X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FAsmWriter.cpp;h=0d52e1fc7fa6751173dedc2b291315027ecfa3bc;hb=d9221d75f02a81eec9c22473b4f2a809d83bf60a;hp=2f6c1cc0f27b71a32a42a652d82c452e9f9729a1;hpb=c6a1346d7c6bb761f9e6c2c85b53febba1cb15db;p=oota-llvm.git diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp index 2f6c1cc0f27..0d52e1fc7fa 100644 --- a/lib/VMCore/AsmWriter.cpp +++ b/lib/VMCore/AsmWriter.cpp @@ -23,17 +23,21 @@ #include "llvm/InlineAsm.h" #include "llvm/Instruction.h" #include "llvm/Instructions.h" +#include "llvm/Operator.h" +#include "llvm/Metadata.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/TypeSymbolTable.h" -#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/FormattedStream.h" #include #include +#include using namespace llvm; // Make virtual table appear in this compilation unit. @@ -46,15 +50,15 @@ AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; - + if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; - + if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; } - + if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); return 0; @@ -62,23 +66,17 @@ static const Module *getModuleFromVal(const Value *V) { // PrintEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. -static void PrintEscapedString(const char *Str, unsigned Length, +static void PrintEscapedString(const StringRef &Name, raw_ostream &Out) { - for (unsigned i = 0; i != Length; ++i) { - unsigned char C = Str[i]; - if (isprint(C) && C != '\\' && C != '"' && isprint(C)) + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') Out << C; else Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { - PrintEscapedString(Str.c_str(), Str.size(), Out); -} - enum PrefixType { GlobalPrefix, LabelPrefix, @@ -89,61 +87,370 @@ enum PrefixType { /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. -static void PrintLLVMName(raw_ostream &OS, const char *NameStr, - unsigned NameLen, PrefixType Prefix) { - assert(NameStr && "Cannot get empty name!"); +static void PrintLLVMName(raw_ostream &OS, const StringRef &Name, + PrefixType Prefix) { + assert(Name.data() && "Cannot get empty name!"); switch (Prefix) { - default: assert(0 && "Bad prefix!"); + default: llvm_unreachable("Bad prefix!"); case NoPrefix: break; case GlobalPrefix: OS << '@'; break; case LabelPrefix: break; case LocalPrefix: OS << '%'; break; - } - + } + // Scan the name to see if it needs quotes first. - bool NeedsQuotes = isdigit(NameStr[0]); + bool NeedsQuotes = isdigit(Name[0]); if (!NeedsQuotes) { - for (unsigned i = 0; i != NameLen; ++i) { - char C = NameStr[i]; + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + char C = Name[i]; if (!isalnum(C) && C != '-' && C != '.' && C != '_') { NeedsQuotes = true; break; } } } - + // If we didn't need any quotes, just write out the name in one blast. if (!NeedsQuotes) { - OS.write(NameStr, NameLen); + OS << Name; return; } - + // Okay, we need quotes. Output the quotes and escape any scary characters as // needed. OS << '"'; - PrintEscapedString(NameStr, NameLen, OS); + PrintEscapedString(Name, OS); OS << '"'; } -/// getLLVMName - Turn the specified string into an 'LLVM name', which is -/// surrounded with ""'s and escaped if it has special chars in it. -static std::string getLLVMName(const std::string &Name) { - assert(!Name.empty() && "Cannot get empty name!"); - std::string result; - raw_string_ostream OS(result); - PrintLLVMName(OS, Name.c_str(), Name.length(), NoPrefix); - return OS.str(); -} - /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, const Value *V) { - PrintLLVMName(OS, V->getNameStart(), V->getNameLen(), + PrintLLVMName(OS, V->getName(), isa(V) ? GlobalPrefix : LocalPrefix); } +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +static DenseMap &getTypeNamesMap(void *M) { + return *static_cast*>(M); +} + +void TypePrinting::clear() { + getTypeNamesMap(TypeNames).clear(); +} + +bool TypePrinting::hasTypeName(const Type *Ty) const { + return getTypeNamesMap(TypeNames).count(Ty); +} + +void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { + getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); +} + + +TypePrinting::TypePrinting() { + TypeNames = new DenseMap(); +} + +TypePrinting::~TypePrinting() { + delete &getTypeNamesMap(TypeNames); +} + +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::CalcTypeName(const Type *Ty, + SmallVectorImpl &TypeStack, + raw_ostream &OS, bool IgnoreTopLevelName) { + // Check to see if the type is named. + if (!IgnoreTopLevelName) { + DenseMap &TM = getTypeNamesMap(TypeNames); + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Check to see if the Type is already on the stack... + unsigned Slot = 0, CurSize = TypeStack.size(); + while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type + + // This is another base case for the recursion. In this case, we know + // that we have looped back to a type that we have previously visited. + // Generate the appropriate upreference to handle this. + if (Slot < CurSize) { + OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference + return; + } + + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. + + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::IntegerTyID: + OS << 'i' << cast(Ty)->getBitWidth(); + break; + + case Type::FunctionTyID: { + const FunctionType *FTy = cast(Ty); + CalcTypeName(FTy->getReturnType(), TypeStack, OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + CalcTypeName(*I, TypeStack, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + break; + } + case Type::StructTyID: { + const StructType *STy = cast(Ty); + if (STy->isPacked()) + OS << '<'; + OS << "{ "; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + CalcTypeName(*I, TypeStack, OS); + if (next(I) != STy->element_end()) + OS << ','; + OS << ' '; + } + OS << '}'; + if (STy->isPacked()) + OS << '>'; + break; + } + case Type::PointerTyID: { + const PointerType *PTy = cast(Ty); + CalcTypeName(PTy->getElementType(), TypeStack, OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + break; + } + case Type::ArrayTyID: { + const ArrayType *ATy = cast(Ty); + OS << '[' << ATy->getNumElements() << " x "; + CalcTypeName(ATy->getElementType(), TypeStack, OS); + OS << ']'; + break; + } + case Type::VectorTyID: { + const VectorType *PTy = cast(Ty); + OS << "<" << PTy->getNumElements() << " x "; + CalcTypeName(PTy->getElementType(), TypeStack, OS); + OS << '>'; + break; + } + case Type::OpaqueTyID: + OS << "opaque"; + break; + default: + OS << ""; + break; + } + + TypeStack.pop_back(); // Remove self from stack. +} + +/// printTypeInt - The internal guts of printing out a type that has a +/// potentially named portion. +/// +void TypePrinting::print(const Type *Ty, raw_ostream &OS, + bool IgnoreTopLevelName) { + // Check to see if the type is named. + DenseMap &TM = getTypeNamesMap(TypeNames); + if (!IgnoreTopLevelName) { + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Otherwise we have a type that has not been named but is a derived type. + // Carefully recurse the type hierarchy to print out any contained symbolic + // names. + SmallVector TypeStack; + std::string TypeName; + + raw_string_ostream TypeOS(TypeName); + CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); + OS << TypeOS.str(); + + // Cache type name for later use. + if (!IgnoreTopLevelName) + TM.insert(std::make_pair(Ty, TypeOS.str())); +} + +namespace { + class TypeFinder { + // To avoid walking constant expressions multiple times and other IR + // objects, we keep several helper maps. + DenseSet VisitedConstants; + DenseSet VisitedTypes; + + TypePrinting &TP; + std::vector &NumberedTypes; + public: + TypeFinder(TypePrinting &tp, std::vector &numberedTypes) + : TP(tp), NumberedTypes(numberedTypes) {} + + void Run(const Module &M) { + // Get types from the type symbol table. This gets opaque types referened + // only through derived named types. + const TypeSymbolTable &ST = M.getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) + IncorporateType(TI->second); + + // Get types from global variables. + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + // Get types from aliases. + for (Module::const_alias_iterator I = M.alias_begin(), + E = M.alias_end(); I != E; ++I) { + IncorporateType(I->getType()); + IncorporateValue(I->getAliasee()); + } + + // Get types from functions. + for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { + IncorporateType(FI->getType()); + + for (Function::const_iterator BB = FI->begin(), E = FI->end(); + BB != E;++BB) + for (BasicBlock::const_iterator II = BB->begin(), + E = BB->end(); II != E; ++II) { + const Instruction &I = *II; + // Incorporate the type of the instruction and all its operands. + IncorporateType(I.getType()); + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } + } + } + + private: + void IncorporateType(const Type *Ty) { + // Check to see if we're already visited this type. + if (!VisitedTypes.insert(Ty).second) + return; + + // If this is a structure or opaque type, add a name for the type. + if (((isa(Ty) && cast(Ty)->getNumElements()) + || isa(Ty)) && !TP.hasTypeName(Ty)) { + TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); + NumberedTypes.push_back(Ty); + } + + // Recursively walk all contained types. + for (Type::subtype_iterator I = Ty->subtype_begin(), + E = Ty->subtype_end(); I != E; ++I) + IncorporateType(*I); + } + + /// IncorporateValue - This method is used to walk operand lists finding + /// types hiding in constant expressions and other operands that won't be + /// walked in other ways. GlobalValues, basic blocks, instructions, and + /// inst operands are all explicitly enumerated. + void IncorporateValue(const Value *V) { + if (V == 0 || !isa(V) || isa(V)) return; + + // Already visited? + if (!VisitedConstants.insert(V).second) + return; + + // Check this type. + IncorporateType(V->getType()); + + // Look in operands for types. + const Constant *C = cast(V); + for (Constant::const_op_iterator I = C->op_begin(), + E = C->op_end(); I != E;++I) + IncorporateValue(*I); + } + }; +} // end anonymous namespace + + +/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in +/// the specified module to the TypePrinter and all numbered types to it and the +/// NumberedTypes table. +static void AddModuleTypesToPrinter(TypePrinting &TP, + std::vector &NumberedTypes, + const Module *M) { + if (M == 0) return; + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + const TypeSymbolTable &ST = M->getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) { + const Type *Ty = cast(TI->second); + + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + if (const PointerType *PTy = dyn_cast(Ty)) { + const Type *PETy = PTy->getElementType(); + if ((PETy->isPrimitiveType() || PETy->isInteger()) && + !isa(PETy)) + continue; + } + + // Likewise don't insert primitives either. + if (Ty->isInteger() || Ty->isPrimitiveType()) + continue; + + // Get the name as a string and insert it into TypeNames. + std::string NameStr; + raw_string_ostream NameROS(NameStr); + formatted_raw_ostream NameOS(NameROS); + PrintLLVMName(NameOS, TI->first, LocalPrefix); + NameOS.flush(); + TP.addTypeName(Ty, NameStr); + } + + // Walk the entire module to find references to unnamed structure and opaque + // types. This is required for correctness by opaque types (because multiple + // uses of an unnamed opaque type needs to be referred to by the same ID) and + // it shrinks complex recursive structure types substantially in some cases. + TypeFinder(TP, NumberedTypes).Run(*M); +} + +/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +/// type, iff there is an entry in the modules symbol table for the specified +/// type or one of it's component types. +/// +void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { + TypePrinting Printer; + std::vector NumberedTypes; + AddModuleTypesToPrinter(Printer, NumberedTypes, M); + Printer.print(Ty, OS); +} //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values @@ -155,35 +462,49 @@ namespace { /// class SlotTracker { public: - /// ValueMap - A mapping of Values to slot numbers + /// ValueMap - A mapping of Values to slot numbers. typedef DenseMap ValueMap; - -private: - /// TheModule - The module for which we are holding slot numbers + +private: + /// TheModule - The module for which we are holding slot numbers. const Module* TheModule; - - /// TheFunction - The function for which we are holding slot numbers + + /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction; bool FunctionProcessed; - - /// mMap - The TypePlanes map for the module level data + + /// TheMDNode - The MDNode for which we are holding slot numbers. + const MDNode *TheMDNode; + + /// TheNamedMDNode - The MDNode for which we are holding slot numbers. + const NamedMDNode *TheNamedMDNode; + + /// mMap - The TypePlanes map for the module level data. ValueMap mMap; unsigned mNext; - - /// fMap - The TypePlanes map for the function level data + + /// fMap - The TypePlanes map for the function level data. ValueMap fMap; unsigned fNext; - + + /// mdnMap - Map for MDNodes. + ValueMap mdnMap; + unsigned mdnNext; public: /// Construct from a module explicit SlotTracker(const Module *M); /// Construct from a function, starting out in incorp state. explicit SlotTracker(const Function *F); + /// Construct from a mdnode. + explicit SlotTracker(const MDNode *N); + /// Construct from a named mdnode. + explicit SlotTracker(const NamedMDNode *N); /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. int getLocalSlot(const Value *V); int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotTracker. @@ -197,14 +518,23 @@ public: /// will reset the state of the machine back to just the module contents. void purgeFunction(); - // Implementation Details -private: + /// MDNode map iterators. + ValueMap::iterator mdnBegin() { return mdnMap.begin(); } + ValueMap::iterator mdnEnd() { return mdnMap.end(); } + unsigned mdnSize() const { return mdnMap.size(); } + bool mdnEmpty() const { return mdnMap.empty(); } + /// This function does the actual initialization. inline void initialize(); + // Implementation Details +private: /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void CreateModuleSlot(const GlobalValue *V); - + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + /// CreateFunctionSlot - Insert the specified Value* into the slot table. void CreateFunctionSlot(const Value *V); @@ -212,9 +542,15 @@ private: /// and function declarations, but not the contents of those functions. void processModule(); - /// Add all of the functions arguments, basic blocks, and instructions + /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); + /// Add all MDNode operands. + void processMDNode(); + + /// Add all MDNode operands. + void processNamedMDNode(); + SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT void operator=(const SlotTracker &); // DO NOT IMPLEMENT }; @@ -225,27 +561,27 @@ private: static SlotTracker *createSlotTracker(const Value *V) { if (const Argument *FA = dyn_cast(V)) return new SlotTracker(FA->getParent()); - + if (const Instruction *I = dyn_cast(V)) return new SlotTracker(I->getParent()->getParent()); - + if (const BasicBlock *BB = dyn_cast(V)) return new SlotTracker(BB->getParent()); - + if (const GlobalVariable *GV = dyn_cast(V)) return new SlotTracker(GV->getParent()); - + if (const GlobalAlias *GA = dyn_cast(V)) - return new SlotTracker(GA->getParent()); - + return