X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FScalar%2FGVNPRE.cpp;h=e56be31ba69e15450b62667fb4204b71342373b7;hb=3fe4f2135a951477b9e2a32401bfea09beed3d71;hp=b34239d6a612c910c4334be47e0d3894bce141c1;hpb=359208032b7d0736307b375c36f5c5ab4461ac87;p=oota-llvm.git diff --git a/lib/Transforms/Scalar/GVNPRE.cpp b/lib/Transforms/Scalar/GVNPRE.cpp index b34239d6a61..e56be31ba69 100644 --- a/lib/Transforms/Scalar/GVNPRE.cpp +++ b/lib/Transforms/Scalar/GVNPRE.cpp @@ -13,7 +13,7 @@ // the optimization. It replaces redundant values with uses of earlier // occurences of the same value. While this is beneficial in that it eliminates // unneeded computation, it also increases register pressure by creating large -// live ranges, and should be used with caution on platforms that a very +// live ranges, and should be used with caution on platforms that are very // sensitive to register pressure. // //===----------------------------------------------------------------------===// @@ -23,80 +23,700 @@ #include "llvm/Transforms/Scalar.h" #include "llvm/Instructions.h" #include "llvm/Function.h" +#include "llvm/DerivedTypes.h" #include "llvm/Analysis/Dominators.h" -#include "llvm/Analysis/PostDominators.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" +#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" +#include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include #include -#include -#include using namespace llvm; -struct ExprLT { - bool operator()(Value* left, Value* right) { - if (!isa(left) || !isa(right)) - return left < right; - - BinaryOperator* BO1 = cast(left); - BinaryOperator* BO2 = cast(right); +//===----------------------------------------------------------------------===// +// ValueTable Class +//===----------------------------------------------------------------------===// + +/// This class holds the mapping between values and value numbers. It is used +/// as an efficient mechanism to determine the expression-wise equivalence of +/// two values. + +struct Expression { + enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, + FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, + ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, + ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, + FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, + FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, + FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, + SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI, + FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT, + PTRTOINT, INTTOPTR, BITCAST, GEP, EMPTY, + TOMBSTONE }; + + ExpressionOpcode opcode; + const Type* type; + uint32_t firstVN; + uint32_t secondVN; + uint32_t thirdVN; + SmallVector varargs; + + Expression() { } + Expression(ExpressionOpcode o) : opcode(o) { } + + bool operator==(const Expression &other) const { + if (opcode != other.opcode) + return false; + else if (opcode == EMPTY || opcode == TOMBSTONE) + return true; + else if (type != other.type) + return false; + else if (firstVN != other.firstVN) + return false; + else if (secondVN != other.secondVN) + return false; + else if (thirdVN != other.thirdVN) + return false; + else { + if (varargs.size() != other.varargs.size()) + return false; + + for (size_t i = 0; i < varargs.size(); ++i) + if (varargs[i] != other.varargs[i]) + return false; - if ((*this)(BO1->getOperand(0), BO2->getOperand(0))) return true; - else if ((*this)(BO2->getOperand(0), BO1->getOperand(0))) + } + } + + bool operator!=(const Expression &other) const { + if (opcode != other.opcode) + return true; + else if (opcode == EMPTY || opcode == TOMBSTONE) return false; - else - return (*this)(BO1->getOperand(1), BO2->getOperand(1)); + else if (type != other.type) + return true; + else if (firstVN != other.firstVN) + return true; + else if (secondVN != other.secondVN) + return true; + else if (thirdVN != other.thirdVN) + return true; + else { + if (varargs.size() != other.varargs.size()) + return true; + + for (size_t i = 0; i < varargs.size(); ++i) + if (varargs[i] != other.varargs[i]) + return true; + + return false; + } + } +}; + + +namespace { + class VISIBILITY_HIDDEN ValueTable { + private: + DenseMap valueNumbering; + DenseMap expressionNumbering; + + uint32_t nextValueNumber; + + Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); + Expression::ExpressionOpcode getOpcode(CmpInst* C); + Expression::ExpressionOpcode getOpcode(CastInst* C); + Expression create_expression(BinaryOperator* BO); + Expression create_expression(CmpInst* C); + Expression create_expression(ShuffleVectorInst* V); + Expression create_expression(ExtractElementInst* C); + Expression create_expression(InsertElementInst* V); + Expression create_expression(SelectInst* V); + Expression create_expression(CastInst* C); + Expression create_expression(GetElementPtrInst* G); + public: + ValueTable() { nextValueNumber = 1; } + uint32_t lookup_or_add(Value* V); + uint32_t lookup(Value* V) const; + void add(Value* V, uint32_t num); + void clear(); + void erase(Value* v); + unsigned size(); + }; +} + +namespace llvm { +template <> struct DenseMapKeyInfo { + static inline Expression getEmptyKey() { + return Expression(Expression::EMPTY); + } + + static inline Expression getTombstoneKey() { + return Expression(Expression::TOMBSTONE); + } + + static unsigned getHashValue(const Expression e) { + unsigned hash = e.opcode; + + hash = e.firstVN + hash * 37; + hash = e.secondVN + hash * 37; + hash = e.thirdVN + hash * 37; + + hash = (unsigned)((uintptr_t)e.type >> 4) ^ + (unsigned)((uintptr_t)e.type >> 9) + + hash * 37; + + for (SmallVector::const_iterator I = e.varargs.begin(), + E = e.varargs.end(); I != E; ++I) + hash = *I + hash * 37; + + return hash; + } + static bool isPod() { return true; } +}; +} + +//===----------------------------------------------------------------------===// +// ValueTable Internal Functions +//===----------------------------------------------------------------------===// +Expression::ExpressionOpcode + ValueTable::getOpcode(BinaryOperator* BO) { + switch(BO->getOpcode()) { + case Instruction::Add: + return Expression::ADD; + case Instruction::Sub: + return Expression::SUB; + case Instruction::Mul: + return Expression::MUL; + case Instruction::UDiv: + return Expression::UDIV; + case Instruction::SDiv: + return Expression::SDIV; + case Instruction::FDiv: + return Expression::FDIV; + case Instruction::URem: + return Expression::UREM; + case Instruction::SRem: + return Expression::SREM; + case Instruction::FRem: + return Expression::FREM; + case Instruction::Shl: + return Expression::SHL; + case Instruction::LShr: + return Expression::LSHR; + case