X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FTransforms%2FUtils%2FPromoteMemoryToRegister.cpp;h=c4f9b9f61407810ad284f3cd5da0b7697f293250;hb=397864c7122838ca2afd0ceb61efeee540c37948;hp=790d4c2881702530252227f41e1348cd9303420a;hpb=59f5319719dd66570dc48d8415936a06c67672ff;p=oota-llvm.git diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp index 790d4c28817..c4f9b9f6140 100644 --- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp +++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp @@ -13,84 +13,76 @@ // traversing the function in depth-first order to rewrite loads and stores as // appropriate. // -// The algorithm used here is based on: -// -// Sreedhar and Gao. A linear time algorithm for placing phi-nodes. -// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of -// Programming Languages -// POPL '95. ACM, New York, NY, 62-73. -// -// It has been modified to not explicitly use the DJ graph data structure and to -// directly compute pruned SSA using per-variable liveness information. -// //===----------------------------------------------------------------------===// -#define DEBUG_TYPE "mem2reg" #include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include "llvm/Constants.h" -#include "llvm/DerivedTypes.h" -#include "llvm/Function.h" -#include "llvm/Instructions.h" -#include "llvm/IntrinsicInst.h" -#include "llvm/Metadata.h" -#include "llvm/Analysis/AliasSetTracker.h" -#include "llvm/Analysis/DebugInfo.h" -#include "llvm/Analysis/Dominators.h" -#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Support/CFG.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/IteratedDominanceFrontier.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/Transforms/Utils/Local.h" #include -#include -#include using namespace llvm; +#define DEBUG_TYPE "mem2reg" + STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); -namespace llvm { -template<> -struct DenseMapInfo > { - typedef std::pair EltTy; - static inline EltTy getEmptyKey() { - return EltTy(reinterpret_cast(-1), ~0U); - } - static inline EltTy getTombstoneKey() { - return EltTy(reinterpret_cast(-2), 0U); - } - static unsigned getHashValue(const std::pair &Val) { - return DenseMapInfo::getHashValue(Val.first) + Val.second*2; - } - static bool isEqual(const EltTy &LHS, const EltTy &RHS) { - return LHS == RHS; - } -}; -} - -/// isAllocaPromotable - Return true if this alloca is legal for promotion. -/// This is true if there are only loads and stores to the alloca. -/// bool llvm::isAllocaPromotable(const AllocaInst *AI) { // FIXME: If the memory unit is of pointer or integer type, we can permit // assignments to subsections of the memory unit. + unsigned AS = AI->getType()->getAddressSpace(); // Only allow direct and non-volatile loads and stores... - for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); - UI != UE; ++UI) { // Loop over all of the uses of the alloca - const User *U = *UI; + for (const User *U : AI->users()) { if (const LoadInst *LI = dyn_cast(U)) { + // Note that atomic loads can be transformed; atomic semantics do + // not have any meaning for a local alloca. if (LI->isVolatile()) return false; } else if (const StoreInst *SI = dyn_cast(U)) { if (SI->getOperand(0) == AI) - return false; // Don't allow a store OF the AI, only INTO the AI. + return false; // Don't allow a store OF the AI, only INTO the AI. + // Note that atomic stores can be transformed; atomic semantics do + // not have any meaning for a local alloca. if (SI->isVolatile()) return false; + } else if (const IntrinsicInst *II = dyn_cast(U)) { + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + return false; + } else if (const BitCastInst *BCI = dyn_cast(U)) { + if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) + return false; + if (!onlyUsedByLifetimeMarkers(BCI)) + return false; + } else if (const GetElementPtrInst *GEPI = dyn_cast(U)) { + if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS)) + return false; + if (!GEPI->hasAllZeroIndices()) + return false; + if (!onlyUsedByLifetimeMarkers(GEPI)) + return false; } else { return false; } @@ -99,276 +91,453 @@ bool llvm::isAllocaPromotable(const AllocaInst *AI) { return true; } -/// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the -/// alloca 'V', if any. -static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) { - if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1)) - for (Value::use_iterator UI = DebugNode->use_begin(), - E = DebugNode->use_end(); UI != E; ++UI) - if (DbgDeclareInst *DDI = dyn_cast(*UI)) - return DDI; +namespace { - return 0; -} +struct AllocaInfo { + SmallVector DefiningBlocks; + SmallVector UsingBlocks; + + StoreInst *OnlyStore; + BasicBlock *OnlyBlock; + bool OnlyUsedInOneBlock; + + Value *AllocaPointerVal; + DbgDeclareInst *DbgDeclare; + + void clear() { + DefiningBlocks.clear(); + UsingBlocks.clear(); + OnlyStore = nullptr; + OnlyBlock = nullptr; + OnlyUsedInOneBlock = true; + AllocaPointerVal = nullptr; + DbgDeclare = nullptr; + } -namespace { - struct AllocaInfo; - - // Data package used by RenamePass() - class RenamePassData { - public: - typedef std::vector ValVector; - - RenamePassData() : BB(NULL), Pred(NULL), Values() {} - RenamePassData(BasicBlock *B, BasicBlock *P, - const ValVector &V) : BB(B), Pred(P), Values(V) {} - BasicBlock *BB; - BasicBlock *Pred; - ValVector Values; - - void swap(RenamePassData &RHS) { - std::swap(BB, RHS.BB); - std::swap(Pred, RHS.Pred); - Values.swap(RHS.Values); + /// Scan the uses of the specified alloca, filling in the AllocaInfo used + /// by the rest of the pass to reason about the uses of this alloca. + void AnalyzeAlloca(AllocaInst *AI) { + clear(); + + // As we scan the uses of the alloca instruction, keep track of stores, + // and decide whether all of the loads and stores to the alloca are within + // the same basic block. + for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { + Instruction *User = cast(*UI++); + + if (StoreInst *SI = dyn_cast(User)) { + // Remember the basic blocks which define new values for the alloca + DefiningBlocks.push_back(SI->getParent()); + AllocaPointerVal = SI->getOperand(0); + OnlyStore = SI; + } else { + LoadInst *LI = cast(User); + // Otherwise it must be a load instruction, keep track of variable + // reads. + UsingBlocks.push_back(LI->getParent()); + AllocaPointerVal = LI; + } + + if (OnlyUsedInOneBlock) { + if (!OnlyBlock) + OnlyBlock = User->getParent(); + else if (OnlyBlock != User->getParent()) + OnlyUsedInOneBlock = false; + } } - }; - - /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of - /// load/store