new SlotTracker(GA->getParent()); + if (const Function *Func = dyn_cast(V)) return new SlotTracker(Func); - + return 0; } #if 0 -#define ST_DEBUG(X) cerr << X +#define ST_DEBUG(X) errs() << X #else #define ST_DEBUG(X) #endif @@ -253,14 +589,27 @@ static SlotTracker *createSlotTracker(const Value *V) { // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. SlotTracker::SlotTracker(const Module *M) - : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) { + : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0), + TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { } // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. SlotTracker::SlotTracker(const Function *F) : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), - mNext(0), fNext(0) { + TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { +} + +// Constructor to handle single MDNode. +SlotTracker::SlotTracker(const MDNode *C) + : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C), + TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { +} + +// Constructor to handle single NamedMDNode. +SlotTracker::SlotTracker(const NamedMDNode *N) + : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0), + TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) { } inline void SlotTracker::initialize() { @@ -268,60 +617,120 @@ inline void SlotTracker::initialize() { processModule(); TheModule = 0; ///< Prevent re-processing next time we're called. } - + if (TheFunction && !FunctionProcessed) processFunction(); + + if (TheMDNode) + processMDNode(); + + if (TheNamedMDNode) + processNamedMDNode(); } // Iterate through all the global variables, functions, and global // variable initializers and create slots for them. void SlotTracker::processModule() { ST_DEBUG("begin processModule!\n"); - + // Add all of the unnamed global variables to the value table. for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) - if (!I->hasName()) + E = TheModule->global_end(); I != E; ++I) { + if (!I->hasName()) CreateModuleSlot(I); - + if (I->hasInitializer()) { + if (MDNode *N = dyn_cast(I->getInitializer())) + CreateMetadataSlot(N); + } + } + + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { + MDNode *MD = dyn_cast_or_null(NMD->getElement(i)); + if (MD) + CreateMetadataSlot(MD); + } + } + // Add all the unnamed functions to the table. for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) if (!I->hasName()) CreateModuleSlot(I); - + ST_DEBUG("end processModule!\n"); } - // Process the arguments, basic blocks, and instructions of a function. void SlotTracker::processFunction() { ST_DEBUG("begin processFunction!\n"); fNext = 0; - + // Add all the function arguments with no names. for(Function::const_arg_iterator AI = TheFunction->arg_begin(), AE = TheFunction->arg_end(); AI != AE; ++AI) if (!AI->hasName()) CreateFunctionSlot(AI); - + ST_DEBUG("Inserting Instructions:\n"); - + + Metadata &TheMetadata = TheFunction->getContext().getMetadata(); + // Add all of the basic blocks and instructions with no names. for (Function::const_iterator BB = TheFunction->begin(), E = TheFunction->end(); BB != E; ++BB) { if (!BB->hasName()) CreateFunctionSlot(BB); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) - if (I->getType() != Type::VoidTy && !I->hasName()) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + if (I->getType() != Type::getVoidTy(TheFunction->getContext()) && + !I->hasName()) CreateFunctionSlot(I); + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast_or_null(I->getOperand(i))) + CreateMetadataSlot(N); + + // Process metadata attached with this instruction. + const Metadata::MDMapTy *MDs = TheMetadata.getMDs(I); + if (MDs) + for (Metadata::MDMapTy::const_iterator MI = MDs->begin(), + ME = MDs->end(); MI != ME; ++MI) + if (MDNode *MDN = dyn_cast_or_null(MI->second)) + CreateMetadataSlot(MDN); + } } - + FunctionProcessed = true; - + ST_DEBUG("end processFunction!\n"); } +/// processMDNode - Process TheMDNode. +void SlotTracker::processMDNode() { + ST_DEBUG("begin processMDNode!\n"); + mdnNext = 0; + CreateMetadataSlot(TheMDNode); + TheMDNode = 0; + ST_DEBUG("end processMDNode!\n"); +} + +/// processNamedMDNode - Process TheNamedMDNode. +void SlotTracker::processNamedMDNode() { + ST_DEBUG("begin processNamedMDNode!\n"); + mdnNext = 0; + for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) { + MDNode *MD = dyn_cast_or_null(TheNamedMDNode->getElement(i)); + if (MD) + CreateMetadataSlot(MD); + } + TheNamedMDNode = 0; + ST_DEBUG("end processNamedMDNode!