map VMC.ExprMap[I] = Res; - // Expressions are only convertable if all of the users of the expression can - // have this value converted. This makes use of the map to avoid infinite - // recursion. - // + unsigned NumUses = I->use_size(); for (unsigned It = 0; It < NumUses; ) { unsigned OldSize = NumUses; - ConvertOperandToType(*(I->use_begin()+It), I, Res, VMC); + Value::use_iterator UI = I->use_begin(); + std::advance(UI, It); + ConvertOperandToType(*UI, I, Res, VMC, TD); NumUses = I->use_size(); if (NumUses == OldSize) ++It; } -#ifdef DEBUG_EXPR_CONVERT - cerr << "ExpIn: " << (void*)I << " " << I - << "ExpOut: " << (void*)Res << " " << Res; - cerr << "ExpCREATED: " << (void*)Res << " " << Res; -#endif - - if (I->use_empty()) { -#ifdef DEBUG_EXPR_CONVERT - cerr << "EXPR DELETING: " << (void*)I << " " << I; -#endif - BIL.remove(I); - delete I; - } + DEBUG(std::cerr << "ExpIn: " << (void*)I << " " << *I + << "ExpOut: " << (void*)Res << " " << *Res); return Res; } -// RetValConvertableToType - Return true if it is possible -bool RetValConvertableToType(Value *V, const Type *Ty, - ValueTypeCache &ConvertedTypes) { +// ValueConvertibleToType - Return true if it is possible +bool llvm::ValueConvertibleToType(Value *V, const Type *Ty, + ValueTypeCache &ConvertedTypes, + const TargetData &TD) { ValueTypeCache::iterator I = ConvertedTypes.find(V); if (I != ConvertedTypes.end()) return I->second == Ty; ConvertedTypes[V] = Ty; @@ -339,9 +568,11 @@ bool RetValConvertableToType(Value *V, const Type *Ty, // It is safe to convert the specified value to the specified type IFF all of // the uses of the value can be converted to accept the new typed value. // - for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) - if (!OperandConvertableToType(*I, V, Ty, ConvertedTypes)) - return false; + if (V->getType() != Ty) { + for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) + if (!OperandConvertibleToType(*I, V, Ty, ConvertedTypes, TD)) + return false; + } return true; } @@ -350,20 +581,19 @@ bool RetValConvertableToType(Value *V, const Type *Ty, - - -// OperandConvertableToType - Return true if it is possible to convert operand +// OperandConvertibleToType - Return true if it is possible to convert operand // V of User (instruction) U to the specified type. This is true iff it is // possible to change the specified instruction to accept this. CTMap is a map // of converted types, so that circular definitions will see the future type of // the expression, not the static current type. // -static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, - ValueTypeCache &CTMap) { - if (V->getType() == Ty) return true; // Already the right type? +static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty, + ValueTypeCache &CTMap, + const TargetData &TD) { + // if (V->getType() == Ty) return true; // Operand already the right type? // Expression type must be holdable in a register. - if (!isFirstClassType(Ty)) + if (!Ty->isFirstClassType()) return false; Instruction *I = dyn_cast(U); @@ -373,150 +603,307 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty, case Instruction::Cast: assert(I->getOperand(0) == V); // We can convert the expr if the cast destination type is losslessly - // convertable to the requested type. - return losslessCastableTypes(Ty, I->getOperand(0)->getType()); + // convertible to the requested type. + // Also, do not change a cast that is a noop cast. For all intents and + // purposes it should be eliminated. + if (!Ty->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) || + I->getType() == I->getOperand(0)->getType()) + return false; + + // Do not allow a 'cast ushort %V to uint' to have it's first operand be + // converted to a 'short' type. Doing so changes the way sign promotion + // happens, and breaks things. Only allow the cast to take place if the + // signedness doesn't change... or if the current cast is not a lossy + // conversion. + // + if (!I->getType()->isLosslesslyConvertibleTo(I->getOperand(0)->getType()) && + I->getOperand(0)->getType()->isSigned() != Ty->isSigned()) + return false; + + // We also do not allow conversion of a cast that casts from a ptr to array + // of X to a *X. For example: cast [4 x %List *] * %val to %List * * + // + if (const PointerType *SPT = + dyn_cast(I->getOperand(0)->getType())) + if (const PointerType *DPT = dyn_cast(I->getType())) + if (const ArrayType *AT = dyn_cast(SPT->getElementType())) + if (AT->getElementType() == DPT->getElementType()) + return false; + return true; case Instruction::Add: - if (V == I->getOperand(0) && isa(I->getOperand(1))) { - Instruction *GEP = - getAddToGEPResult(Ty, cast(I->getOperand(1))->getOperand(0)); - if (GEP) { // If successful, this Add can be converted to a GEP. - const Type *RetTy = GEP->getType(); // Get the new type... - delete GEP; // We don't want the actual instruction yet... + if (isa(Ty)) { + Value *IndexVal = I->getOperand(V == I->getOperand(0) ? 1 : 0); + std::vector Indices; + if (const Type *ETy = ConvertibleToGEP(Ty, IndexVal, Indices, TD)) { + const Type *RetTy = PointerType::get(ETy); + // Only successful if we can convert this type to the required type - return RetValConvertableToType(I, RetTy, CTMap); + if (ValueConvertibleToType(I, RetTy, CTMap, TD)) { + CTMap[I] = RetTy; + return true; + } + // We have to return failure here because ValueConvertibleToType could + // have polluted our map + return false; } } // FALLTHROUGH case Instruction::Sub: { + if (!Ty->isInteger() && !Ty->isFloatingPoint()) return false; + Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0); - return RetValConvertableToType(I, Ty, CTMap) && - ExpressionConvertableToType(OtherOp, Ty, CTMap); + return ValueConvertibleToType(I, Ty, CTMap, TD) && + ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD); } case Instruction::SetEQ: case Instruction::SetNE: { Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0); - return ExpressionConvertableToType(OtherOp, Ty, CTMap); + return ExpressionConvertibleToType(OtherOp, Ty, CTMap, TD); } case Instruction::Shr: if (Ty->isSigned() != V->getType()->isSigned()) return false; // FALL THROUGH case Instruction::Shl: + if (I->getOperand(1) == V) return false; // Cannot change shift amount type + if (!Ty->isInteger()) return false; + return ValueConvertibleToType(I, Ty, CTMap, TD); + + case Instruction::Free: assert(I->getOperand(0) == V); - return RetValConvertableToType(I, Ty, CTMap); + return isa(Ty); // Free can free any pointer type! case Instruction::Load: - assert(I->getOperand(0) == V); + // Cannot convert the types of any subscripts... + if (I->getOperand(0) != V) return false; + if (const PointerType *PT = dyn_cast(Ty)) { LoadInst *LI = cast(I); - const Type *PVTy = PT->getValueType(); - - if (LI->hasIndices() || isa(PVTy)) - return false; - - if (!isFirstClassType(PVTy)) { - // They could be loading the first element of a structure type... - if (const StructType *ST = dyn_cast(PVTy)) { - unsigned Offset = 0; // No offset, get first leaf. - vector Offsets; // Discarded... - const Type *Ty = getStructOffsetType(ST, Offset, Offsets, false); - assert(Offset == 0 && "Offset changed from zero???"); - if (!isFirstClassType(Ty)) return false; - - // See if the leaf type is compatible with the old return type... - if (TD.getTypeSize(Ty) != TD.getTypeSize(LI->getType())) - return false; + + const Type *LoadedTy = PT->getElementType(); + + // They could be loading the first element of a composite type... + if (const CompositeType *CT = dyn_cast(LoadedTy)) { + unsigned Offset = 0; // No offset, get first leaf. + std::vector Indices; // Discarded... + LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false); + assert(Offset == 0 && "Offset changed from zero???"); + } - return RetValConvertableToType(LI, Ty, CTMap); - } + if (!LoadedTy->isFirstClassType()) return false; - } - if (TD.getTypeSize(PVTy) != TD.getTypeSize(LI->getType())) + if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType())) return false; - return RetValConvertableToType(LI, PVTy, CTMap); + return ValueConvertibleToType(LI, LoadedTy, CTMap, TD); } return false; case Instruction::Store: { StoreInst *SI = cast(I); - if (SI->hasIndices()) return false; if (V == I->getOperand(0)) { + ValueTypeCache::iterator CTMI = CTMap.find(I->getOperand(1)); + if (CTMI != CTMap.end()) { // Operand #1 is in the table already? + // If so, check to see if it's Ty*, or, more importantly, if it is a + // pointer to a structure where the first element is a Ty... this code + // is necessary because we might be