instructions in the block that directly load or store an alloca. + + DbgDeclare = FindAllocaDbgDeclare(AI); + } +}; + +// Data package used by RenamePass() +class RenamePassData { +public: + typedef std::vector ValVector; + + RenamePassData() : BB(nullptr), Pred(nullptr), Values() {} + RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V) + : BB(B), Pred(P), Values(V) {} + BasicBlock *BB; + BasicBlock *Pred; + ValVector Values; + + void swap(RenamePassData &RHS) { + std::swap(BB, RHS.BB); + std::swap(Pred, RHS.Pred); + Values.swap(RHS.Values); + } +}; + +/// \brief This assigns and keeps a per-bb relative ordering of load/store +/// instructions in the block that directly load or store an alloca. +/// +/// This functionality is important because it avoids scanning large basic +/// blocks multiple times when promoting many allocas in the same block. +class LargeBlockInfo { + /// \brief For each instruction that we track, keep the index of the + /// instruction. /// - /// This functionality is important because it avoids scanning large basic - /// blocks multiple times when promoting many allocas in the same block. - class LargeBlockInfo { - /// InstNumbers - For each instruction that we track, keep the index of the - /// instruction. The index starts out as the number of the instruction from - /// the start of the block. - DenseMap InstNumbers; - public: - - /// isInterestingInstruction - This code only looks at accesses to allocas. - static bool isInterestingInstruction(const Instruction *I) { - return (isa(I) && isa(I->getOperand(0))) || - (isa(I) && isa(I->getOperand(1))); - } - - /// getInstructionIndex - Get or calculate the index of the specified - /// instruction. - unsigned getInstructionIndex(const Instruction *I) { - assert(isInterestingInstruction(I) && - "Not a load/store to/from an alloca?"); - - // If we already have this instruction number, return it. - DenseMap::iterator It = InstNumbers.find(I); - if (It != InstNumbers.end()) return It->second; - - // Scan the whole block to get the instruction. This accumulates - // information for every interesting instruction in the block, in order to - // avoid gratuitus rescans. - const BasicBlock *BB = I->getParent(); - unsigned InstNo = 0; - for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); - BBI != E; ++BBI) - if (isInterestingInstruction(BBI)) - InstNumbers[BBI] = InstNo++; - It = InstNumbers.find(I); - - assert(It != InstNumbers.end() && "Didn't insert instruction?"); + /// The index starts out as the number of the instruction from the start of + /// the block. + DenseMap InstNumbers; + +public: + + /// This code only looks at accesses to allocas. + static bool isInterestingInstruction(const Instruction *I) { + return (isa(I) && isa(I->getOperand(0))) || + (isa(I) && isa(I->getOperand(1))); + } + + /// Get or calculate the index of the specified instruction. + unsigned getInstructionIndex(const Instruction *I) { + assert(isInterestingInstruction(I) && + "Not a load/store to/from an alloca?"); + + // If we already have this instruction number, return it. + DenseMap::iterator It = InstNumbers.find(I); + if (It != InstNumbers.end()) return It->second; - } - - void deleteValue(const Instruction *I) { - InstNumbers.erase(I); - } - - void clear() { - InstNumbers.clear(); - } - }; - - struct PromoteMem2Reg { - /// Allocas - The alloca instructions being promoted. - /// - std::vector Allocas; - DominatorTree &DT; - DIFactory *DIF; - - /// AST - An AliasSetTracker object to update. If null, don't update it. - /// - AliasSetTracker *AST; - - /// AllocaLookup - Reverse mapping of Allocas. - /// - DenseMap AllocaLookup; - - /// NewPhiNodes - The PhiNodes we're adding. - /// - DenseMap, PHINode*> NewPhiNodes; - - /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas - /// it corresponds to. - DenseMap PhiToAllocaMap; - - /// PointerAllocaValues - If we are updating an AliasSetTracker, then for - /// each alloca that is of pointer type, we keep track of what to copyValue - /// to the inserted PHI nodes here. - /// - std::vector PointerAllocaValues; - - /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare - /// intrinsic that describes it, if any, so that we can convert it to a - /// dbg.value intrinsic if the alloca gets promoted. - SmallVector AllocaDbgDeclares; - - /// Visited - The set of basic blocks the renamer has already visited. - /// - SmallPtrSet Visited; - - /// BBNumbers - Contains a stable numbering of basic blocks to avoid - /// non-determinstic behavior. - DenseMap BBNumbers; - - /// DomLevels - Maps DomTreeNodes to their level in the dominator tree. - DenseMap DomLevels; - - /// BBNumPreds - Lazily compute the number of predecessors a block has. - DenseMap BBNumPreds; - public: - PromoteMem2Reg(const std::vector &A, DominatorTree &dt, - AliasSetTracker *ast) - : Allocas(A), DT(dt), DIF(0), AST(ast) {} - ~PromoteMem2Reg() { - delete DIF; - } - void run(); + // Scan the whole block to get the instruction. This accumulates + // information for every interesting instruction in the block, in order to + // avoid gratuitus rescans. + const BasicBlock *BB = I->getParent(); + unsigned InstNo = 0; + for (const Instruction &BBI : *BB) + if (isInterestingInstruction(&BBI)) + InstNumbers[&BBI] = InstNo++; + It = InstNumbers.find(I); + + assert(It != InstNumbers.end() && "Didn't insert instruction?"); + return It->second; + } - /// dominates - Return true if BB1 dominates BB2 using the DominatorTree. - /// - bool dominates(BasicBlock *BB1, BasicBlock *BB2) const { - return DT.dominates(BB1, BB2); - } + void deleteValue(const Instruction *I) { InstNumbers.erase(I); } - private: - void RemoveFromAllocasList(unsigned &AllocaIdx) { - Allocas[AllocaIdx] = Allocas.back(); - Allocas.pop_back(); - --AllocaIdx; - } + void clear() { InstNumbers.clear(); } +}; + +struct PromoteMem2Reg { + /// The alloca instructions being promoted. + std::vector Allocas; + DominatorTree &DT; + DIBuilder DIB; + + /// An AliasSetTracker object to update. If null, don't update it. + AliasSetTracker *AST; + + /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. + AssumptionCache *AC; + + /// Reverse mapping of Allocas. + DenseMap AllocaLookup; + + /// \brief The PhiNodes we're adding. + /// + /// That map is used to simplify some Phi nodes as we iterate over it, so + /// it should have deterministic iterators. We could use a MapVector, but + /// since we already maintain a map from BasicBlock* to a stable numbering + /// (BBNumbers), the DenseMap is more efficient (also supports removal). + DenseMap, PHINode *> NewPhiNodes; + + /// For