X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FInstCombine%2FInstCombineAddSub.cpp;fp=lib%2FTransforms%2FInstCombine%2FInstCombineAddSub.cpp;h=9ea4bc57cf29bd44d1f8dc2d1e8afa1f33e54c95;hb=998ae69abe6f1651ddca6046e51ff987b55e79c5;hp=c2d2eec3fc3f78a88196212e23eee789de6c4632;hpb=654a66dbd362e8a570e8caea4c6a1e9e52c0c88b;p=oota-llvm.git diff --git a/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/lib/Transforms/InstCombine/InstCombineAddSub.cpp index c2d2eec3fc3..9ea4bc57cf2 100644 --- a/lib/Transforms/InstCombine/InstCombineAddSub.cpp +++ b/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -890,7 +890,6 @@ static bool checkRippleForAdd(const APInt &Op0KnownZero, /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) /// This basically requires proving that the add in the original type would not /// overflow to change the sign bit or have a carry out. -/// TODO: Handle this for Vectors. bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction *CxtI) { // There are different heuristics we can use for this. Here are some simple @@ -914,28 +913,27 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS, ComputeNumSignBits(RHS, 0, CxtI) > 1) return true; - if (IntegerType *IT = dyn_cast(LHS->getType())) { - int BitWidth = IT->getBitWidth(); - APInt LHSKnownZero(BitWidth, 0); - APInt LHSKnownOne(BitWidth, 0); - computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); - - APInt RHSKnownZero(BitWidth, 0); - APInt RHSKnownOne(BitWidth, 0); - computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); - - // Addition of two 2's compliment numbers having opposite signs will never - // overflow. - if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || - (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) - return true; - - // Check if carry bit of addition will not cause overflow. - if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) - return true; - if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) - return true; - } + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); + + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); + + // Addition of two 2's compliment numbers having opposite signs will never + // overflow. + if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) || + (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1])) + return true; + + // Check if carry bit of addition will not cause overflow. + if (checkRippleForAdd(LHSKnownZero, RHSKnownZero)) + return true; + if (checkRippleForAdd(RHSKnownZero, LHSKnownZero)) + return true; + return false; } @@ -947,8 +945,8 @@ bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS, // If the sign bit of LHS and that of RHS are both zero, no unsigned wrap. bool LHSKnownNonNegative, LHSKnownNegative; bool RHSKnownNonNegative, RHSKnownNegative; - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT); - ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI); + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI); if (LHSKnownNonNegative && RHSKnownNonNegative) return true; @@ -968,24 +966,22 @@ bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS, ComputeNumSignBits(RHS, 0, CxtI) > 1) return true; - if (IntegerType *IT = dyn_cast(LHS->getType())) { - unsigned BitWidth = IT->getBitWidth(); - APInt LHSKnownZero(BitWidth, 0); - APInt LHSKnownOne(BitWidth, 0); - computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI); - APInt RHSKnownZero(BitWidth, 0); - APInt RHSKnownOne(BitWidth, 0); - computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI); - // Subtraction of two 2's compliment numbers having identical signs will - // never overflow. - if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || - (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) - return true; + // Subtraction of two 2's compliment numbers having identical signs will + // never overflow. + if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) || + (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1])) + return true; - // TODO: implement logic similar to checkRippleForAdd - } + // TODO: implement logic similar to checkRippleForAdd return false; } @@ -996,59 +992,14 @@ bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, // If the LHS is negative and the RHS is non-negative, no unsigned wrap. bool LHSKnownNonNegative, LHSKnownNegative; bool RHSKnownNonNegative, RHSKnownNegative; - ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT); - ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT); + ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI); + ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI); if (LHSKnownNegative && RHSKnownNonNegative) return true; return false; } -/// \brief Return true if we can prove that: -/// (mul LHS, RHS) === (mul nsw LHS, RHS) -bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS, - Instruction *CxtI) { - if (IntegerType *IT = dyn_cast(LHS->getType())) { - - // Multiplying n * m significant bits yields a result of n + m significant - // bits. If the total number of significant bits does not exceed the - // result bit width (minus 1), there is no overflow. - // This means if we have enough leading sign bits in the operands - // we can guarantee that the result does not overflow. - // Ref: "Hacker's Delight" by Henry Warren - unsigned BitWidth = IT->getBitWidth(); - - // Note that underestimating the number of sign bits gives a more - // conservative answer. - unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) + - ComputeNumSignBits(RHS, 0, CxtI); - - // First handle the easy case: if we have enough sign bits there's - // definitely no overflow. - if (SignBits > BitWidth + 1) - return true; - - // There are two ambiguous cases where there can be no overflow: - // SignBits == BitWidth + 1 and - // SignBits == BitWidth - // The second case is difficult to check, therefore we only handle the - // first case. - if (SignBits == BitWidth + 1) { - // It overflows only when both arguments are negative and the true - // product is exactly the minimum negative number. - // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 - // For simplicity we just check if at least one side is not negative. - bool LHSNonNegative, LHSNegative; - bool RHSNonNegative, RHSNegative; - ComputeSignBit(LHS, LHSNonNegative, LHSNegative, DL, 0, AT, CxtI, DT); - ComputeSignBit(RHS, RHSNonNegative, RHSNegative, DL, 0, AT, CxtI, DT); - if (LHSNonNegative || RHSNonNegative) - return true; - } - } - return false; -} - // Checks if any operand is negative and we can convert add to sub. // This function checks for following negative patterns // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))