trying to change the source and + // destination type of the store (they might be related) and the dest + // pointer type might be a pointer to structure. Below we allow pointer + // to structures where the 0th element is compatible with the value, + // now we have to support the symmetrical part of this. + // + const Type *ElTy = cast(CTMI->second)->getElementType(); + + // Already a pointer to what we want? Trivially accept... + if (ElTy == Ty) return true; + + // Tricky case now, if the destination is a pointer to structure, + // obviously the source is not allowed to be a structure (cannot copy + // a whole structure at a time), so the level raiser must be trying to + // store into the first field. Check for this and allow it now: + // + if (const StructType *SElTy = dyn_cast(ElTy)) { + unsigned Offset = 0; + std::vector Indices; + ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false); + assert(Offset == 0 && "Offset changed!"); + if (ElTy == 0) // Element at offset zero in struct doesn't exist! + return false; // Can only happen for {}* + + if (ElTy == Ty) // Looks like the 0th element of structure is + return true; // compatible! Accept now! + + // Otherwise we know that we can't work, so just stop trying now. + return false; + } + } + // Can convert the store if we can convert the pointer operand to match // the new value type... - return ExpressionConvertableToType(I->getOperand(1), PointerType::get(Ty), - CTMap); + return ExpressionConvertibleToType(I->getOperand(1), PointerType::get(Ty), + CTMap, TD); } else if (const PointerType *PT = dyn_cast(Ty)) { - if (isa(PT->getValueType())) - return false; // Avoid getDataSize on unsized array type! + const Type *ElTy = PT->getElementType(); assert(V == I->getOperand(1)); + if (isa(ElTy)) { + // We can change the destination pointer if we can store our first + // argument into the first element of the structure... + // + unsigned Offset = 0; + std::vector Indices; + ElTy = getStructOffsetType(ElTy, Offset, Indices, TD, false); + assert(Offset == 0 && "Offset changed!"); + if (ElTy == 0) // Element at offset zero in struct doesn't exist! + return false; // Can only happen for {}* + } + // Must move the same amount of data... - if (TD.getTypeSize(PT->getValueType()) != - TD.getTypeSize(I->getOperand(0)->getType())) return false; + if (!ElTy->isSized() || + TD.getTypeSize(ElTy) != TD.getTypeSize(I->getOperand(0)->getType())) + return false; - // Can convert store if the incoming value is convertable... - return ExpressionConvertableToType(I->getOperand(0), PT->getValueType(), - CTMap); + // Can convert store if the incoming value is convertible and if the + // result will preserve semantics... + const Type *Op0Ty = I->getOperand(0)->getType(); + if (!(Op0Ty->isIntegral() ^ ElTy->isIntegral()) && + !(Op0Ty->isFloatingPoint() ^ ElTy->isFloatingPoint())) + return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD); } return false; } - case Instruction::PHINode: { + case Instruction::GetElementPtr: + if (V != I->getOperand(0) || !isa(Ty)) return false; + + // If we have a two operand form of getelementptr, this is really little + // more than a simple addition. As with addition, check to see if the + // getelementptr instruction can be changed to index into the new type. + // + if (I->getNumOperands() == 2) { + const Type *OldElTy = cast(I->getType())->getElementType(); + unsigned DataSize = TD.getTypeSize(OldElTy); + Value *Index = I->getOperand(1); + Instruction *TempScale = 0; + + // If the old data element is not unit sized, we have to create a scale + // instruction so that ConvertibleToGEP will know the REAL amount we are + // indexing by. Note that this is never inserted into the instruction + // stream, so we have to delete it when we're done. + // + if (DataSize != 1) { + Value *CST; + if (Index->getType()->isSigned()) + CST = ConstantSInt::get(Index->getType(), DataSize); + else + CST = ConstantUInt::get(Index->getType(), DataSize); + + TempScale = BinaryOperator::create(Instruction::Mul, Index, CST); + Index = TempScale; + } + + // Check to see if the second argument is an expression that can + // be converted to the appropriate size... if so, allow it. + // + std::vector Indices; + const Type *ElTy = ConvertibleToGEP(Ty, Index, Indices, TD); + delete