each PHI node, keep track of which entry in Allocas it corresponds + /// to. + DenseMap PhiToAllocaMap; + + /// If we are updating an AliasSetTracker, then for each alloca that is of + /// pointer type, we keep track of what to copyValue to the inserted PHI + /// nodes here. + std::vector PointerAllocaValues; + + /// For each alloca, we keep track of the dbg.declare intrinsic that + /// describes it, if any, so that we can convert it to a dbg.value + /// intrinsic if the alloca gets promoted. + SmallVector AllocaDbgDeclares; + + /// The set of basic blocks the renamer has already visited. + /// + SmallPtrSet Visited; + + /// Contains a stable numbering of basic blocks to avoid non-determinstic + /// behavior. + DenseMap BBNumbers; + + /// Lazily compute the number of predecessors a block has. + DenseMap BBNumPreds; + +public: + PromoteMem2Reg(ArrayRef Allocas, DominatorTree &DT, + AliasSetTracker *AST, AssumptionCache *AC) + : Allocas(Allocas.begin(), Allocas.end()), DT(DT), + DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), + AST(AST), AC(AC) {} + + void run(); + +private: + void RemoveFromAllocasList(unsigned &AllocaIdx) { + Allocas[AllocaIdx] = Allocas.back(); + Allocas.pop_back(); + --AllocaIdx; + } - unsigned getNumPreds(const BasicBlock *BB) { - unsigned &NP = BBNumPreds[BB]; - if (NP == 0) - NP = std::distance(pred_begin(BB), pred_end(BB))+1; - return NP-1; + unsigned getNumPreds(const BasicBlock *BB) { + unsigned &NP = BBNumPreds[BB]; + if (NP == 0) + NP = std::distance(pred_begin(BB), pred_end(BB)) + 1; + return NP - 1; + } + + void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSetImpl &DefBlocks, + SmallPtrSetImpl &LiveInBlocks); + void RenamePass(BasicBlock *BB, BasicBlock *Pred, + RenamePassData::ValVector &IncVals, + std::vector &Worklist); + bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); +}; + +} // end of anonymous namespace + +static void removeLifetimeIntrinsicUsers(AllocaInst *AI) { + // Knowing that this alloca is promotable, we know that it's safe to kill all + // instructions except for load and store. + + for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) { + Instruction *I = cast(*UI); + ++UI; + if (isa(I) || isa(I)) + continue; + + if (!I->getType()->isVoidTy()) { + // The only users of this bitcast/GEP instruction are lifetime intrinsics. + // Follow the use/def chain to erase them now instead of leaving it for + // dead code elimination later. + for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) { + Instruction *Inst = cast(*UUI); + ++UUI; + Inst->eraseFromParent(); + } } + I->eraseFromParent(); + } +} - void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, - AllocaInfo &Info); - void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSet &DefBlocks, - SmallPtrSet &LiveInBlocks); - - void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI); - void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI); - void ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI); - - - void RenamePass(BasicBlock *BB, BasicBlock *Pred, - RenamePassData::ValVector &IncVals, - std::vector &Worklist); - bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); - }; - - struct AllocaInfo { - std::vector DefiningBlocks; - std::vector UsingBlocks; - - StoreInst *OnlyStore; - BasicBlock *OnlyBlock; - bool OnlyUsedInOneBlock; - - Value *AllocaPointerVal; - DbgDeclareInst *DbgDeclare; - - void clear() { - DefiningBlocks.clear(); - UsingBlocks.clear(); - OnlyStore = 0; - OnlyBlock = 0; - OnlyUsedInOneBlock = true; - AllocaPointerVal = 0; - DbgDeclare = 0; +/// \brief Rewrite as many loads as possible given a single store. +/// +/// When there is only a single store, we can use the domtree to trivially +/// replace all of the dominated loads with the stored value. Do so, and return +/// true if this has successfully promoted the alloca entirely. If this returns +/// false there were some loads which were not dominated by the single store +/// and thus must be phi-ed with undef. We fall back to the standard alloca +/// promotion algorithm in that case. +static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, + LargeBlockInfo &LBI, + DominatorTree &DT, + AliasSetTracker *AST) { + StoreInst *OnlyStore = Info.OnlyStore; + bool StoringGlobalVal = !isa(OnlyStore->getOperand(0)); + BasicBlock *StoreBB = OnlyStore->getParent(); + int StoreIndex = -1; + + // Clear out UsingBlocks. We will reconstruct it here if needed. + Info.UsingBlocks.clear(); + + for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { + Instruction *UserInst = cast(*UI++); + if (!isa(UserInst)) { + assert(UserInst == OnlyStore && "Should only have load/stores"); + continue; } - - /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our - /// ivars. - void AnalyzeAlloca(AllocaInst *AI) { - clear(); - - // As we scan the uses of the alloca instruction, keep track of stores, - // and decide whether all of the loads and stores to the alloca are within - // the same basic block. - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); - UI != E;) { - Instruction *User = cast(*UI++); - - if (StoreInst *SI = dyn_cast(User)) { - // Remember the basic blocks which define new values for the alloca - DefiningBlocks.push_back(SI->getParent()); - AllocaPointerVal = SI->getOperand(0); - OnlyStore = SI; - } else { - LoadInst *LI = cast(User); - // Otherwise it must be a load instruction, keep track of variable - // reads. - UsingBlocks.push_back(LI->getParent()); - AllocaPointerVal = LI; - } - - if (OnlyUsedInOneBlock) { - if (OnlyBlock == 0) - OnlyBlock = User->getParent(); - else if (OnlyBlock != User->getParent()) - OnlyUsedInOneBlock = false; + LoadInst *LI = cast(UserInst); + + // Okay, if we have a load from the alloca, we want to replace it with the + // only value stored to the alloca. We can do this if the value is + // dominated by the store. If not, we use the rest of the mem2reg machinery + // to insert the phi nodes as needed. + if (!StoringGlobalVal) { // Non-instructions are always dominated. + if (LI->getParent() == StoreBB) { + // If we have a use that is in the same block as the store, compare the + // indices of the two instructions to see which one came first. If the + // load came before the store, we can't handle it. + if (StoreIndex == -1) + StoreIndex = LBI.getInstructionIndex(OnlyStore); + + if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { + // Can't handle this load, bail out. + Info.UsingBlocks.push_back(StoreBB); + continue; } + + } else if (LI->getParent() != StoreBB && + !DT.dominates(StoreBB, LI->getParent())) { + // If the load