Instruction::AShr: + return Expression::ASHR; + case Instruction::And: + return Expression::AND; + case Instruction::Or: + return Expression::OR; + case Instruction::Xor: + return Expression::XOR; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Binary operator with unknown opcode?"); + return Expression::ADD; + } +} + +Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { + if (C->getOpcode() == Instruction::ICmp) { + switch (C->getPredicate()) { + case ICmpInst::ICMP_EQ: + return Expression::ICMPEQ; + case ICmpInst::ICMP_NE: + return Expression::ICMPNE; + case ICmpInst::ICMP_UGT: + return Expression::ICMPUGT; + case ICmpInst::ICMP_UGE: + return Expression::ICMPUGE; + case ICmpInst::ICMP_ULT: + return Expression::ICMPULT; + case ICmpInst::ICMP_ULE: + return Expression::ICMPULE; + case ICmpInst::ICMP_SGT: + return Expression::ICMPSGT; + case ICmpInst::ICMP_SGE: + return Expression::ICMPSGE; + case ICmpInst::ICMP_SLT: + return Expression::ICMPSLT; + case ICmpInst::ICMP_SLE: + return Expression::ICMPSLE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::ICMPEQ; + } + } else { + switch (C->getPredicate()) { + case FCmpInst::FCMP_OEQ: + return Expression::FCMPOEQ; + case FCmpInst::FCMP_OGT: + return Expression::FCMPOGT; + case FCmpInst::FCMP_OGE: + return Expression::FCMPOGE; + case FCmpInst::FCMP_OLT: + return Expression::FCMPOLT; + case FCmpInst::FCMP_OLE: + return Expression::FCMPOLE; + case FCmpInst::FCMP_ONE: + return Expression::FCMPONE; + case FCmpInst::FCMP_ORD: + return Expression::FCMPORD; + case FCmpInst::FCMP_UNO: + return Expression::FCMPUNO; + case FCmpInst::FCMP_UEQ: + return Expression::FCMPUEQ; + case FCmpInst::FCMP_UGT: + return Expression::FCMPUGT; + case FCmpInst::FCMP_UGE: + return Expression::FCMPUGE; + case FCmpInst::FCMP_ULT: + return Expression::FCMPULT; + case FCmpInst::FCMP_ULE: + return Expression::FCMPULE; + case FCmpInst::FCMP_UNE: + return Expression::FCMPUNE; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Comparison with unknown predicate?"); + return Expression::FCMPOEQ; + } + } +} + +Expression::ExpressionOpcode + ValueTable::getOpcode(CastInst* C) { + switch(C->getOpcode()) { + case Instruction::Trunc: + return Expression::TRUNC; + case Instruction::ZExt: + return Expression::ZEXT; + case Instruction::SExt: + return Expression::SEXT; + case Instruction::FPToUI: + return Expression::FPTOUI; + case Instruction::FPToSI: + return Expression::FPTOSI; + case Instruction::UIToFP: + return Expression::UITOFP; + case Instruction::SIToFP: + return Expression::SITOFP; + case Instruction::FPTrunc: + return Expression::FPTRUNC; + case Instruction::FPExt: + return Expression::FPEXT; + case Instruction::PtrToInt: + return Expression::PTRTOINT; + case Instruction::IntToPtr: + return Expression::INTTOPTR; + case Instruction::BitCast: + return Expression::BITCAST; + + // THIS SHOULD NEVER HAPPEN + default: + assert(0 && "Cast operator with unknown opcode?"); + return Expression::BITCAST; + } +} + +Expression ValueTable::create_expression(BinaryOperator* BO) { + Expression e; + + e.firstVN = lookup_or_add(BO->getOperand(0)); + e.secondVN = lookup_or_add(BO->getOperand(1)); + e.thirdVN = 0; + e.type = BO->getType(); + e.opcode = getOpcode(BO); + + return e; +} + +Expression ValueTable::create_expression(CmpInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = lookup_or_add(C->getOperand(1)); + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +Expression ValueTable::create_expression(CastInst* C) { + Expression e; + + e.firstVN = lookup_or_add(C->getOperand(0)); + e.secondVN = 0; + e.thirdVN = 0; + e.type = C->getType(); + e.opcode = getOpcode(C); + + return e; +} + +Expression ValueTable::create_expression(ShuffleVectorInst* S) { + Expression e; + + e.firstVN = lookup_or_add(S->getOperand(0)); + e.secondVN = lookup_or_add(S->getOperand(1)); + e.thirdVN = lookup_or_add(S->getOperand(2)); + e.type = S->getType(); + e.opcode = Expression::SHUFFLE; + + return e; +} + +Expression ValueTable::create_expression(ExtractElementInst* E) { + Expression e; + + e.firstVN = lookup_or_add(E->getOperand(0)); + e.secondVN = lookup_or_add(E->getOperand(1)); + e.thirdVN = 0; + e.type = E->getType(); + e.opcode = Expression::EXTRACT; + + return e; +} + +Expression ValueTable::create_expression(InsertElementInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getOperand(0)); + e.secondVN = lookup_or_add(I->getOperand(1)); + e.thirdVN = lookup_or_add(I->getOperand(2)); + e.type = I->getType(); + e.opcode = Expression::INSERT; + + return e; +} + +Expression ValueTable::create_expression(SelectInst* I) { + Expression e; + + e.firstVN = lookup_or_add(I->getCondition()); + e.secondVN = lookup_or_add(I->getTrueValue()); + e.thirdVN = lookup_or_add(I->getFalseValue()); + e.type = I->getType(); + e.opcode = Expression::SELECT; + + return e; +} + +Expression ValueTable::create_expression(GetElementPtrInst* G) { + Expression e; + + e.firstVN = lookup_or_add(G->getPointerOperand()); + e.secondVN = 0; + e.thirdVN = 0; + e.type = G->getType(); + e.opcode = Expression::GEP; + + for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end(); + I != E; ++I) + e.varargs.push_back(lookup_or_add(*I)); + + return e; +} + +//===----------------------------------------------------------------------===// +// ValueTable External Functions +//===----------------------------------------------------------------------===// + +/// lookup_or_add - Returns the value number for the specified value, assigning +/// it a new number if it did not have one before. +uint32_t ValueTable::lookup_or_add(Value* V) { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + + + if (BinaryOperator* BO = dyn_cast(V)) { + Expression e = create_expression(BO); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CmpInst* C = dyn_cast(V)) { + Expression e = create_expression(C); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ShuffleVectorInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (ExtractElementInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (InsertElementInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (SelectInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (CastInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else if (GetElementPtrInst* U = dyn_cast(V)) { + Expression e = create_expression(U); + + DenseMap::iterator EI = expressionNumbering.find(e); + if (EI != expressionNumbering.end()) { + valueNumbering.insert(std::make_pair(V, EI->second)); + return EI->second; + } else { + expressionNumbering.insert(std::make_pair(e, nextValueNumber)); + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + + return nextValueNumber++; + } + } else { + valueNumbering.insert(std::make_pair(V, nextValueNumber)); + return nextValueNumber++; } +} + +/// lookup - Returns the value number of the specified value. Fails if +/// the value has not yet been numbered. +uint32_t ValueTable::lookup(Value* V) const { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + return VI->second; + else + assert(0 && "Value not numbered?"); + + return 0; +} + +/// add - Add the specified value with the given value number, removing +/// its old number, if any +void ValueTable::add(Value* V, uint32_t num) { + DenseMap::iterator VI = valueNumbering.find(V); + if (VI != valueNumbering.end()) + valueNumbering.erase(VI); + valueNumbering.insert(std::make_pair(V, num)); +} + +/// clear - Remove all entries from the ValueTable +void ValueTable::clear() { + valueNumbering.clear(); + expressionNumbering.clear(); + nextValueNumber = 1; +} + +/// erase - Remove a value from the value numbering +void ValueTable::erase(Value* V) { + valueNumbering.erase(V); +} + +/// size - Return the number of assigned value numbers +unsigned ValueTable::size() { + // NOTE: zero is never assigned + return nextValueNumber; +} + +//===----------------------------------------------------------------------===// +// ValueNumberedSet Class +//===----------------------------------------------------------------------===// + +class ValueNumberedSet { + private: + SmallPtrSet contents; + BitVector numbers; + public: + ValueNumberedSet() { numbers.resize(1); } + ValueNumberedSet(const ValueNumberedSet& other) { + numbers = other.numbers; + contents = other.contents; + } + + typedef SmallPtrSet::iterator iterator; + + iterator begin() { return contents.begin(); } + iterator end() { return contents.end(); } + + bool insert(Value* v) { return contents.insert(v); } + void insert(iterator I, iterator E) { contents.insert(I, E); } + void erase(Value* v) { contents.erase(v); } + unsigned count(Value* v) { return contents.count(v); } + size_t size() { return contents.size(); } + + void set(unsigned i) { + if (i >= numbers.size()) + numbers.resize(i+1); + + numbers.set(i); + } + + void operator=(const ValueNumberedSet& other) { + contents = other.contents; + numbers = other.numbers; + } + + void reset(unsigned i) { + if (i < numbers.size()) + numbers.reset(i); + } + + bool test(unsigned i) { + if (i >= numbers.size()) + return false; + + return numbers.test(i); + } + + void clear() { + contents.clear(); + numbers.clear(); + } }; +//===----------------------------------------------------------------------===// +// GVNPRE Pass +//===----------------------------------------------------------------------===// + namespace { class VISIBILITY_HIDDEN GVNPRE : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid - GVNPRE() : FunctionPass((intptr_t)&ID) { nextValueNumber = 0; } + GVNPRE() : FunctionPass((intptr_t)&ID) { } private: - uint32_t nextValueNumber; - typedef std::map ValueTable; + ValueTable VN; + SmallVector createdExpressions; + + DenseMap availableOut; + DenseMap anticipatedIn; + DenseMap generatedPhis; + // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); + AU.addRequiredID(BreakCriticalEdgesID); + AU.addRequired(); AU.addRequired(); - AU.addRequired(); } // Helper fuctions // FIXME: eliminate or document these better - void dump(ValueTable& VN, std::set& s); - void dump_unique(ValueTable& VN, std::set& s); - void clean(ValueTable VN, std::set& set); - bool add(ValueTable& VN, std::set& MS, Value* V); - Value* find_leader(ValueTable VN, std::set& vals, uint32_t v); - Value* phi_translate(ValueTable& VN, std::set& MS, - std::set& set, - Value* V, BasicBlock* pred); - void phi_translate_set(ValueTable& VN, std::set& MS, - std::set& anticIn, BasicBlock* B, - std::set& out); - - void topo_sort(ValueTable& VN, std::set& set, - std::vector& vec); - - // For a given block, calculate the generated expressions, temporaries, - // and the AVAIL_OUT set - void CalculateAvailOut(ValueTable& VN, std::set& MS, - DomTreeNode* DI, - std::set& currExps, - std::set& currPhis, - std::set& currTemps, - std::set& currAvail, - std::map > availOut); + void dump(ValueNumberedSet& s) const ; + void clean(ValueNumberedSet& set) ; + Value* find_leader(ValueNumberedSet& vals, uint32_t v) ; + Value* phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) ; + void phi_translate_set(ValueNumberedSet& anticIn, BasicBlock* pred, + BasicBlock* succ, ValueNumberedSet& out) ; + + void topo_sort(ValueNumberedSet& set, + SmallVector& vec) ; + + void cleanup() ; + bool elimination() ; + + void val_insert(ValueNumberedSet& s, Value* v) ; + void val_replace(ValueNumberedSet& s, Value* v) ; + bool dependsOnInvoke(Value* V) ; + void buildsets_availout(BasicBlock::iterator I, + ValueNumberedSet& currAvail, + ValueNumberedSet& currPhis, + ValueNumberedSet& currExps, + SmallPtrSet& currTemps); + bool buildsets_anticout(BasicBlock* BB, + ValueNumberedSet& anticOut, + SmallPtrSet& visited); + unsigned buildsets_anticin(BasicBlock* BB, + ValueNumberedSet& anticOut, + ValueNumberedSet& currExps, + SmallPtrSet& currTemps, + SmallPtrSet& visited); + void buildsets(Function& F) ; + + void insertion_pre(Value* e, BasicBlock* BB, + DenseMap& avail, + std::map& new_set); + unsigned insertion_mergepoint(SmallVector& workList, + df_iterator& D, + std::map& new_set); + bool insertion(Function& F) ; }; @@ -104,371 +724,1146 @@ namespace { } +// createGVNPREPass - The public interface to this file... FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); } -RegisterPass X("gvnpre", - "Global Value Numbering/Partial Redundancy Elimination"); +static RegisterPass X("gvnpre", + "Global Value Numbering/Partial Redundancy Elimination"); +STATISTIC(NumInsertedVals, "Number of values inserted"); +STATISTIC(NumInsertedPhis, "Number of PHI nodes inserted"); +STATISTIC(NumEliminated, "Number of redundant instructions eliminated"); -bool GVNPRE::add(ValueTable& VN, std::set& MS, Value* V) { - std::pair ret = VN.insert(std::make_pair(V, nextValueNumber)); - if (ret.second) - nextValueNumber++; - if (isa(V) || isa(V)) - MS.insert(V); - return ret.second; -} - -Value* GVNPRE::find_leader(GVNPRE::ValueTable VN, - std::set& vals, - uint32_t v) { - for (std::set::iterator I = vals.begin(), E = vals.end(); +/// find_leader - Given a set and a value number, return the first +/// element of the set with that value number, or 0 if no such element +/// is present +Value* GVNPRE::find_leader(ValueNumberedSet& vals, uint32_t v) { + if (!vals.test(v)) + return 0; + + for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end(); I != E; ++I) - if (VN[*I] == v) + if (v == VN.lookup(*I)) return *I; + assert(0 && "No leader found, but present bit