TempScale; // Free our temporary multiply if we made it + + if (ElTy == 0) return false; // Cannot make conversion... + return ValueConvertibleToType(I, PointerType::get(ElTy), CTMap, TD); + } + return false; + + case Instruction::PHI: { PHINode *PN = cast(I); + // Be conservative if we find a giant PHI node. + if (PN->getNumIncomingValues() > 32) return false; + for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) - if (!ExpressionConvertableToType(PN->getIncomingValue(i), Ty, CTMap)) + if (!ExpressionConvertibleToType(PN->getIncomingValue(i), Ty, CTMap, TD)) return false; - return RetValConvertableToType(PN, Ty, CTMap); + return ValueConvertibleToType(PN, Ty, CTMap, TD); } -#if 0 - case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have - // a number of zeros at the end. Because removing these values does not - // change the logical offset of the GEP, it is okay and fair to remove them. - // This can change this: - // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **> - // %t2 = cast %List * * %t1 to %List * - // into - // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *> - // - GetElementPtrInst *GEP = cast(I); - const PointerType *PTy = dyn_cast(Ty); - if (!PTy) return false; + case Instruction::Call: { + User::op_iterator OI = find(I->op_begin(), I->op_end(), V); + assert (OI != I->op_end() && "Not using value!"); + unsigned OpNum = OI - I->op_begin(); - // Check to see if there are zero elements that we can remove from the - // index array. If there are, check to see if removing them causes us to - // get to the right type... - // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPtrOperand()->getType(); + // Are we trying to change the function pointer value to a new type? + if (OpNum == 0) { + const PointerType *PTy = dyn_cast(Ty); + if (PTy == 0) return false; // Can't convert to a non-pointer type... + const FunctionType *FTy = dyn_cast(PTy->getElementType()); + if (FTy == 0) return false; // Can't convert to a non ptr to function... - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { - Indices.pop_back(); - const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices, - true); - if (ElTy == PTy->getValueType()) - return true; // Found a match!! + // Do not allow converting to a call where all of the operands are ...'s + if (FTy->getNumParams() == 0 && FTy->isVarArg()) + return false; // Do not permit this conversion! + + // Perform sanity checks to make sure that new function type has the + // correct number of arguments... + // + unsigned NumArgs = I->getNumOperands()-1; // Don't include function ptr + + // Cannot convert to a type that requires more fixed arguments than + // the call provides... + // + if (NumArgs < FTy->getNumParams()) return false; + + // Unless this is a vararg function type, we cannot provide more arguments + // than are desired... + // + if (!FTy->isVarArg() && NumArgs > FTy->getNumParams()) + return false; + + // Okay, at this point, we know that the call and the function type match + // number of arguments. Now we see if we can convert the arguments + // themselves. Note that we do not require operands to be convertible, + // we can insert casts if they are convertible but not compatible. The + // reason for this is that we prefer to have resolved functions but casted + // arguments if possible. + // + for (unsigned i = 0, NA = FTy->getNumParams(); i < NA; ++i) + if (!FTy->getParamType(i)->isLosslesslyConvertibleTo(I->getOperand(i+1)->getType())) + return false; // Operands must have compatible types! + + // Okay, at this point, we know that all of the arguments can be + // converted. We succeed if we can change the return type if + // necessary... + // + return ValueConvertibleToType(I, FTy->getReturnType(), CTMap, TD); } - break; // No match, maybe next time. + + const PointerType *MPtr = cast(I->getOperand(0)->getType()); + const FunctionType *FTy = cast(MPtr->getElementType()); + if (!FTy->isVarArg()) return false; + + if ((OpNum-1) < FTy->getNumParams()) + return false; // It's not in the varargs section... + + // If we get this far, we know the value is in the varargs section of the + // function! We can convert if we don't reinterpret the value... + // + return Ty->isLosslesslyConvertibleTo(V->getType()); } -#endif } return false; } -void ConvertUsersType(Value *V, Value *NewVal, ValueMapCache &VMC) { - ValueHandle VH(V); +void llvm::ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC, + const TargetData &TD) { + ValueHandle VH(VMC, V); unsigned NumUses = V->use_size(); for (unsigned It = 0; It < NumUses; ) { unsigned OldSize = NumUses; - ConvertOperandToType(*(V->use_begin()+It), V, NewVal, VMC); + Value::use_iterator UI = V->use_begin(); + std::advance(UI, It); + ConvertOperandToType(*UI, V, NewVal, VMC, TD); NumUses = V->use_size(); if (NumUses == OldSize) ++It; } @@ -525,7 +912,7 @@ void ConvertUsersType(Value *V, Value *NewVal, ValueMapCache &VMC) { static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, - ValueMapCache &VMC) { + ValueMapCache &VMC, const TargetData &TD) { if (isa(U)) return; // Valuehandles don't let go of operands... if (VMC.OperandsMapped.count(U)) return; @@ -536,35 +923,53 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, return; - Instruction *I = cast(U); // Only Instructions convertable + Instruction *I = cast(U); // Only Instructions convertible BasicBlock *BB = I->getParent(); - BasicBlock::InstListType &BIL = BB->getInstList(); - string Name = I->getName(); if (!Name.empty()) I->setName(""); + assert(BB != 0 && "Instruction not embedded in basic block!"); + std::string Name = I->getName(); + I->setName(""); Instruction *Res; // Result of conversion - //cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl; + //std::cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I + // << "BB Before: " << BB << endl; // Prevent I from being removed... - ValueHandle IHandle(I); + ValueHandle IHandle(VMC, I); const Type *NewTy = NewVal->getType(); - ConstPoolVal *Dummy = (NewTy != Type::VoidTy) ? - ConstPoolVal::getNullConstant(NewTy) : 0; + Constant *Dummy = (NewTy != Type::VoidTy) ? + Constant::getNullValue(NewTy) : 0; switch (I->getOpcode()) { case Instruction::Cast: - assert(I->getOperand(0) == OldVal); - Res = new CastInst(NewVal, I->getType(), Name); + if (VMC.NewCasts.count(ValueHandle(VMC, I))) { + // This cast has already had it's value converted, causing a new cast to + // be created. We don't want to create YET ANOTHER cast instruction + // representing the original one, so just modify the operand of this cast + // instruction, which we know is newly created. + I->setOperand(0, NewVal); + I->setName(Name); // give I its name back + return; + + } else { + Res = new CastInst(NewVal, I->getType(), Name); + } break; case Instruction::Add: - if (OldVal == I->getOperand(0) && isa(I->getOperand(1))) { - Res = getAddToGEPResult(NewVal->getType(), - cast(I->getOperand(1))->getOperand(0)); - if (Res) { // If successful, this Add should be converted to a GEP. + if (isa(NewTy)) { + Value *IndexVal = I->getOperand(OldVal == I->getOperand(0) ? 1 : 0); + std::vector Indices; + BasicBlock::iterator It = I; + + if (const Type *ETy = ConvertibleToGEP(NewTy, IndexVal, Indices, TD,&It)){ + // If successful, convert the add to a GEP + //const Type *RetTy = PointerType::get(ETy); // First operand is actually the given pointer... - Res->setOperand(0, NewVal); + Res = new GetElementPtrInst(NewVal, Indices, Name); + assert(cast(Res->getType())->getElementType() == ETy && + "ConvertibleToGEP broken!"); break; } } @@ -579,7 +984,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, unsigned OtherIdx = (OldVal == I->getOperand(0)) ? 1 : 0; Value *OtherOp = I->getOperand(OtherIdx); - Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC); + Value *NewOther = ConvertExpressionToType(OtherOp, NewTy, VMC, TD); Res->setOperand(OtherIdx, NewOther); Res->setOperand(!OtherIdx, NewVal); @@ -592,37 +997,165 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, I->getOperand(1), Name); break; + case Instruction::Free: // Free can free any pointer type! + assert(I->getOperand(0) == OldVal); + Res = new FreeInst(NewVal); + break; + + case Instruction::Load: { assert(I->getOperand(0) == OldVal && isa(NewVal->getType())); - const Type *PVTy = cast(NewVal->getType())->getValueType(); - if (!isFirstClassType(PVTy)) { // Must be an indirect load then... - assert(isa(PVTy)); + const Type *LoadedTy = + cast(NewVal->getType())->getElementType(); + + Value *Src = NewVal; + + if (const CompositeType *CT = dyn_cast(LoadedTy)) { + std::vector Indices; + Indices.push_back(Constant::getNullValue(Type::UIntTy)); + unsigned Offset = 0; // No offset, get first leaf. - vector Offsets; // Discarded... - const Type *Ty = getStructOffsetType(PVTy, Offset, Offsets, false); - Res = new LoadInst(NewVal, Offsets, Name); - } else { - Res = new LoadInst(NewVal, Name); + LoadedTy = getStructOffsetType(CT, Offset, Indices, TD, false); + assert(LoadedTy->isFirstClassType()); + + if (Indices.size() != 1) { // Do not generate load X, 0 + // Insert the GEP instruction before this load. + Src = new GetElementPtrInst(Src, Indices, Name+".idx", I); + } } - assert(isFirstClassType(Res->getType()) && "Load of structure or array!"); + + Res = new LoadInst(Src, Name); + assert(Res->getType()->isFirstClassType() && "Load of structure or array!"); break; } + case Instruction::Store: { if (I->getOperand(0) == OldVal) { // Replace the source value - const PointerType *NewPT = PointerType::get(NewTy); - Res = new StoreInst(NewVal, ConstPoolVal::getNullConstant(NewPT)); - VMC.ExprMap[I] = Res; - Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), NewPT, VMC)); + // Check to see if operand #1 has already been converted... + ValueMapCache::ExprMapTy::iterator VMCI = + VMC.ExprMap.find(I->getOperand(1)); + if (VMCI != VMC.ExprMap.end()) { + // Comments describing this stuff are in the OperandConvertibleToType + // switch statement for Store... + // + const Type *ElTy = + cast(VMCI->second->getType())->getElementType(); + + Value *SrcPtr = VMCI->second; + + if (ElTy != NewTy) { + // We check that this is a struct in the initial scan... + const StructType *SElTy = cast(ElTy); + + std::vector Indices; + Indices.push_back(Constant::getNullValue(Type::UIntTy)); + + unsigned Offset = 0; + const Type *Ty = getStructOffsetType(ElTy, Offset, Indices, TD,false); + assert(Offset == 0 && "Offset changed!"); + assert(NewTy == Ty && "Did not convert to correct type!"); + + // Insert the GEP instruction before this store. + SrcPtr = new GetElementPtrInst(SrcPtr, Indices, + SrcPtr->getName()+".idx", I); + } + Res = new StoreInst(NewVal, SrcPtr); + + VMC.ExprMap[I] = Res; + } else { + // Otherwise, we haven't converted Operand #1 over yet... + const PointerType *NewPT = PointerType::get(NewTy); + Res = new StoreInst(NewVal, Constant::getNullValue(NewPT)); + VMC.ExprMap[I] = Res; + Res->setOperand(1, ConvertExpressionToType(I->getOperand(1), + NewPT, VMC, TD)); + } } else { // Replace the source pointer - const Type *ValTy = cast(NewTy)->getValueType(); - Res = new StoreInst(ConstPoolVal::getNullConstant(ValTy), NewVal); + const Type *ValTy = cast(NewTy)->getElementType(); + + Value *SrcPtr = NewVal; + + if (isa(ValTy)) { + std::vector Indices; + Indices.push_back(Constant::getNullValue(Type::UIntTy)); + + unsigned Offset = 0; + ValTy = getStructOffsetType(ValTy, Offset, Indices, TD, false); + + assert(Offset == 0 && ValTy); + + // Insert the GEP instruction before this store. + SrcPtr = new GetElementPtrInst(SrcPtr, Indices, + SrcPtr->getName()+".idx", I); + } + + Res = new StoreInst(Constant::getNullValue(ValTy), SrcPtr); VMC.ExprMap[I] = Res; - Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), ValTy, VMC)); + Res->setOperand(0, ConvertExpressionToType(I->getOperand(0), + ValTy, VMC, TD)); } break; } - case Instruction::PHINode: { + + case Instruction::GetElementPtr: { + // Convert a one index getelementptr into just about anything that is + // desired. + // + BasicBlock::iterator It = I; + const Type *OldElTy = cast(I->getType())->getElementType(); + unsigned DataSize = TD.getTypeSize(OldElTy); + Value *Index = I->getOperand(1); + + if (DataSize != 1) { + // Insert a multiply of the old element type is not a unit size... + Value *CST; + if (Index->getType()->isSigned()) + CST = ConstantSInt::get(Index->getType(), DataSize); + else + CST = ConstantUInt::get(Index->getType(), DataSize); + + Index = BinaryOperator::create(Instruction::Mul, Index, CST, "scale", It); + } + + // Perform the conversion now... + // + std::vector Indices; + const Type *ElTy = ConvertibleToGEP(NewVal->getType(),Index,Indices,TD,&It); + assert(ElTy != 0 && "GEP Conversion Failure!"); + Res = new GetElementPtrInst(NewVal, Indices, Name); + assert(Res->getType() == PointerType::get(ElTy) && + "ConvertibleToGet