and store are in different blocks, use BB dominance to + // check their relationships. If the store doesn't dom the use, bail + // out. + Info.UsingBlocks.push_back(LI->getParent()); + continue; } - - DbgDeclare = FindAllocaDbgDeclare(AI); } - }; - typedef std::pair DomTreeNodePair; + // Otherwise, we *can* safely rewrite this load. + Value *ReplVal = OnlyStore->getOperand(0); + // If the replacement value is the load, this must occur in unreachable + // code. + if (ReplVal == LI) + ReplVal = UndefValue::get(LI->getType()); + LI->replaceAllUsesWith(ReplVal); + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + LI->eraseFromParent(); + LBI.deleteValue(LI); + } + + // Finally, after the scan, check to see if the store is all that is left. + if (!Info.UsingBlocks.empty()) + return false; // If not, we'll have to fall back for the remainder. + + // Record debuginfo for the store and remove the declaration's + // debuginfo. + if (DbgDeclareInst *DDI = Info.DbgDeclare) { + DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); + ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB); + DDI->eraseFromParent(); + LBI.deleteValue(DDI); + } + // Remove the (now dead) store and alloca. + Info.OnlyStore->eraseFromParent(); + LBI.deleteValue(Info.OnlyStore); + + if (AST) + AST->deleteValue(AI); + AI->eraseFromParent(); + LBI.deleteValue(AI); + return true; +} - struct DomTreeNodeCompare { - bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) { - return LHS.second < RHS.second; +/// Many allocas are only used within a single basic block. If this is the +/// case, avoid traversing the CFG and inserting a lot of potentially useless +/// PHI nodes by just performing a single linear pass over the basic block +/// using the Alloca. +/// +/// If we cannot promote this alloca (because it is read before it is written), +/// return false. This is necessary in cases where, due to control flow, the +/// alloca is undefined only on some control flow paths. e.g. code like +/// this is correct in LLVM IR: +/// // A is an alloca with no stores so far +/// for (...) { +/// int t = *A; +/// if (!first_iteration) +/// use(t); +/// *A = 42; +/// } +static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, + LargeBlockInfo &LBI, + AliasSetTracker *AST) { + // The trickiest case to handle is when we have large blocks. Because of this, + // this code is optimized assuming that large blocks happen. This does not + // significantly pessimize the small block case. This uses LargeBlockInfo to + // make it efficient to get the index of various operations in the block. + + // Walk the use-def list of the alloca, getting the locations of all stores. + typedef SmallVector, 64> StoresByIndexTy; + StoresByIndexTy StoresByIndex; + + for (User *U : AI->users()) + if (StoreInst *SI = dyn_cast(U)) + StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); + + // Sort the stores by their index, making it efficient to do a lookup with a + // binary search. + std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first()); + + // Walk all of the loads from this alloca, replacing them with the nearest + // store above them, if any. + for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) { + LoadInst *LI = dyn_cast(*UI++); + if (!LI) + continue; + + unsigned LoadIdx = LBI.getInstructionIndex(LI); + + // Find the nearest store that has a lower index than this load. + StoresByIndexTy::iterator I = + std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), + std::make_pair(LoadIdx, + static_cast(nullptr)), + less_first()); + if (I == StoresByIndex.begin()) { + if (StoresByIndex.empty()) + // If there are no stores, the load takes the undef value. + LI->replaceAllUsesWith(UndefValue::get(LI->getType())); + else + // There is no store before this load, bail out (load may be affected + // by the following stores - see main comment). + return false; } - }; -} // end of anonymous namespace + else + // Otherwise, there was a store before this load, the load takes its value. + LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0)); + + if (AST && LI->getType()->isPointerTy()) + AST->deleteValue(LI); + LI->eraseFromParent(); + LBI.deleteValue(LI); + } + + // Remove the (now dead) stores and alloca. + while (!AI->use_empty()) { + StoreInst *SI = cast(AI->user_back()); + // Record debuginfo for the store before removing it. + if (DbgDeclareInst *DDI = Info.DbgDeclare) { + DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); + ConvertDebugDeclareToDebugValue(DDI, SI, DIB); + } + SI->eraseFromParent(); + LBI.deleteValue(SI); + } + + if (AST) + AST->deleteValue(AI); + AI->eraseFromParent(); + LBI.deleteValue(AI); + // The alloca's debuginfo can be removed as well. + if (DbgDeclareInst *DDI = Info.DbgDeclare) { + DDI->eraseFromParent(); + LBI.deleteValue(DDI); + } + + ++NumLocalPromoted; + return true; +} void PromoteMem2Reg::run() { Function &F = *DT.getRoot()->getParent(); - if (AST) PointerAllocaValues.resize(Allocas.size()); + if (AST) + PointerAllocaValues.resize(Allocas.size()); AllocaDbgDeclares.resize(Allocas.size()); AllocaInfo Info; LargeBlockInfo LBI; + IDFCalculator IDF(DT); for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { AllocaInst *AI = Allocas[AllocaNum]; - assert(isAllocaPromotable(AI) && - "Cannot promote non-promotable alloca!"); + assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); assert(AI->getParent()->getParent() == &F && "All allocas should be in the same function, which is same as DF!"); + removeLifetimeIntrinsicUsers(AI); + if (AI->use_empty()) { // If there are no uses of the alloca, just delete it now. - if (AST) AST->deleteValue(AI); + if (AST) + AST->deleteValue(AI); AI->eraseFromParent(); // Remove the alloca from the Allocas list, since it has been processed @@ -376,7 +545,7 @@ void PromoteMem2Reg::run() { ++NumDeadAlloca; continue; } - + // Calculate the set of read and write-locations for each alloca. This is // analogous to finding the 'uses' and 'definitions' of each variable. Info.AnalyzeAlloca(AI); @@ -384,101 +553,40 @@ void PromoteMem2Reg::run() { // If there is only a single store to this value, replace any loads of // it that are directly dominated by the definition with the value stored. if (Info.DefiningBlocks.size() == 1) { - RewriteSingleStoreAlloca(AI, Info, LBI); - - // Finally, after the scan, check to see if the store is all that is left. - if (Info.UsingBlocks.empty()) { - // Record debuginfo for the store and remove the declaration's debuginfo. - if (DbgDeclareInst *DDI = Info.DbgDeclare) { - ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore); - DDI->eraseFromParent(); - } - // Remove