is set?"); return 0; } -Value* GVNPRE::phi_translate(ValueTable& VN, std::set& MS, - std::set& set, - Value* V, BasicBlock* pred) { +/// val_insert - Insert a value into a set only if there is not a value +/// with the same value number already in the set +void GVNPRE::val_insert(ValueNumberedSet& s, Value* v) { + uint32_t num = VN.lookup(v); + if (!s.test(num)) + s.insert(v); +} + +/// val_replace - Insert a value into a set, replacing any values already in +/// the set that have the same value number +void GVNPRE::val_replace(ValueNumberedSet& s, Value* v) { + if (s.count(v)) return; + + uint32_t num = VN.lookup(v); + Value* leader = find_leader(s, num); + if (leader != 0) + s.erase(leader); + s.insert(v); + s.set(num); +} + +/// phi_translate - Given a value, its parent block, and a predecessor of its +/// parent, translate the value into legal for the predecessor block. This +/// means translating its operands (and recursively, their operands) through +/// any phi nodes in the parent into values available in the predecessor +Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) { if (V == 0) return 0; - if (BinaryOperator* BO = dyn_cast(V)) { - Value* newOp1 = isa(BO->getOperand(0)) - ? phi_translate(VN, MS, set, - find_leader(VN, set, VN[BO->getOperand(0)]), - pred) - : BO->getOperand(0); + // Unary Operations + if (CastInst* U = dyn_cast(V)) { + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + if (newOp1 != U->getOperand(0)) { + Instruction* newVal = 0; + if (CastInst* C = dyn_cast(U)) + newVal = CastInst::create(C->getOpcode(), + newOp1, C->getType(), + C->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Binary Operations + } if (isa(V) || isa(V) || + isa(V)) { + User* U = cast(V); + + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + if (newOp1 == 0) return 0; - Value* newOp2 = isa(BO->getOperand(1)) - ? phi_translate(VN, MS, set, - find_leader(VN, set, VN[BO->getOperand(0)]), - pred) - : BO->getOperand(1); + Value* newOp2 = 0; + if (isa(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + if (newOp2 == 0) return 0; - if (newOp1 != BO->getOperand(0) || newOp2 != BO->getOperand(1)) { - Value* newVal = BinaryOperator::create(BO->getOpcode(), - newOp1, newOp2, - BO->getName()+".gvnpre"); - add(VN, MS, newVal); - if (!find_leader(VN, set, VN[newVal])) + if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1)) { + Instruction* newVal = 0; + if (BinaryOperator* BO = dyn_cast(U)) + newVal = BinaryOperator::create(BO->getOpcode(), + newOp1, newOp2, + BO->getName()+".expr"); + else if (CmpInst* C = dyn_cast(U)) + newVal = CmpInst::create(C->getOpcode(), + C->getPredicate(), + newOp1, newOp2, + C->getName()+".expr"); + else if (ExtractElementInst* E = dyn_cast(U)) + newVal = new ExtractElementInst(newOp1, newOp2, E->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); return newVal; - else - return 0; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } } + + // Ternary Operations + } else if (isa(V) || isa(V) || + isa(V)) { + User* U = cast(V); + + Value* newOp1 = 0; + if (isa(U->getOperand(0))) + newOp1 = phi_translate(U->getOperand(0), pred, succ); + else + newOp1 = U->getOperand(0); + + if (newOp1 == 0) + return 0; + + Value* newOp2 = 0; + if (isa(U->getOperand(1))) + newOp2 = phi_translate(U->getOperand(1), pred, succ); + else + newOp2 = U->getOperand(1); + + if (newOp2 == 0) + return 0; + + Value* newOp3 = 0; + if (isa(U->getOperand(2))) + newOp3 = phi_translate(U->getOperand(2), pred, succ); + else + newOp3 = U->getOperand(2); + + if (newOp3 == 0) + return 0; + + if (newOp1 != U->getOperand(0) || + newOp2 != U->getOperand(1) || + newOp3 != U->getOperand(2)) { + Instruction* newVal = 0; + if (ShuffleVectorInst* S = dyn_cast(U)) + newVal = new ShuffleVectorInst(newOp1, newOp2, newOp3, + S->getName()+".expr"); + else if (InsertElementInst* I = dyn_cast(U)) + newVal = new InsertElementInst(newOp1, newOp2, newOp3, + I->getName()+".expr"); + else if (SelectInst* I = dyn_cast(U)) + newVal = new SelectInst(newOp1, newOp2, newOp3, I->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // Varargs operators + } else if (GetElementPtrInst* U = dyn_cast(V)) { + Value* newOp1 = 0; + if (isa(U->getPointerOperand())) + newOp1 = phi_translate(U->getPointerOperand(), pred, succ); + else + newOp1 = U->getPointerOperand(); + + if (newOp1 == 0) + return 0; + + bool changed_idx = false; + SmallVector newIdx; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); + I != E; ++I) + if (isa(*I)) { + Value* newVal = phi_translate(*I, pred, succ); + newIdx.push_back(newVal); + if (newVal != *I) + changed_idx = true; + } else { + newIdx.push_back(*I); + } + + if (newOp1 != U->getPointerOperand() || changed_idx) { + Instruction* newVal = new GetElementPtrInst(newOp1, + &newIdx[0], newIdx.size(), + U->getName()+".expr"); + + uint32_t v = VN.lookup_or_add(newVal); + + Value* leader = find_leader(availableOut[pred], v); + if (leader == 0) { + createdExpressions.push_back(newVal); + return newVal; + } else { + VN.erase(newVal); + delete newVal; + return leader; + } + } + + // PHI Nodes } else if (PHINode* P = dyn_cast(V)) { - if (P->getParent() == pred->getTerminator()->getSuccessor(0)) + if (P->getParent() == succ) return P->getIncomingValueForBlock(pred); } return V; } -void GVNPRE::phi_translate_set(GVNPRE::ValueTable& VN, - std::set& MS, - std::set& anticIn, BasicBlock* B, - std::set& out) { - for (std::set::iterator I = anticIn.begin(), +/// phi_translate_set - Perform phi translation on every element of a set +void GVNPRE::phi_translate_set(ValueNumberedSet& anticIn, + BasicBlock* pred, BasicBlock* succ, + ValueNumberedSet& out) { + for (ValueNumberedSet::iterator I = anticIn.begin(), E = anticIn.end(); I != E; ++I) { - Value* V = phi_translate(VN, MS, anticIn, *I, B); - if (V != 0) + Value* V = phi_translate(*I, pred, succ); + if (V != 0 && !out.test(VN.lookup_or_add(V))) { out.insert(V); + out.set(VN.lookup(V)); + } } } -// Remove all expressions whose operands are not themselves in the set -void GVNPRE::clean(GVNPRE::ValueTable VN, std::set& set) { - std::vector worklist; - topo_sort(VN, set, worklist); +/// dependsOnInvoke - Test if a value has an phi node as an operand, any of +/// whose inputs is an invoke instruction. If this is true, we cannot safely +/// PRE the instruction or anything that depends on it. +bool GVNPRE::dependsOnInvoke(Value* V) { + if (PHINode* p = dyn_cast(V)) { + for (PHINode::op_iterator I = p->op_begin(), E = p->op_end(); I != E; ++I) + if (isa(*I)) + return true; + return false; + } else { + return false; + } +} + +/// clean - Remove all non-opaque values from the set whose operands are not +/// themselves in the