failed!"); + } +#if 0 + if (I->getType() == PointerType::get(Type::SByteTy)) { + // Convert a getelementptr sbyte * %reg111, uint 16 freely back to + // anything that is a pointer type... + // + BasicBlock::iterator It = I; + + // Check to see if the second argument is an expression that can + // be converted to the appropriate size... if so, allow it. + // + std::vector Indices; + const Type *ElTy = ConvertibleToGEP(NewVal->getType(), I->getOperand(1), + Indices, TD, &It); + assert(ElTy != 0 && "GEP Conversion Failure!"); + + Res = new GetElementPtrInst(NewVal, Indices, Name); + } else { + // Convert a getelementptr ulong * %reg123, uint %N + // to getelementptr long * %reg123, uint %N + // ... where the type must simply stay the same size... + // + GetElementPtrInst *GEP = cast(I); + std::vector Indices(GEP->idx_begin(), GEP->idx_end()); + Res = new GetElementPtrInst(NewVal, Indices, Name); + } +#endif + break; + + case Instruction::PHI: { PHINode *OldPN = cast(I); PHINode *NewPN = new PHINode(NewTy, Name); VMC.ExprMap[I] = NewPN; @@ -630,130 +1163,136 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal, while (OldPN->getNumOperands()) { BasicBlock *BB = OldPN->getIncomingBlock(0); Value *OldVal = OldPN->getIncomingValue(0); - OldPN->removeIncomingValue(BB); - Value *V = ConvertExpressionToType(OldVal, NewTy, VMC); + ValueHandle OldValHandle(VMC, OldVal); + OldPN->removeIncomingValue(BB, false); + Value *V = ConvertExpressionToType(OldVal, NewTy, VMC, TD); NewPN->addIncoming(V, BB); } Res = NewPN; break; } -#if 0 - case Instruction::GetElementPtr: { - // GetElementPtr's are directly convertable to a pointer type if they have - // a number of zeros at the end. Because removing these values does not - // change the logical offset of the GEP, it is okay and fair to remove them. - // This can change this: - // %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **> - // %t2 = cast %List * * %t1 to %List * - // into - // %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *> - // - GetElementPtrInst *GEP = cast(I); + case Instruction::Call: { + Value *Meth = I->getOperand(0); + std::vector Params(I->op_begin()+1, I->op_end()); - // Check to see if there are zero elements that we can remove from the - // index array. If there are, check to see if removing them causes us to - // get to the right type... - // - vector Indices = GEP->getIndices(); - const Type *BaseType = GEP->getPtrOperand()->getType(); - const Type *PVTy = cast(Ty)->getValueType(); - Res = 0; - while (Indices.size() && - cast(Indices.back())->getValue() == 0) { - Indices.pop_back(); - if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) { - if (Indices.size() == 0) { - Res = new CastInst(GEP->getPtrOperand(), BaseType); // NOOP - } else { - Res = new GetElementPtrInst(GEP->getPtrOperand(), Indices, Name); + if (Meth == OldVal) { // Changing the function pointer? + const PointerType *NewPTy = cast(NewVal->getType()); + const FunctionType *NewTy = cast(NewPTy->getElementType()); + + if (NewTy->getReturnType() == Type::VoidTy) + Name = ""; // Make sure not to name a void call! + + // Get an iterator to the call instruction so that we can insert casts for + // operands if need be. Note that we do not require operands to be + // convertible, we can insert casts if they are convertible but not + // compatible. The reason for this is that we prefer to have resolved + // functions but casted arguments if possible. + // + BasicBlock::iterator It = I; + + // Convert over all of the call operands to their new types... but only + // convert over the part that is not in the vararg section of the call. + // + for (unsigned i = 0; i != NewTy->getNumParams(); ++i) + if (Params[i]->getType() != NewTy->getParamType(i)) { + // Create a cast to convert it to the right type, we know that this + // is a lossless cast... + // + Params[i] = new CastInst(Params[i], NewTy->getParamType(i), + "callarg.cast." + + Params[i]->getName(), It); } - break; - } + Meth = NewVal; // Update call destination to new value + + } else { // Changing an argument, must be in vararg area + std::vector::iterator OI = + find(Params.begin(), Params.end(), OldVal); + assert (OI != Params.end() && "Not using value!"); + + *OI = NewVal; } - assert(Res && "Didn't find match!"); - break; // No match, maybe next time. - } -#endif + Res = new CallInst(Meth, Params, Name); + break; + } default: - assert(0 && "Expression convertable, but don't know how to convert?"); + assert(0 && "Expression convertible, but don't know how to convert?"); return; } - BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I); - assert(It != BIL.end() && "Instruction not in own basic block??"); - BIL.insert(It, Res); // Keep It pointing to old instruction + // If the instruction was newly created, insert it into the instruction + // stream. + // + BasicBlock::iterator It = I; + assert(It != BB->end() && "Instruction not in own basic block??"); + BB->getInstList().insert(It, Res); // Keep It pointing to old instruction -#ifdef DEBUG_EXPR_CONVERT - cerr << "COT CREATED: " << (void*)Res << " " << Res; - cerr << "In: " << (void*)I << " " << I << "Out: " << (void*)Res << " " << Res; -#endif + DEBUG(std::cerr << "COT CREATED: " << (void*)Res << " " << *Res + << "In: " << (void*)I << " " << *I << "Out: " << (void*)Res + << " " << *Res); // Add the instruction to the expression map VMC.ExprMap[I] = Res; if (I->getType() != Res->getType()) - ConvertUsersType(I, Res, VMC); + ConvertValueToNewType(I, Res, VMC, TD); else { - for (unsigned It = 0; It < I->use_size(); ) { - User *Use = *(I->use_begin()+It); - if (isa(Use)) // Don't remove ValueHandles! - ++It; - else - Use->replaceUsesOfWith(I, Res); - } - - if (I->use_empty()) { - // Now we just need to remove the old instruction so we don't get infinite - // loops. Note that we cannot use DCE because DCE won't remove a store - // instruction, for example. - // -#ifdef DEBUG_EXPR_CONVERT - cerr << "DELETING: " << (void*)I << " " << I; -#endif - BIL.remove(I); - delete I; - } else { - for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); - UI != UE; ++UI) - assert(isa((Value*)*UI) && "Uses of Instruction remain!!!"); + bool FromStart = true; + Value::use_iterator UI; + while (1) { + if (FromStart) UI = I->use_begin(); + if (UI == I->use_end()) break; + + if (isa(*UI)) { + ++UI; + FromStart = false; + } else { + User *U = *UI; + if (!FromStart) --UI; + U->replaceUsesOfWith(I, Res); + if (!FromStart) ++UI; + } } } } -ValueHandle::ValueHandle(Value *V) : Instruction(Type::VoidTy, UserOp1, "") { -#ifdef DEBUG_EXPR_CONVERT - cerr << "VH AQUIRING: " << (void*)V << " " << V; -#endif + +ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V) + : Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) { + //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V); Operands.push_back(Use(V, this)); } -static void RecursiveDelete(Instruction *I) { +ValueHandle::ValueHandle(const ValueHandle &VH) + : Instruction(Type::VoidTy, UserOp1, ""), Cache(VH.Cache) { + //DEBUG(std::cerr << "VH AQUIRING: " << (void*)V << " " << V); + Operands.push_back(Use((Value*)VH.getOperand(0), this)); +} + +static void RecursiveDelete(ValueMapCache &Cache, Instruction *I) { if (!I || !I->use_empty()) return; assert(I->getParent() && "Inst not in basic block!"); -#ifdef DEBUG_EXPR_CONVERT - cerr << "VH DELETING: " << (void*)I << " " << I; -#endif + //DEBUG(std::cerr << "VH DELETING: " << (void*)I << " " << I); for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); - OI != OE; ++OI) { - Instruction *U = dyn_cast(*OI); - if (U) { + OI != OE; ++OI) + if (Instruction *U = dyn_cast(OI)) { *OI = 0; - RecursiveDelete(dyn_cast(U)); + RecursiveDelete(Cache, U); } - } I->getParent()->getInstList().remove(I); + + Cache.OperandsMapped.erase(I); + Cache.ExprMap.erase(I); delete I; } - ValueHandle::~ValueHandle() { - if (Operands[0]->use_size() == 1) { + if (Operands[0]->hasOneUse()) { Value *V = Operands[0]; Operands[0] = 0; // Drop use! @@ -761,10 +1300,10 @@ ValueHandle::~ValueHandle() { // loops. Note that we cannot use DCE because DCE won't remove a store // instruction, for example. // - RecursiveDelete(dyn_cast(V)); + RecursiveDelete(Cache, dyn_cast(V)); } else { -#ifdef DEBUG_EXPR_CONVERT - cerr << "VH RELEASING: " << (void*)Operands[0].get() << " " << Operands[0]->use_size() << " " << Operands[0]; -#endif + //DEBUG(std::cerr << "VH RELEASING: " << (void*)Operands[0].get() << " " + // << Operands[0]->use_size() << " " << Operands[0]); } } +