the (now dead) store and alloca. - Info.OnlyStore->eraseFromParent(); - LBI.deleteValue(Info.OnlyStore); - - if (AST) AST->deleteValue(AI); - AI->eraseFromParent(); - LBI.deleteValue(AI); - + if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) { // The alloca has been processed, move on. RemoveFromAllocasList(AllocaNum); - ++NumSingleStore; continue; } } - + // If the alloca is only read and written in one basic block, just perform a // linear sweep over the block to eliminate it. - if (Info.OnlyUsedInOneBlock) { - PromoteSingleBlockAlloca(AI, Info, LBI); - - // Finally, after the scan, check to see if the stores are all that is - // left. - if (Info.UsingBlocks.empty()) { - - // Remove the (now dead) stores and alloca. - while (!AI->use_empty()) { - StoreInst *SI = cast(AI->use_back()); - // Record debuginfo for the store before removing it. - if (DbgDeclareInst *DDI = Info.DbgDeclare) - ConvertDebugDeclareToDebugValue(DDI, SI); - SI->eraseFromParent(); - LBI.deleteValue(SI); - } - - if (AST) AST->deleteValue(AI); - AI->eraseFromParent(); - LBI.deleteValue(AI); - - // The alloca has been processed, move on. - RemoveFromAllocasList(AllocaNum); - - // The alloca's debuginfo can be removed as well. - if (DbgDeclareInst *DDI = Info.DbgDeclare) - DDI->eraseFromParent(); - - ++NumLocalPromoted; - continue; - } - } - - // If we haven't computed dominator tree levels, do so now. - if (DomLevels.empty()) { - SmallVector Worklist; - - DomTreeNode *Root = DT.getRootNode(); - DomLevels[Root] = 0; - Worklist.push_back(Root); - - while (!Worklist.empty()) { - DomTreeNode *Node = Worklist.pop_back_val(); - unsigned ChildLevel = DomLevels[Node] + 1; - for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); - CI != CE; ++CI) { - DomLevels[*CI] = ChildLevel; - Worklist.push_back(*CI); - } - } + if (Info.OnlyUsedInOneBlock && + promoteSingleBlockAlloca(AI, Info, LBI, AST)) { + // The alloca has been processed, move on. + RemoveFromAllocasList(AllocaNum); + continue; } // If we haven't computed a numbering for the BB's in the function, do so // now. if (BBNumbers.empty()) { unsigned ID = 0; - for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) - BBNumbers[I] = ID++; + for (auto &BB : F) + BBNumbers[&BB] = ID++; } // If we have an AST to keep updated, remember some pointer value that is // stored into the alloca. if (AST) PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal; - + // Remember the dbg.declare intrinsic describing this alloca, if any. - if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; - + if (Info.DbgDeclare) + AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare; + // Keep the reverse mapping of the 'Allocas' array for the rename pass. AllocaLookup[Allocas[AllocaNum]] = AllocaNum; @@ -486,15 +594,41 @@ void PromoteMem2Reg::run() { // the standard SSA construction algorithm. Determine which blocks need PHI // nodes and see if we can optimize out some work by avoiding insertion of // dead phi nodes. - DetermineInsertionPoint(AI, AllocaNum, Info); + + + // Unique the set of defining blocks for efficient lookup. + SmallPtrSet DefBlocks; + DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); + + // Determine which blocks the value is live in. These are blocks which lead + // to uses. + SmallPtrSet LiveInBlocks; + ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); + + // At this point, we're committed to promoting the alloca using IDF's, and + // the standard SSA construction algorithm. Determine which blocks need phi + // nodes and see if we can optimize out some work by avoiding insertion of + // dead phi nodes. + IDF.setLiveInBlocks(LiveInBlocks); + IDF.setDefiningBlocks(DefBlocks); + SmallVector PHIBlocks; + IDF.calculate(PHIBlocks); + if (PHIBlocks.size() > 1) + std::sort(PHIBlocks.begin(), PHIBlocks.end(), + [this](BasicBlock *A, BasicBlock *B) { + return BBNumbers.lookup(A) < BBNumbers.lookup(B); + }); + + unsigned CurrentVersion = 0; + for (unsigned i = 0, e = PHIBlocks.size(); i != e; ++i) + QueuePhiNode(PHIBlocks[i], AllocaNum, CurrentVersion); } if (Allocas.empty()) return; // All of the allocas must have been trivial! LBI.clear(); - - + // Set the incoming values for the basic block to be null values for all of // the alloca's. We do this in case there is a load of a value that has not // been stored yet. In this case, it will get this null value. @@ -507,7 +641,7 @@ void PromoteMem2Reg::run() { // and inserting the phi nodes we marked as necessary // std::vector RenamePassWorkList; - RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values)); + RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values)); do { RenamePassData RPD; RPD.swap(RenamePassWorkList.back()); @@ -515,7 +649,7 @@ void PromoteMem2Reg::run() { // RenamePass may add new worklist entries. RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList); } while (!RenamePassWorkList.empty()); - + // The renamer uses the Visited set to avoid infinite loops. Clear it now. Visited.clear(); @@ -528,10 +662,13 @@ void PromoteMem2Reg::run() { // tree. Just delete the users now. if (!A->use_empty()) A->replaceAllUsesWith(UndefValue::get(A->getType())); - if (AST) AST->deleteValue(A); + if (AST) + AST->deleteValue(A); A->eraseFromParent(); } + const DataLayout &DL = F.getParent()->getDataLayout(); + // Remove alloca's dbg.declare instrinsics from the function. for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i) if (DbgDeclareInst *DDI = AllocaDbgDeclares[i]) @@ -544,13 +681,19 @@ void PromoteMem2Reg::run() { bool EliminatedAPHI = true; while (EliminatedAPHI) { EliminatedAPHI = false; - - for (DenseMap, PHINode*>::iterator I = - NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) { + + // Iterating over NewPhiNodes is deterministic, so it is safe to try to + // simplify and RAUW them as we go. If it was not, we could add uses to + // the values we replace with in a non-deterministic order, thus creating + // non-deterministic def->use chains. + for (DenseMap, PHINode *>::iterator + I = NewPhiNodes.begin(), + E = NewPhiNodes.end(); + I != E;) { PHINode *PN = I->second; // If this PHI node merges one value and/or undefs, get the value. - if (Value *V = SimplifyInstruction(PN, 0, &DT)) { + if (Value *V = SimplifyInstruction(PN, DL, nullptr, &DT, AC)) { if (AST && PN->getType()->isPointerTy()) AST->deleteValue(PN); PN->replaceAllUsesWith(V); @@ -562,15 +705,17 @@ void PromoteMem2Reg::run() { ++I; } } - + // At this point, the renamer has added entries to PHI nodes for all reachable // code. Unfortunately, there