\n"); +} + /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. @@ -337,20 +746,30 @@ void SlotTracker::purgeFunction() { int SlotTracker::getGlobalSlot(const GlobalValue *V) { // Check for uninitialized state and do lazy initialization. initialize(); - + // Find the type plane in the module map ValueMap::iterator MI = mMap.find(V); return MI == mMap.end() ? -1 : (int)MI->second; } +/// getGlobalSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + ValueMap::iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; +} + /// getLocalSlot - Get the slot number for a value that is local to a function. int SlotTracker::getLocalSlot(const Value *V) { assert(!isa(V) && "Can't get a constant or global slot with this!"); - + // Check for uninitialized state and do lazy initialization. initialize(); - + ValueMap::iterator FI = fMap.find(V); return FI == fMap.end() ? -1 : (int)FI->second; } @@ -359,12 +778,13 @@ int SlotTracker::getLocalSlot(const Value *V) { /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void SlotTracker::CreateModuleSlot(const GlobalValue *V) { assert(V && "Can't insert a null Value into SlotTracker!"); - assert(V->getType() != Type::VoidTy && "Doesn't need a slot!"); + assert(V->getType() != Type::getVoidTy(V->getContext()) && + "Doesn't need a slot!"); assert(!V->hasName() && "Doesn't need a slot!"); - + unsigned DestSlot = mNext++; mMap[V] = DestSlot; - + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " ["); // G = Global, F = Function, A = Alias, o = other @@ -373,219 +793,48 @@ void SlotTracker::CreateModuleSlot(const GlobalValue *V) { (isa(V) ? 'A' : 'o'))) << "]\n"); } - /// CreateSlot - Create a new slot for the specified value if it has no name. void SlotTracker::CreateFunctionSlot(const Value *V) { - assert(V->getType() != Type::VoidTy && !V->hasName() && - "Doesn't need a slot!"); - + assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) && + !V->hasName() && "Doesn't need a slot!"); + unsigned DestSlot = fNext++; fMap[V] = DestSlot; - + // G = Global, F = Function, o = other ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " [o]\n"); -} - - - -//===----------------------------------------------------------------------===// -// AsmWriter Implementation -//===----------------------------------------------------------------------===// - -static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, - std::map &TypeTable, - SlotTracker *Machine); - - - -/// fillTypeNameTable - If the module has a symbol table, take all global types -/// and stuff their names into the TypeNames map. -/// -static void fillTypeNameTable(const Module *M, - std::map &TypeNames) { - if (!M) return; - const TypeSymbolTable &ST = M->getTypeSymbolTable(); - TypeSymbolTable::const_iterator TI = ST.begin(); - for (; TI != ST.end(); ++TI) { - // As a heuristic, don't insert pointer to primitive types, because - // they are used too often to have a single useful name. - // - const Type *Ty = cast(TI->second); - if (!isa(Ty) || - !cast(Ty)->getElementType()->isPrimitiveType() || - !cast(Ty)->getElementType()->isInteger() || - isa(cast(Ty)->getElementType())) - TypeNames.insert(std::make_pair(Ty, '%' + getLLVMName(TI->first))); - } } +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); - -static void calcTypeName(const Type *Ty, - std::vector &TypeStack, - std::map &TypeNames, - std::string &Result) { - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) { - Result += Ty->getDescription(); // Base case + ValueMap::iterator I = mdnMap.find(N); + if (I != mdnMap.end()) return; - } - // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Result += I->second; - return; - } + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; - if (isa(Ty)) { - Result += "opaque"; - return; + for (MDNode::const_elem_iterator MDI = N->elem_begin(), + MDE = N->elem_end(); MDI != MDE; ++MDI) { + const Value *TV = *MDI; + if (TV) + if (const MDNode *N2 = dyn_cast(TV)) + CreateMetadataSlot(N2); } - - // Check to see if the Type is already on the stack... - unsigned Slot = 0, CurSize = TypeStack.size(); - while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type - - // This is another base case for the recursion. In this case, we know - // that we have looped back to a type that we have previously visited. - // Generate the appropriate upreference to handle this. - if (Slot < CurSize) { - Result += "\\" + utostr(CurSize-Slot); // Here's the upreference - return; - } - - TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. - - switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - Result += "i" + utostr(BitWidth); - break; - } - case Type::FunctionTyID: { - const FunctionType *FTy = cast(Ty); - calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); - Result += " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Result += ", "; - Result += "..."; - } - Result += ")"; - break; - } - case Type::StructTyID: { - const StructType *STy = cast(Ty); - if (STy->isPacked()) - Result += '<'; - Result += "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - calcTypeName(*I, TypeStack, TypeNames, Result); - if (next(I) != STy->element_end()) - Result += ','; - Result += ' '; - } - Result += '}'; - if (STy->isPacked()) - Result += '>'; - break; - } - case Type::PointerTyID: { - const PointerType *PTy = cast(Ty); - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - if (unsigned AddressSpace = PTy->getAddressSpace()) - Result += " addrspace(" + utostr(AddressSpace) + ")"; - Result += "*"; - break; - } - case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); - Result += "[" + utostr(ATy->getNumElements()) + " x "; - calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); - Result += "]"; - break; - } - case Type::VectorTyID: { - const VectorType *PTy = cast(Ty); - Result += "<" + utostr(PTy->getNumElements()) + " x "; - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - Result += ">"; - break; - } - case Type::OpaqueTyID: - Result += "opaque"; - break; - default: - Result += ""; - break; - } - - TypeStack.pop_back(); // Remove self from stack... -} - - -/// printTypeInt - The internal guts of printing out a type that has a -/// potentially named portion. -/// -static void printTypeInt(raw_ostream &Out, const Type *Ty, - std::map &TypeNames) { - // Primitive types always print out their description, regardless of whether - // they have been named or not. - // - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) { - Out << Ty->getDescription(); - return; - } - - // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Out << I->second; - return; - } - - // Otherwise we have a type that has not been named but is a derived type. - // Carefully recurse the type hierarchy to print out any contained symbolic - // names. - // - std::vector TypeStack; - std::string TypeName; - calcTypeName(Ty, TypeStack, TypeNames, TypeName); - TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use - Out << TypeName; } +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// -/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic -/// type, iff there is an entry in the modules symbol table for the specified -/// type or one of it's component types. This is slower than a simple x << Type -/// -void llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty, - const Module *M) { - raw_os_ostream RO(Out); - WriteTypeSymbolic(RO, Ty, M); -} +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting *TypePrinter, + SlotTracker *Machine); -void llvm::WriteTypeSymbolic(raw_ostream &Out, const Type *Ty, const Module *M){ - Out << ' '; - // If they want us to print out a type, but there is no context, we can't - // print it symbolically. - if (!M) { - Out << Ty->getDescription(); - } else { - std::map TypeNames; - fillTypeNameTable(M, TypeNames); - printTypeInt(Out, Ty, TypeNames); - } -} static const char *getPredicateText(unsigned predicate) { const char * pred = "unknown"; @@ -620,18 +869,66 @@ static const char *getPredicateText(unsigned predicate) { return pred; } +static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter, + SlotTracker &Machine) { + SmallVector Nodes; + Nodes.resize(Machine.mdnSize()); + for (SlotTracker::ValueMap::iterator I = + Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I) + Nodes[I->second] = cast(I->first); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Out << '!' << i << " = metadata "; + const MDNode *Node = Nodes[i]; + Out << "!{"; + for (MDNode::const_elem_iterator NI = Node->elem_begin(), + NE = Node->elem_end(); NI != NE;) { + const Value *V = *NI; + if (!V) + Out << "null"; + else if (const MDNode *N = dyn_cast(V)) { + Out << "metadata "; + Out << '!' << Machine.getMetadataSlot(N); + } + else { + TypePrinter.print((*NI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine); + } + if (++NI != NE) + Out << ", "; + } + Out << "}\n"; + } +} + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const OverflowingBinaryOperator *OBO = + dyn_cast(U)) { + if (OBO->hasNoUnsignedWrap()) + Out << " nuw"; + if (OBO->hasNoSignedWrap()) + Out << " nsw"; + } else if (const SDivOperator *Div = dyn_cast(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + static void WriteConstantInt(raw_ostream &Out, const Constant *CV, - std::map &TypeTable, - SlotTracker *Machine) { + TypePrinting &TypePrinter, SlotTracker *Machine) { if (const ConstantInt *CI = dyn_cast(CV)) { - if (CI->getType() == Type::Int1Ty) { + if (CI->getType() == Type::getInt1Ty(CV->getContext())) { Out << (CI->getZExtValue() ? "true" : "false"); return; } Out << CI->getValue(); return; } - + if (const ConstantFP *CFP = dyn_cast(CV)) { if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { @@ -640,6 +937,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // + bool ignored; bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; double Val = isDouble ? CFP->getValueAPF().convertToDouble() : CFP->getValueAPF().convertToFloat(); @@ -659,25 +957,54 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, } } // Otherwise we could not reparse it to exactly the same value, so we must - // output the string in hexadecimal format! + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); char Buffer[40]; - Out << "0x" << utohex_buffer(uint64_t(DoubleToBits(Val)), Buffer+40); + APFloat apf = CFP->getValueAPF(); + // Floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); return; } - + // Some form of long double. These appear as a magic letter identifying // the type, then a fixed number of hex digits. Out << "0x"; - if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { Out << 'K'; - else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + int shiftcount=12; + int width = api.getBitWidth(); + for (int j=0; j>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) Out << 'L'; else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) Out << 'M'; else - assert(0 && "Unsupported floating point type"); + llvm_unreachable("Unsupported