set, as well as all values that depend on invokes (see +/// above) +void GVNPRE::clean(ValueNumberedSet& set) { + SmallVector worklist; + worklist.reserve(set.size()); + topo_sort(set, worklist); - while (!worklist.empty()) { - Value* v = worklist.back(); - worklist.pop_back(); + for (unsigned i = 0; i < worklist.size(); ++i) { + Value* v = worklist[i]; - if (BinaryOperator* BO = dyn_cast(v)) { - bool lhsValid = false; - for (std::set::iterator I = set.begin(), E = set.end(); - I != E; ++I) - if (VN[*I] == VN[BO->getOperand(0)]); - lhsValid = true; + // Handle unary ops + if (CastInst* U = dyn_cast(v)) { + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + if (!lhsValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } - bool rhsValid = false; - for (std::set::iterator I = set.begin(), E = set.end(); - I != E; ++I) - if (VN[*I] == VN[BO->getOperand(1)]); - rhsValid = true; + // Handle binary ops + } else if (isa(v) || isa(v) || + isa(v)) { + User* U = cast(v); + + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + bool rhsValid = !isa(U->getOperand(1)); + rhsValid |= set.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); + + if (!lhsValid || !rhsValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + + // Handle ternary ops + } else if (isa(v) || isa(v) || + isa(v)) { + User* U = cast(v); + + bool lhsValid = !isa(U->getOperand(0)); + lhsValid |= set.test(VN.lookup(U->getOperand(0))); + if (lhsValid) + lhsValid = !dependsOnInvoke(U->getOperand(0)); + + bool rhsValid = !isa(U->getOperand(1)); + rhsValid |= set.test(VN.lookup(U->getOperand(1))); + if (rhsValid) + rhsValid = !dependsOnInvoke(U->getOperand(1)); - if (!lhsValid || !rhsValid) - set.erase(BO); + bool thirdValid = !isa(U->getOperand(2)); + thirdValid |= set.test(VN.lookup(U->getOperand(2))); + if (thirdValid) + thirdValid = !dependsOnInvoke(U->getOperand(2)); + + if (!lhsValid || !rhsValid || !thirdValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } + + // Handle varargs ops + } else if (GetElementPtrInst* U = dyn_cast(v)) { + bool ptrValid = !isa(U->getPointerOperand()); + ptrValid |= set.test(VN.lookup(U->getPointerOperand())); + if (ptrValid) + ptrValid = !dependsOnInvoke(U->getPointerOperand()); + + bool varValid = true; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), E = U->idx_end(); + I != E; ++I) + if (varValid) { + varValid &= !isa(*I) || set.test(VN.lookup(*I)); + varValid &= !dependsOnInvoke(*I); + } + + if (!ptrValid || !varValid) { + set.erase(U); + set.reset(VN.lookup(U)); + } } } } -void GVNPRE::topo_sort(GVNPRE::ValueTable& VN, - std::set& set, - std::vector& vec) { - std::set toErase; - for (std::set::iterator I = set.begin(), E = set.end(); +/// topo_sort - Given a set of values, sort them by topological +/// order into the provided vector. +void GVNPRE::topo_sort(ValueNumberedSet& set, SmallVector& vec) { + SmallPtrSet visited; + SmallVector stack; + for (ValueNumberedSet::iterator I = set.begin(), E = set.end(); I != E; ++I) { - if (BinaryOperator* BO = dyn_cast(*I)) - for (std::set::iterator SI = set.begin(); SI != E; ++SI) { - if (VN[BO->getOperand(0)] == VN[*SI] || VN[BO->getOperand(1)] == VN[*SI]) { - toErase.insert(BO); + if (visited.count(*I) == 0) + stack.push_back(*I); + + while (!stack.empty()) { + Value* e = stack.back(); + + // Handle unary ops + if (CastInst* U = dyn_cast(e)) { + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); } - } - } - - std::vector Q; - std::insert_iterator > q_ins(Q, Q.begin()); - std::set_difference(set.begin(), set.end(), - toErase.begin(), toErase.end(), - q_ins, ExprLT()); - - std::set visited; - while (!Q.empty()) { - Value* e = Q.back(); - - if (BinaryOperator* BO = dyn_cast(e)) { - Value* l = find_leader(VN, set, VN[BO->getOperand(0)]); - Value* r = find_leader(VN, set, VN[BO->getOperand(1)]); - - if (l != 0 && visited.find(l) == visited.end()) - Q.push_back(l); - else if (r != 0 && visited.find(r) == visited.end()) - Q.push_back(r); - else { - vec.push_back(e); + + // Handle binary ops + } else if (isa(e) || isa(e) || + isa(e)) { + User* U = cast(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa(r) && + visited.count(r) == 0) + stack.push_back(r); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle ternary ops + } else if (isa(e) || isa(e) || + isa(e)) { + User* U = cast(e); + Value* l = find_leader(set, VN.lookup(U->getOperand(0))); + Value* r = find_leader(set, VN.lookup(U->getOperand(1))); + Value* m = find_leader(set, VN.lookup(U->getOperand(2))); + + if (l != 0 && isa(l) && + visited.count(l) == 0) + stack.push_back(l); + else if (r != 0 && isa(r) && + visited.count(r) == 0) + stack.push_back(r); + else if (m != 0 && isa(m) && + visited.count(m) == 0) + stack.push_back(m); + else { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast(e)) { + Value* p = find_leader(set, VN.lookup(U->getPointerOperand())); + + if (p != 0 && isa(p) && + visited.count(p) == 0) + stack.push_back(p); + else { + bool push_va = false; + for (GetElementPtrInst::op_iterator I = U->idx_begin(), + E = U->idx_end(); I != E; ++I) { + Value * v = find_leader(set, VN.lookup(*I)); + if (v != 0 && isa(v) && visited.count(v) == 0) { + stack.push_back(v); + push_va = true; + } + } + + if (!push_va) { + vec.push_back(e); + visited.insert(e); + stack.pop_back(); + } + } + + // Handle opaque ops + } else { visited.insert(e); - Q.pop_back(); + vec.push_back(e); + stack.pop_back(); } - } else { - visited.insert(e); - vec.push_back(e); - Q.pop_back(); } + + stack.clear(); } } - -void GVNPRE::dump(GVNPRE::ValueTable& VN, std::set& s) { +/// dump - Dump a set of values to standard error +void GVNPRE::dump(ValueNumberedSet& s) const { DOUT << "{ "; - for (std::set::iterator I = s.begin(), E = s.end(); + for (ValueNumberedSet::iterator I = s.begin(), E = s.end(); I != E; ++I) { + DOUT << "" << VN.lookup(*I) << ": "; DEBUG((*I)->dump()); } DOUT << "}\n\n"; } -void GVNPRE::dump_unique(GVNPRE::ValueTable& VN, std::set& s) { - DOUT << "{ "; - for (std::set::iterator I = s.begin(), E = s.end(); - I != E; ++I) { - DEBUG((*I)->dump()); - } - DOUT << "}\n\n"; -} +/// elimination - Phase 3 of the main algorithm. Perform full redundancy +/// elimination by walking the dominator tree and removing any instruction that +/// is dominated by another instruction with the same value number. +bool GVNPRE::elimination() { + bool changed_function = false; + + SmallVector, 8> replace; + SmallVector erase; + + DominatorTree& DT = getAnalysis(); + + for (df_iterator DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + BasicBlock* BB = DI->getBlock(); + + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) { -void