may be unreachable blocks which the renamer // hasn't traversed. If this is the case, the PHI nodes may not // have incoming values for all predecessors. Loop over all PHI nodes we have // created, inserting undef values if they are missing any incoming values. // - for (DenseMap, PHINode*>::iterator I = - NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) { + for (DenseMap, PHINode *>::iterator + I = NewPhiNodes.begin(), + E = NewPhiNodes.end(); + I != E; ++I) { // We want to do this once per basic block. As such, only process a block // when we find the PHI that is the first entry in the block. PHINode *SomePHI = I->second; @@ -585,21 +730,20 @@ void PromoteMem2Reg::run() { continue; // Get the preds for BB. - SmallVector Preds(pred_begin(BB), pred_end(BB)); - + SmallVector Preds(pred_begin(BB), pred_end(BB)); + // Ok, now we know that all of the PHI nodes are missing entries for some // basic blocks. Start by sorting the incoming predecessors for efficient // access. std::sort(Preds.begin(), Preds.end()); - + // Now we loop through all BB's which have entries in SomePHI and remove // them from the Preds list. for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { // Do a log(n) search of the Preds list for the entry we want. - SmallVector::iterator EntIt = - std::lower_bound(Preds.begin(), Preds.end(), - SomePHI->getIncomingBlock(i)); - assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&& + SmallVectorImpl::iterator EntIt = std::lower_bound( + Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i)); + assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && "PHI node has entry for a block which is not a predecessor!"); // Remove the entry @@ -619,39 +763,41 @@ void PromoteMem2Reg::run() { SomePHI->addIncoming(UndefVal, Preds[pred]); } } - + NewPhiNodes.clear(); } +/// \brief Determine which blocks the value is live in. +/// +/// These are blocks which lead to uses. Knowing this allows us to avoid +/// inserting PHI nodes into blocks which don't lead to uses (thus, the +/// inserted phi nodes would be dead). +void PromoteMem2Reg::ComputeLiveInBlocks( + AllocaInst *AI, AllocaInfo &Info, + const SmallPtrSetImpl &DefBlocks, + SmallPtrSetImpl &LiveInBlocks) { -/// ComputeLiveInBlocks - Determine which blocks the value is live in. These -/// are blocks which lead to uses. Knowing this allows us to avoid inserting -/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes -/// would be dead). -void PromoteMem2Reg:: -ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, - const SmallPtrSet &DefBlocks, - SmallPtrSet &LiveInBlocks) { - // To determine liveness, we must iterate through the predecessors of blocks // where the def is live. Blocks are added to the worklist if we need to // check their predecessors. Start with all the using blocks. - SmallVector LiveInBlockWorklist(Info.UsingBlocks.begin(), - Info.UsingBlocks.end()); - + SmallVector LiveInBlockWorklist(Info.UsingBlocks.begin(), + Info.UsingBlocks.end()); + // If any of the using blocks is also a definition block, check to see if the // definition occurs before or after the use. If it happens before the use, // the value isn't really live-in. for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { BasicBlock *BB = LiveInBlockWorklist[i]; - if (!DefBlocks.count(BB)) continue; - + if (!DefBlocks.count(BB)) + continue; + // Okay, this is a block that both uses and defines the value. If the first // reference to the alloca is a def (store), then we know it isn't live-in. - for (BasicBlock::iterator I = BB->begin(); ; ++I) { + for (BasicBlock::iterator I = BB->begin();; ++I) { if (StoreInst *SI = dyn_cast(I)) { - if (SI->getOperand(1) != AI) continue; - + if (SI->getOperand(1) != AI) + continue; + // We found a store to the alloca before a load. The alloca is not // actually live-in here. LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); @@ -659,331 +805,63 @@ ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, --i, --e; break; } - + if (LoadInst *LI = dyn_cast(I)) { - if (LI->getOperand(0) != AI) continue; - + if (LI->getOperand(0) != AI) + continue; + // Okay, we found a load before a store to the alloca. It is actually // live into this block. break; } } } - + // Now that we have a set of blocks where the phi is live-in, recursively add // their predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); - + // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. - if (!LiveInBlocks.insert(BB)) + if (!LiveInBlocks.insert(BB).second) continue; - + // Since the value is live into BB, it is either defined in a predecessor or // live into it to. Add the preds to the worklist unless they are a // defining block. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; - + // The value is not live into a predecessor if it defines the value. if (DefBlocks.count(P)) continue; - + // Otherwise it is, add to the worklist. LiveInBlockWorklist.push_back(P); } } } -/// DetermineInsertionPoint - At this point, we're committed to promoting the -/// alloca using IDF's, and the standard SSA construction algorithm. Determine -/// which blocks need phi nodes and see if we can optimize out some work by -/// avoiding insertion of dead phi nodes. -void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum, - AllocaInfo &Info) { - // Unique the set of defining blocks for efficient lookup. - SmallPtrSet DefBlocks; - DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end()); - - // Determine which blocks the value is live in. These are blocks which lead - // to uses. - SmallPtrSet LiveInBlocks; - ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); - - // Use a priority queue keyed on dominator tree level so that inserted nodes - // are handled from the bottom of the dominator tree upwards. - typedef std::priority_queue, - DomTreeNodeCompare> IDFPriorityQueue; - IDFPriorityQueue PQ; - - for (SmallPtrSet::const_iterator I = DefBlocks.begin(), - E = DefBlocks.end(); I != E; ++I) { - if (DomTreeNode *Node = DT.getNode(*I)) - PQ.push(std::make_pair(Node, DomLevels[Node])); - } - - SmallVector, 32> DFBlocks; - SmallPtrSet Visited; - SmallVector Worklist; - while (!PQ.empty()) { - DomTreeNodePair RootPair = PQ.top(); - PQ.pop(); - DomTreeNode *Root = RootPair.first; - unsigned RootLevel = RootPair.second; - - // Walk all dominator tree children of Root, inspecting their CFG edges with - // targets elsewhere on the dominator tree. Only targets whose level is at - // most Root's level are added to the iterated dominance frontier of the - // definition set. - - Worklist.clear(); - Worklist.push_back(Root); - - while (!Worklist.empty()) { - DomTreeNode *Node = Worklist.pop_back_val(); - BasicBlock *BB = Node->getBlock(); - - for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; - ++SI) { - DomTreeNode *SuccNode = DT.getNode(*SI); - - // Quickly skip all CFG edges that are also dominator tree edges instead - // of catching them below. - if (SuccNode->getIDom() == Node) - continue; - - unsigned SuccLevel = DomLevels[SuccNode]; - if (SuccLevel > RootLevel) - continue; - - if (!Visited.insert(SuccNode)) - continue; - - BasicBlock *SuccBB = SuccNode->getBlock(); - if (!LiveInBlocks.count(SuccBB)) - continue; - - DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB)); - if (!DefBlocks.count(SuccBB)) - PQ.push(std::make_pair(SuccNode, SuccLevel)); - } - - for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE; - ++CI) { - if (!Visited.count(*CI)) - Worklist.push_back(*CI); - } - } - } - - if (DFBlocks.size() > 1) - std::sort(DFBlocks.begin(), DFBlocks.end()); - - unsigned CurrentVersion = 0; - for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) - QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion); -} - -/// RewriteSingleStoreAlloca - If there is only a single store to this value, -/// replace any loads of it that are directly dominated by the definition with -/// the value stored. -void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI, - AllocaInfo &Info, - LargeBlockInfo &LBI) { - StoreInst *OnlyStore = Info.OnlyStore; - bool StoringGlobalVal = !isa(OnlyStore->getOperand(0)); - BasicBlock *StoreBB = OnlyStore->getParent(); - int StoreIndex = -1; - - // Clear out UsingBlocks. We will reconstruct it here if needed. - Info.UsingBlocks.clear(); - - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) { - Instruction *UserInst = cast(*UI++); - if (!isa(UserInst)) { - assert(UserInst == OnlyStore && "Should only have load/stores"); - continue; - } - LoadInst *LI = cast(UserInst); - - // Okay, if we have a load from the alloca, we want to replace it with the - // only value stored to the alloca. We can do this if the value is - // dominated by the store. If not, we use the rest of the mem2reg machinery - // to insert the phi nodes as needed. - if (!StoringGlobalVal) { // Non-instructions are always dominated. - if (LI->getParent() == StoreBB) { - // If we have a use that is in the same block as the store, compare the - // indices of the two instructions to see which one came first. If the - // load came before the store, we can't handle it. - if (StoreIndex == -1) - StoreIndex = LBI.getInstructionIndex(OnlyStore); - - if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { - // Can't handle this load, bail out. - Info.UsingBlocks.push_back(StoreBB); - continue; - } - - } else if (LI->getParent() != StoreBB && - !dominates(StoreBB, LI->getParent())) { - // If the load and store are in different blocks, use BB dominance to - // check their relationships. If the store doesn't dom the use, bail - // out. - Info.UsingBlocks.push_back(LI->getParent()); - continue; - } - } - - // Otherwise, we *can* safely rewrite this load. - Value *ReplVal = OnlyStore->getOperand(0); - // If the replacement value is the load, this must occur in unreachable - // code. - if (ReplVal == LI) - ReplVal = UndefValue::get(LI->getType()); - LI->replaceAllUsesWith(ReplVal); - if (AST && LI->getType()->isPointerTy()) - AST->deleteValue(LI); - LI->eraseFromParent(); - LBI.deleteValue(LI); - } -} - -namespace { - -/// StoreIndexSearchPredicate - This is a helper predicate used to search by the -/// first element of a pair. -struct StoreIndexSearchPredicate { - bool operator()(const std::pair &LHS, - const std::pair &RHS) { - return LHS.first < RHS.first; - } -}; - -} - -/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic -/// block. If this is the case, avoid traversing the CFG and inserting a lot of -/// potentially useless PHI nodes by just performing a single linear pass over -/// the basic block using the Alloca. +/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca. /// -/// If we cannot promote this alloca (because it is read before it is written), -/// return true. This is necessary in cases where, due to control flow, the -/// alloca is potentially undefined on some control flow paths. e.g. code like -/// this is potentially correct: -/// -/// for (...) { if (c) { A = undef; undef = B; } } -/// -/// ... so long as A is not used before undef is set. -/// -void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info, - LargeBlockInfo &LBI) { - // The trickiest case to handle is when we have large blocks. Because of this, - // this code is optimized assuming that large blocks happen. This does not - // significantly pessimize the small block case. This uses LargeBlockInfo to - // make it efficient to get the index of various operations in the block. - - // Clear out UsingBlocks. We will reconstruct it here if needed. - Info.UsingBlocks.clear(); - - // Walk the use-def list of the alloca, getting the locations of all stores. - typedef SmallVector, 64> StoresByIndexTy; - StoresByIndexTy StoresByIndex; - - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); - UI != E; ++UI) - if (StoreInst *SI = dyn_cast(*UI)) - StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); - - // If there are no stores to the alloca, just replace any loads with undef. - if (StoresByIndex.empty()) { - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) - if (LoadInst *LI = dyn_cast(*UI++)) { - LI->replaceAllUsesWith(UndefValue::get(LI->getType())); - if (AST && LI->getType()->isPointerTy()) - AST->deleteValue(LI); - LBI.deleteValue(LI); - LI->eraseFromParent(); - } - return; - } - - // Sort the stores by their index, making it efficient to do a lookup with a - // binary search. - std::sort(StoresByIndex.begin(), StoresByIndex.end()); - - // Walk all of the loads from this alloca, replacing them with the nearest - // store above them, if any. - for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) { - LoadInst *LI = dyn_cast(*UI++); - if (!LI) continue; - - unsigned LoadIdx = LBI.getInstructionIndex(LI); - - // Find the nearest store that has a lower than this load. - StoresByIndexTy::iterator I = - std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(), - std::pair(LoadIdx, static_cast(0)), - StoreIndexSearchPredicate()); - - // If there is no store before this load, then we can't promote this load. - if (I == StoresByIndex.begin()) { - // Can't handle this load, bail out. - Info.UsingBlocks.push_back(LI->getParent()); - continue; - } - - // Otherwise, there was a store before this load, the load