GVNPRE::CalculateAvailOut(GVNPRE::ValueTable& VN, std::set& MS, - DomTreeNode* DI, - std::set& currExps, - std::set& currPhis, - std::set& currTemps, - std::set& currAvail, - std::map > availOut) { + if (isa(BI) || isa(BI) || + isa(BI) || isa(BI) || + isa(BI) || isa(BI) || + isa(BI) || isa(BI)) { + + if (availableOut[BB].test(VN.lookup(BI)) && + !availableOut[BB].count(BI)) { + Value *leader = find_leader(availableOut[BB], VN.lookup(BI)); + if (Instruction* Instr = dyn_cast(leader)) + if (Instr->getParent() != 0 && Instr != BI) { + replace.push_back(std::make_pair(BI, leader)); + erase.push_back(BI); + ++NumEliminated; + } + } + } + } + } - BasicBlock* BB = DI->getBlock(); + while (!replace.empty()) { + std::pair rep = replace.back(); + replace.pop_back(); + rep.first->replaceAllUsesWith(rep.second); + changed_function = true; + } + + for (SmallVector::iterator I = erase.begin(), + E = erase.end(); I != E; ++I) + (*I)->eraseFromParent(); - // A block inherits AVAIL_OUT from its dominator - if (DI->getIDom() != 0) - currAvail.insert(availOut[DI->getIDom()->getBlock()].begin(), - availOut[DI->getIDom()->getBlock()].end()); + return changed_function; +} + +/// cleanup - Delete any extraneous values that were created to represent +/// expressions without leaders. +void GVNPRE::cleanup() { + while (!createdExpressions.empty()) { + Instruction* I = createdExpressions.back(); + createdExpressions.pop_back(); + delete I; + } +} + +/// buildsets_availout - When calculating availability, handle an instruction +/// by inserting it into the appropriate sets +void GVNPRE::buildsets_availout(BasicBlock::iterator I, + ValueNumberedSet& currAvail, + ValueNumberedSet& currPhis, + ValueNumberedSet& currExps, + SmallPtrSet& currTemps) { + // Handle PHI nodes + if (PHINode* p = dyn_cast(I)) { + unsigned num = VN.lookup_or_add(p); - for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); - BI != BE; ++BI) { - - // Handle PHI nodes... - if (PHINode* p = dyn_cast(BI)) { - add(VN, MS, p); - currPhis.insert(p); + currPhis.insert(p); + currPhis.set(num); + + // Handle unary ops + } else if (CastInst* U = dyn_cast(I)) { + Value* leftValue = U->getOperand(0); - // Handle binary ops... - } else if (BinaryOperator* BO = dyn_cast(BI)) { - Value* leftValue = BO->getOperand(0); - Value* rightValue = BO->getOperand(1); + unsigned num = VN.lookup_or_add(U); - add(VN, MS, BO); + if (isa(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + currExps.set(VN.lookup(leftValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle binary ops + } else if (isa(I) || isa(I) || + isa(I)) { + User* U = cast(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); + + unsigned num = VN.lookup_or_add(U); - if (isa(leftValue)) + if (isa(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { currExps.insert(leftValue); - if (isa(rightValue)) + currExps.set(VN.lookup(leftValue)); + } + + if (isa(rightValue)) + if (!currExps.test(VN.lookup(rightValue))) { currExps.insert(rightValue); - currExps.insert(BO); + currExps.set(VN.lookup(rightValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle ternary ops + } else if (isa(I) || isa(I) || + isa(I)) { + User* U = cast(I); + Value* leftValue = U->getOperand(0); + Value* rightValue = U->getOperand(1); + Value* thirdValue = U->getOperand(2); - currTemps.insert(BO); + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + + if (isa(leftValue)) + if (!currExps.test(VN.lookup(leftValue))) { + currExps.insert(leftValue); + currExps.set(VN.lookup(leftValue)); + } + if (isa(rightValue)) + if (!currExps.test(VN.lookup(rightValue))) { + currExps.insert(rightValue); + currExps.set(VN.lookup(rightValue)); + } + if (isa(thirdValue)) + if (!currExps.test(VN.lookup(thirdValue))) { + currExps.insert(thirdValue); + currExps.set(VN.lookup(thirdValue)); + } + + if (!currExps.test(num)) { + currExps.insert(U); + currExps.set(num); + } + + // Handle vararg ops + } else if (GetElementPtrInst* U = dyn_cast(I)) { + Value* ptrValue = U->getPointerOperand(); - // Handle unsupported ops - } else if (!BI->isTerminator()){ - add(VN, MS, BI); - currTemps.insert(BI); + VN.lookup_or_add(U); + + unsigned num = VN.lookup_or_add(U); + + if (isa(ptrValue)) + if (!currExps.test(VN.lookup(ptrValue))) { + currExps.insert(ptrValue); + currExps.set(VN.lookup(ptrValue)); + } + + for (GetElementPtrInst::op_iterator OI = U->idx_begin(), OE = U->idx_end(); + OI != OE; ++OI) + if (isa(*OI) && !currExps.test(VN.lookup(*OI))) { + currExps.insert(*OI); + currExps.set(VN.lookup(*OI)); + } + + if (!currExps.test(VN.lookup(U))) { + currExps.insert(U); + currExps.set(num); } - if (!BI->isTerminator()) - currAvail.insert(BI); + // Handle opaque ops + } else if (!I->isTerminator()){ + VN.lookup_or_add(I); + + currTemps.insert(I); } + + if (!I->isTerminator()) + if (!currAvail.test(VN.lookup(I))) { + currAvail.insert(I); + currAvail.set(VN.lookup(I)); + } } -bool GVNPRE::runOnFunction(Function &F) { - ValueTable VN; - std::set maximalSet; +/// buildsets_anticout - When walking the postdom tree, calculate the ANTIC_OUT +/// set as a function of the ANTIC_IN set of the block's predecessors +bool GVNPRE::buildsets_anticout(BasicBlock* BB, + ValueNumberedSet& anticOut, + SmallPtrSet& visited) { + if (BB->getTerminator()->getNumSuccessors() == 1) { + if (BB->getTerminator()->getSuccessor(0) != BB && + visited.count(BB->getTerminator()->getSuccessor(0)) == 0) { + return true; + } + else { + phi_translate_set(anticipatedIn[BB->getTerminator()->getSuccessor(0)], + BB, BB->getTerminator()->getSuccessor(0), anticOut); + } + } else if (BB->getTerminator()->getNumSuccessors() > 1) { + BasicBlock* first = BB->getTerminator()->getSuccessor(0); + for (ValueNumberedSet::iterator I = anticipatedIn[first].begin(), + E = anticipatedIn[first].end(); I != E; ++I) { + anticOut.insert(*I); + anticOut.set(VN.lookup(*I)); + } + + for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { + BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); + ValueNumberedSet& succAnticIn = anticipatedIn[currSucc]; + + SmallVector temp; + + for (ValueNumberedSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) + if (!succAnticIn.test(VN.lookup(*I))) + temp.push_back(*I); - std::map > generatedExpressions; - std::map > generatedPhis; - std::map > generatedTemporaries; - std::map > availableOut; - std::map > anticipatedIn; + for (SmallVector::iterator I = temp.begin(), E = temp.end(); + I != E; ++I) { + anticOut.erase(*I); + anticOut.reset(VN.lookup(*I)); + } + } + } + return false; +} + +/// buildsets_anticin - Walk the postdom tree, calculating ANTIC_OUT for +/// each block. ANTIC_IN is then a function of ANTIC_OUT and the GEN +/// sets populated in buildsets_availout +unsigned GVNPRE::buildsets_anticin(BasicBlock* BB, + ValueNumberedSet& anticOut, + ValueNumberedSet& currExps, + SmallPtrSet& currTemps, + SmallPtrSet& visited) { + ValueNumberedSet& anticIn = anticipatedIn[BB]; + unsigned old = anticIn.size(); + + bool defer = buildsets_anticout(BB, anticOut, visited); + if (defer) + return 0; + + anticIn.clear(); + + for (ValueNumberedSet::iterator I = anticOut.begin(), + E = anticOut.end(); I != E; ++I) { + anticIn.insert(*I); + anticIn.set(VN.lookup(*I)); + } + for (ValueNumberedSet::iterator I = currExps.begin(), + E = currExps.end(); I != E; ++I) { + if (!anticIn.test(VN.lookup(*I))) { + anticIn.insert(*I); + anticIn.set(VN.lookup(*I)); + } + } + + for (SmallPtrSet::iterator I = currTemps.begin(), + E = currTemps.end(); I != E; ++I) { + anticIn.erase(*I); + anticIn.reset(VN.lookup(*I)); + } + + clean(anticIn); + anticOut.clear(); + + if (old != anticIn.size()) + return 2; + else + return 1; +} + +/// buildsets - Phase 1 of the main algorithm. Construct the AVAIL_OUT +/// and the ANTIC_IN sets. +void GVNPRE::buildsets(Function& F) { + DenseMap generatedExpressions; + DenseMap > generatedTemporaries; + DominatorTree &DT = getAnalysis(); - // First Phase of BuildSets - calculate AVAIL_OUT + // Phase 1, Part 1: calculate AVAIL_OUT // Top-down walk of the dominator tree for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { // Get the sets to update for this block - std::set& currExps = generatedExpressions[DI->getBlock()]; - std::set& currPhis = generatedPhis[DI->getBlock()]; - std::set& currTemps = generatedTemporaries[DI->getBlock()]; - std::set& currAvail = availableOut[DI->getBlock()]; + ValueNumberedSet& currExps = generatedExpressions[DI->getBlock()]; + ValueNumberedSet& currPhis = generatedPhis[DI->getBlock()]; + SmallPtrSet& currTemps = generatedTemporaries[DI->getBlock()]; + ValueNumberedSet& currAvail = availableOut[DI->getBlock()]; - CalculateAvailOut(VN, maximalSet, *DI, currExps, currPhis, - currTemps, currAvail, availableOut); - } - - DOUT << "Maximal Set: "; - dump_unique(VN, maximalSet); - DOUT << "\n"; + BasicBlock* BB = DI->getBlock(); - PostDominatorTree &PDT = getAnalysis(); - - // Second Phase of BuildSets - calculate ANTIC_IN + // A block inherits AVAIL_OUT from its dominator + if (DI->getIDom() != 0) + currAvail = availableOut[DI->getIDom()->getBlock()]; + + for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); + BI != BE; ++BI) + buildsets_availout(BI, currAvail, currPhis, currExps, + currTemps); + + } + + // Phase 1, Part 2: calculate ANTIC_IN - std::set visited; + SmallPtrSet visited; + SmallPtrSet block_changed; + for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) + block_changed.insert(FI); bool changed = true; unsigned iterations = 0; + while (changed) { changed = false; - std::set anticOut; - - // Top-down walk of the postdominator tree - for (df_iterator PDI = - df_begin(PDT.getRootNode()), E = df_end(DT.getRootNode()); - PDI != E; ++PDI) { - BasicBlock* BB = PDI->getBlock(); - DOUT << "Block: " << BB->getName() << "\n"; - DOUT << "TMP_GEN: "; - dump(VN, generatedTemporaries[BB]); - DOUT << "\n"; - - DOUT << "EXP_GEN: "; - dump_unique(VN, generatedExpressions[BB]); - visited.insert(BB); - - std::set& anticIn = anticipatedIn[BB]; - std::set old (anticIn.begin(), anticIn.end()); - - if (BB->getTerminator()->getNumSuccessors() == 1) { - if (visited.find(BB->getTerminator()->getSuccessor(0)) == - visited.end()) - phi_translate_set(VN, maximalSet, maximalSet, BB, anticOut); - else - phi_translate_set(VN, maximalSet, - anticipatedIn[BB->getTerminator()->getSuccessor(0)], BB, anticOut); - } else if (BB->getTerminator()->getNumSuccessors() > 1) { - BasicBlock* first = BB->getTerminator()->getSuccessor(0); - anticOut.insert(anticipatedIn[first].begin(), - anticipatedIn[first].end()); - for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { - BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); - std::set& succAnticIn = anticipatedIn[currSucc]; - - std::set temp; - std::insert_iterator > temp_ins(temp, - temp.begin()); - std::set_intersection(anticOut.begin(), anticOut.end(), - succAnticIn.begin(), succAnticIn.end(), - temp_ins, ExprLT()); - - anticOut.clear(); - anticOut.insert(temp.begin(), temp.end()); + ValueNumberedSet anticOut; + + // Postorder walk of the CFG + for (po_iterator BBI = po_begin(&F.getEntryBlock()), + BBE = po_end(&F.getEntryBlock()); BBI != BBE; ++BBI) { + BasicBlock* BB = *BBI; + + if (block_changed.count(BB) != 0) { + unsigned ret = buildsets_anticin(BB, anticOut,generatedExpressions[BB], + generatedTemporaries[BB], visited); + + if (ret == 0) { + changed = true; + continue; + } else { + visited.insert(BB); + + if (ret == 2) + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); + PI != PE; ++PI) { + block_changed.insert(*PI); + } + else + block_changed.erase(BB); + + changed |= (ret == 2); } } + } + + iterations++; + } +} + +/// insertion_pre - When a partial redundancy has been identified, eliminate it +/// by inserting appropriate values into the predecessors and a phi node in +/// the main block +void GVNPRE::insertion_pre(Value* e, BasicBlock* BB, + DenseMap& avail, + std::map& new_sets) { + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + Value* e2 = avail[*PI]; + if (!availableOut[*PI].test(VN.lookup(e2))) { + User* U = cast(e2); - DOUT << "ANTIC_OUT: "; - dump_unique(VN, anticOut); - DOUT << "\n"; + Value* s1 = 0; + if (isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0)) || + isa(U->getOperand(0))) + s1 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(0))); + else + s1 = U->getOperand(0); - std::set S; - std::insert_iterator > s_ins(S, S.begin()); - std::set_union(anticOut.begin(), anticOut.end(), - generatedExpressions[BB].begin(), - generatedExpressions[BB].end(), - s_ins, ExprLT()); + Value* s2 = 0; - anticIn.clear(); + if (isa(U) || + isa(U) || + isa(U) || + isa(U) || + isa(U) || + isa(U)) + if (isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1)) || + isa(U->getOperand(1))) { + s2 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(1))); + } else { + s2 = U->getOperand(1); + } - for (std::set::iterator I = S.begin(), E = S.end(); - I != E; ++I) { - if (generatedTemporaries[BB].find(*I) == generatedTemporaries[BB].end()) - anticIn.insert(*I); + // Ternary Operators + Value* s3 = 0; + if (isa(U) || + isa(U) || + isa(U)) + if (isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2)) || + isa(U->getOperand(2))) { + s3 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(2))); + } else { + s3 = U->getOperand(2); + } + + // Vararg operators + SmallVector sVarargs; + if (GetElementPtrInst* G = dyn_cast(U)) { + for (GetElementPtrInst::op_iterator OI = G->idx_begin(), + OE = G->idx_end(); OI != OE; ++OI) { + if (isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI) || + isa(*OI)) { + sVarargs.push_back(find_leader(availableOut[*PI], + VN.lookup(*OI))); + } else { + sVarargs.push_back(*OI); + } + } + } + + Value* newVal = 0; + if (BinaryOperator* BO = dyn_cast(U)) + newVal = BinaryOperator::create(BO->getOpcode(), s1, s2, + BO->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CmpInst* C = dyn_cast(U)) + newVal = CmpInst::create(C->getOpcode(), C->getPredicate(), s1, s2, + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ShuffleVectorInst* S = dyn_cast(U)) + newVal = new ShuffleVectorInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (InsertElementInst* S = dyn_cast(U)) + newVal = new InsertElementInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (ExtractElementInst* S = dyn_cast(U)) + newVal = new ExtractElementInst(s1, s2, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (SelectInst* S = dyn_cast(U)) + newVal = new SelectInst(s1, s2, s3, S->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (CastInst* C = dyn_cast(U)) + newVal = CastInst::create(C->getOpcode(), s1, C->getType(), + C->getName()+".gvnpre", + (*PI)->getTerminator()); + else if (GetElementPtrInst* G = dyn_cast(U)) + newVal = new GetElementPtrInst(s1, &sVarargs[0], sVarargs.size(), + G->getName()+".gvnpre", + (*PI)->getTerminator()); + + + VN.add(newVal, VN.lookup(U)); + + ValueNumberedSet& predAvail = availableOut[*PI]; + val_replace(predAvail, newVal); + val_replace(new_sets[*PI], newVal); + predAvail.set(VN.lookup(newVal)); + + DenseMap::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, newVal)); + + ++NumInsertedVals; + } + } + + PHINode* p = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (p == 0) + p = new PHINode(avail[*PI]->getType(), "gvnpre-join", BB->begin()); + + p->addIncoming(avail[*PI], *PI); + } + + VN.add(p, VN.lookup(e)); + val_replace(availableOut[BB], p); + availableOut[BB].set(VN.lookup(e)); + generatedPhis[BB].insert(p); + generatedPhis[BB].set(VN.lookup(e)); + new_sets[BB].insert(p); + new_sets[BB].set(VN.lookup(e)); + + ++NumInsertedPhis; +} + +/// insertion_mergepoint - When walking the dom tree, check at each merge +/// block for the possibility of a partial redundancy. If present, eliminate it +unsigned GVNPRE::insertion_mergepoint(SmallVector& workList, + df_iterator& D, + std::map& new_sets) { + bool changed_function = false; + bool new_stuff = false; + + BasicBlock* BB = D->getBlock(); + for (unsigned i = 0; i < workList.size(); ++i) { + Value* e = workList[i]; + + if (isa(e) || isa(e) || + isa(e) || isa(e) || + isa(e) || isa(e) || isa(e) || + isa(e)) { + if (availableOut[D->getIDom()->getBlock()].test(VN.lookup(e))) + continue; + + DenseMap avail; + bool by_some = false; + bool all_same = true; + Value * first_s = 0; + + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; + ++PI) { + Value *e2 = phi_translate(e, *PI, BB); + Value *e3 = find_leader(availableOut[*PI], VN.lookup(e2)); + + if (e3 == 0) { + DenseMap::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e2)); + all_same = false; + } else { + DenseMap::iterator av = avail.find(*PI); + if (av != avail.end()) + avail.erase(av); + avail.insert(std::make_pair(*PI, e3)); + + by_some = true; + if (first_s == 0) + first_s = e3; + else if (first_s != e3) + all_same = false; + } + } + + if (by_some && !all_same && + !generatedPhis[BB].test(VN.lookup(e))) { + insertion_pre(e, BB, avail, new_sets); + + changed_function = true; + new_stuff = true; } + } + } + + unsigned retval = 0; + if (changed_function) + retval += 1; + if (new_stuff) + retval += 2; + + return retval; +} + +/// insert - Phase 2 of the main algorithm. Walk the dominator tree looking for +/// merge points. When one is found, check for a partial redundancy. If one is +/// present, eliminate it. Repeat this walk until no changes are made. +bool GVNPRE::insertion(Function& F) { + bool changed_function = false; + + DominatorTree &DT = getAnalysis(); + + std::map new_sets; + bool new_stuff = true; + while (new_stuff) { + new_stuff = false; + for (df_iterator DI = df_begin(DT.getRootNode()), + E = df_end(DT.getRootNode()); DI != E; ++DI) { + BasicBlock* BB = DI->getBlock(); - clean(VN, anticIn); + if (BB == 0) + continue; - DOUT << "ANTIC_IN: "; - dump_unique(VN, anticIn); - DOUT << "\n"; + ValueNumberedSet& availOut = availableOut[BB]; + ValueNumberedSet& anticIn = anticipatedIn[BB]; - if (old != anticIn) - changed = true; + // Replace leaders with leaders inherited from dominator + if (DI->getIDom() != 0) { + ValueNumberedSet& dom_set = new_sets[DI->getIDom()->getBlock()]; + for (ValueNumberedSet::iterator I = dom_set.begin(), + E = dom_set.end(); I != E; ++I) { + val_replace(new_sets[BB], *I); + val_replace(availOut, *I); + } + } - anticOut.clear(); + // If there is more than one predecessor... + if (pred_begin(BB) != pred_end(BB) && ++pred_begin(BB) != pred_end(BB)) { + SmallVector workList; + workList.reserve(anticIn.size()); + topo_sort(anticIn, workList); + + unsigned result = insertion_mergepoint(workList, DI, new_sets); + if (result & 1) + changed_function = true; + if (result & 2) + new_stuff = true; + } } - - iterations++; } - DOUT << "Iterations: " << iterations << "\n"; + return changed_function; +} + +// GVNPRE::runOnFunction - This is the main transformation entry point for a +// function. +// +bool GVNPRE::runOnFunction(Function &F) { + // Clean out global sets from any previous functions + VN.clear(); + createdExpressions.clear(); + availableOut.clear(); + anticipatedIn.clear(); + generatedPhis.clear(); + + bool changed_function = false; - for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { - DOUT << "Name: " << I->getName().c_str() << "\n"; - - DOUT << "TMP_GEN: "; - dump(VN, generatedTemporaries[I]); - DOUT << "\n"; - - DOUT << "EXP_GEN: "; - dump_unique(VN, generatedExpressions[I]); - DOUT << "\n"; - - DOUT << "ANTIC_IN: "; - dump_unique(VN, anticipatedIn[I]); - DOUT << "\n"; - - DOUT << "AVAIL_OUT: "; - dump_unique(VN, availableOut[I]); - DOUT << "\n"; - } + // Phase 1: BuildSets + // This phase calculates the AVAIL_OUT and ANTIC_IN sets + buildsets(F); - return false; + // Phase 2: Insert + // This phase inserts values to make partially redundant values + // fully redundant + changed_function |= insertion(F); + + // Phase 3: Eliminate + // This phase performs trivial full redundancy elimination + changed_function |= elimination(); + + // Phase 4: Cleanup + // This phase cleans up values that were created solely + // as leaders for expressions + cleanup(); + + return changed_function; }