takes its value. - --I; - LI->replaceAllUsesWith(I->second->getOperand(0)); - if (AST && LI->getType()->isPointerTy()) - AST->deleteValue(LI); - LI->eraseFromParent(); - LBI.deleteValue(LI); - } -} - -// Inserts a llvm.dbg.value instrinsic before the stores to an alloca'd value -// that has an associated llvm.dbg.decl intrinsic. -void PromoteMem2Reg::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, - StoreInst *SI) { - DIVariable DIVar(DDI->getVariable()); - if (!DIVar.Verify()) - return; - - if (!DIF) - DIF = new DIFactory(*SI->getParent()->getParent()->getParent()); - Instruction *DbgVal = DIF->InsertDbgValueIntrinsic(SI->getOperand(0), 0, - DIVar, SI); - - // Propagate any debug metadata from the store onto the dbg.value. - DebugLoc SIDL = SI->getDebugLoc(); - if (!SIDL.isUnknown()) - DbgVal->setDebugLoc(SIDL); - // Otherwise propagate debug metadata from dbg.declare. - else - DbgVal->setDebugLoc(DDI->getDebugLoc()); -} - -// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific -// Alloca returns true if there wasn't already a phi-node for that variable -// +/// Returns true if there wasn't already a phi-node for that variable bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, unsigned &Version) { // Look up the basic-block in question. - PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)]; + PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; // If the BB already has a phi node added for the i'th alloca then we're done! - if (PN) return false; + if (PN) + return false; // Create a PhiNode using the dereferenced type... and add the phi-node to the // BasicBlock. - PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), - Allocas[AllocaNo]->getName() + "." + Twine(Version++), - BB->begin()); + PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), + Allocas[AllocaNo]->getName() + "." + Twine(Version++), + &BB->front()); ++NumPHIInsert; PhiToAllocaMap[PN] = AllocaNo; - PN->reserveOperandSpace(getNumPreds(BB)); if (AST && PN->getType()->isPointerTy()) AST->copyValue(PointerAllocaValues[AllocaNo], PN); @@ -991,10 +869,11 @@ bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, return true; } -// RenamePass - Recursively traverse the CFG of the function, renaming loads and -// stores to the allocas which we are promoting. IncomingVals indicates what -// value each Alloca contains on exit from the predecessor block Pred. -// +/// \brief Recursively traverse the CFG of the function, renaming loads and +/// stores to the allocas which we are promoting. +/// +/// IncomingVals indicates what value each Alloca contains on exit from the +/// predecessor block Pred. void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, RenamePassData::ValVector &IncomingVals, std::vector &Worklist) { @@ -1012,48 +891,49 @@ NextIteration: // inserted by this pass of mem2reg will have the same number of incoming // operands so far. Remember this count. unsigned NewPHINumOperands = APN->getNumOperands(); - - unsigned NumEdges = 0; - for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I) - if (*I == BB) - ++NumEdges; + + unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB); assert(NumEdges && "Must be at least one edge from Pred to BB!"); - + // Add entries for all the phis. BasicBlock::iterator PNI = BB->begin(); do { unsigned AllocaNo = PhiToAllocaMap[APN]; - + // Add N incoming values to the PHI node. for (unsigned i = 0; i != NumEdges; ++i) APN->addIncoming(IncomingVals[AllocaNo], Pred); - + // The currently active variable for this block is now the PHI. IncomingVals[AllocaNo] = APN; - + // Get the next phi node. ++PNI; APN = dyn_cast(PNI); - if (APN == 0) break; - + if (!APN) + break; + // Verify that it is missing entries. If not, it is not being inserted // by this mem2reg invocation so we want to ignore it. } while (APN->getNumOperands() == NewPHINumOperands); } } - + // Don't revisit blocks. - if (!Visited.insert(BB)) return; + if (!Visited.insert(BB).second) + return; - for (BasicBlock::iterator II = BB->begin(); !isa(II); ) { - Instruction *I = II++; // get the instruction, increment iterator + for (BasicBlock::iterator II = BB->begin(); !isa(II);) { + Instruction *I = &*II++; // get the instruction, increment iterator if (LoadInst *LI = dyn_cast(I)) { AllocaInst *Src = dyn_cast(LI->getPointerOperand()); - if (!Src) continue; - - DenseMap::iterator AI = AllocaLookup.find(Src); - if (AI == AllocaLookup.end()) continue; + if (!Src) + continue; + + DenseMap::iterator AI = AllocaLookup.find(Src); + if (AI == AllocaLookup.end()) + continue; Value *V = IncomingVals[AI->second]; @@ -1066,27 +946,29 @@ NextIteration: // Delete this instruction and mark the name as the current holder of the // value AllocaInst *Dest = dyn_cast(SI->getPointerOperand()); - if (!Dest) continue; - + if (!Dest) + continue; + DenseMap::iterator ai = AllocaLookup.find(Dest); if (ai == AllocaLookup.end()) continue; - + // what value were we writing? IncomingVals[ai->second] = SI->getOperand(0); // Record debuginfo for the store before removing it. if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) - ConvertDebugDeclareToDebugValue(DDI, SI); + ConvertDebugDeclareToDebugValue(DDI, SI, DIB); BB->getInstList().erase(SI); } } // 'Recurse' to our successors. succ_iterator I = succ_begin(BB), E = succ_end(BB); - if (I == E) return; + if (I == E) + return; // Keep track of the successors so we don't visit the same successor twice - SmallPtrSet VisitedSuccs; + SmallPtrSet VisitedSuccs; // Handle the first successor without using the worklist. VisitedSuccs.insert(*I); @@ -1095,24 +977,17 @@ NextIteration: ++I; for (; I != E; ++I) - if (VisitedSuccs.insert(*I)) - Worklist.push_back(RenamePassData(*I, Pred, IncomingVals)); + if (VisitedSuccs.insert(*I).second) + Worklist.emplace_back(*I, Pred, IncomingVals); goto NextIteration; } -/// PromoteMemToReg - Promote the specified list of alloca instructions into -/// scalar registers, inserting PHI nodes as appropriate. This function does -/// not modify the CFG of the function at all. All allocas must be from the -/// same function. -/// -/// If AST is specified, the specified tracker is updated to reflect changes -/// made to the IR. -/// -void llvm::PromoteMemToReg(const std::vector &Allocas, - DominatorTree &DT, AliasSetTracker *AST) { +void llvm::PromoteMemToReg(ArrayRef Allocas, DominatorTree &DT, + AliasSetTracker *AST, AssumptionCache *AC) { // If there is nothing to do, bail out... - if (Allocas.empty()) return; + if (Allocas.empty()) + return; - PromoteMem2Reg(Allocas, DT, AST).run(); + PromoteMem2Reg(Allocas, DT, AST, AC).run(); }