floating point type"); // api needed to prevent premature destruction APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); @@ -699,12 +1026,12 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, } return; } - + if (isa(CV)) { Out << "zeroinitializer"; return; } - + if (const ConstantArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of // i8 with ConstantInt values. @@ -717,24 +1044,22 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, } else { // Cannot output in string format... Out << '['; if (CA->getNumOperands()) { - Out << ' '; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(0), - TypeTable, Machine); + &TypePrinter, Machine); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine); } - Out << ' '; } Out << ']'; } return; } - + if (const ConstantStruct *CS = dyn_cast(CV)) { if (CS->getType()->isPacked()) Out << '<'; @@ -742,65 +1067,71 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, unsigned N = CS->getNumOperands(); if (N) { Out << ' '; - printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); + TypePrinter.print(CS->getOperand(0)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine); for (unsigned i = 1; i < N; i++) { Out << ", "; - printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); + TypePrinter.print(CS->getOperand(i)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine); } Out << ' '; } - + Out << '}'; if (CS->getType()->isPacked()) Out << '>'; return; } - + if (const ConstantVector *CP = dyn_cast(CV)) { const Type *ETy = CP->getType()->getElementType(); assert(CP->getNumOperands() > 0 && "Number of operands for a PackedConst must be > 0"); - Out << "< "; - printTypeInt(Out, ETy, TypeTable); + Out << '<'; + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine); + WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine); } - Out << " >"; + Out << '>'; return; } - + if (isa(CV)) { Out << "null"; return; } - + if (isa(CV)) { Out << "undef"; return; } + if (const MDNode *Node = dyn_cast(CV)) { + Out << "!" << Machine->getMetadataSlot(Node); + return; + } + if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); if (CE->isCompare()) Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { - printTypeInt(Out, (*OI)->getType(), TypeTable); + TypePrinter.print((*OI)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, *OI, TypeTable, Machine); + WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine); if (OI+1 != CE->op_end()) Out << ", "; } @@ -813,13 +1144,13 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, if (CE->isCast()) { Out << " to "; - printTypeInt(Out, CE->getType(), TypeTable); + TypePrinter.print(CE->getType(), Out); } Out << ')'; return; } - + Out << ""; } @@ -829,19 +1160,20 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, /// the whole instruction that generated it. /// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, - std::map &TypeTable, + TypePrinting *TypePrinter, SlotTracker *Machine) { if (V->hasName()) { PrintLLVMName(Out, V); return; } - + const Constant *CV = dyn_cast(V); if (CV && !isa(CV)) { - WriteConstantInt(Out, CV, TypeTable, Machine); + assert(TypePrinter && "Constants require TypePrinting!"); + WriteConstantInt(Out, CV, *TypePrinter, Machine); return; } - + if (const InlineAsm *IA = dyn_cast(V)) { Out << "asm "; if (IA->hasSideEffects()) @@ -853,7 +1185,19 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, Out << '"'; return; } - + + if (const MDNode *N = dyn_cast(V)) { + Out << '!' << Machine->getMetadataSlot(N); + return; + } + + if (const MDString *MDS = dyn_cast(V)) { + Out << "!\""; + PrintEscapedString(MDS->getString(), Out); + Out << '"'; + return; + } + char Prefix = '%'; int Slot; if (Machine) { @@ -872,66 +1216,66 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, } else { Slot = Machine->getLocalSlot(V); } + delete Machine; } else { Slot = -1; } - delete Machine; } - + if (Slot != -1) Out << Prefix << Slot; else Out << ""; } -/// WriteAsOperand - Write the name of the specified value out to the specified -/// ostream. This can be useful when you just want to print int %reg126, not -/// the whole instruction that generated it. -/// -void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, - const Module *Context) { - raw_os_ostream OS(Out); - WriteAsOperand(OS, V, PrintType, Context); -} +void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, + bool PrintType, const Module *Context) { -void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType, - const Module *Context) { - std::map TypeNames; - if (Context == 0) Context = getModuleFromVal(V); + // Fast path: Don't construct and populate a TypePrinting object if we + // won't be needing any types printed. + if (!PrintType && + (!isa(V) || V->hasName() || isa(V))) { + WriteAsOperandInternal(Out, V, 0, 0); + return; + } - if (Context) - fillTypeNameTable(Context, TypeNames); + if (Context == 0) Context = getModuleFromVal(V); + TypePrinting TypePrinter; + std::vector NumberedTypes; + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); if (PrintType) { - printTypeInt(Out, V->getType(), TypeNames); + TypePrinter.print(V->getType(), Out); Out << ' '; } - WriteAsOperandInternal(Out, V, TypeNames, 0); + WriteAsOperandInternal(Out, V, &TypePrinter, 0); } - namespace { class AssemblyWriter { - raw_ostream &Out; + formatted_raw_ostream &Out; SlotTracker &Machine; const Module *TheModule; - std::map TypeNames; + TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter; + std::vector NumberedTypes; + + // Each MDNode is assigned unique MetadataIDNo. + std::map MDNodes; + unsigned MetadataIDNo; + public: - inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M, + inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, + const Module *M, AssemblyAnnotationWriter *AAW) - : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { - - // If the module has a symbol table, take all global types and stuff their - // names into the TypeNames map. - // - fillTypeNameTable(M, TypeNames); + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) { + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); } - void write(const Module *M) { printModule(M); } - + void write(const Module *M) { printModule(M); } + void write(const GlobalValue *G) { if (const GlobalVariable *GV = dyn_cast(G)) printGlobal(GV); @@ -940,18 +1284,15 @@ public: else if (const Function *F = dyn_cast(G)) printFunction(F); else - assert(0 && "Unknown global"); + llvm_unreachable("Unknown global"); } - + void write(const BasicBlock *BB) { printBasicBlock(BB); } void write(const Instruction *I) { printInstruction(*I); } - void write(const Type *Ty) { printType(Ty); } void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, Attributes Attrs); - const Module* getModule() { return TheModule; } - private: void printModule(const Module *M); void printTypeSymbolTable(const TypeSymbolTable &ST); @@ -962,97 +1303,11 @@ private: void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction &I); - // printType - Go to extreme measures to attempt to print out a short, - // symbolic version of a type name. - // - void printType(const Type *Ty) { - printTypeInt(Out, Ty, TypeNames); - } - - // printTypeAtLeastOneLevel - Print out one level of the possibly complex type - // without considering any symbolic types that we may have equal to it. - // - void printTypeAtLeastOneLevel(const Type *Ty); - // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); }; -} // end of llvm namespace - -/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type -/// without considering any symbolic types that we may have equal to it. -/// -void AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { - if (const IntegerType *ITy = dyn_cast(Ty)) { - Out << "i" << utostr(ITy->getBitWidth()); - return; - } - - if (const FunctionType *FTy = dyn_cast(Ty)) { - printType(FTy->getReturnType()); - Out << " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Out << ", "; - printType(*I); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Out << ", "; - Out << "..."; - } - Out << ')'; - return; - } - - if (const StructType *STy = dyn_cast(Ty)) { - if (STy->isPacked()) - Out << '<'; - Out << "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Out << ", "; - printType(*I); - } - Out << " }"; - if (STy->isPacked()) - Out << '>'; - return; - } - - if (const PointerType *PTy = dyn_cast(Ty)) { - printType(PTy->getElementType()); - if (unsigned AddressSpace = PTy->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ")"; - Out << '*'; - return; - } - - if (const ArrayType *ATy = dyn_cast(Ty)) { - Out << '[' << ATy->getNumElements() << " x "; - printType(ATy->getElementType()); - Out << ']'; - return; - } - - if (const VectorType *PTy = dyn_cast(Ty)) { - Out << '<' << PTy->getNumElements() << " x "; - printType(PTy->getElementType()); - Out << '>'; - return; - } - - if (isa(Ty)) { - Out << "opaque"; - return; - } - - if (!Ty->isPrimitiveType()) - Out << ""; - printType(Ty); -} +} // end of anonymous namespace void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { @@ -1060,26 +1315,26 @@ void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { Out << ""; } else { if (PrintType) { - printType(Operand->getType()); + TypePrinter.print(Operand->getType(), Out); Out << ' '; } - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine); } } -void AssemblyWriter::writeParamOperand(const Value *Operand, +void AssemblyWriter::writeParamOperand(const Value *Operand, Attributes Attrs) { if (Operand == 0) { Out << ""; } else { // Print the type - printType(Operand->getType()); + TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); Out << ' '; // Print the operand - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine); } } @@ -1100,6 +1355,7 @@ void AssemblyWriter::printModule(const Module *M) { std::string Asm = M->getModuleInlineAsm(); size_t CurPos = 0; size_t NewLine = Asm.find_first_of('\n', CurPos); + Out << '\n'; while (NewLine != std::string::npos) { // We found a newline, print the portion of the asm string from the // last newline up to this newline. @@ -1114,11 +1370,12 @@ void AssemblyWriter::printModule(const Module *M) { PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); Out << "\"\n"; } - + // Loop over the dependent libraries and emit them. Module::lib_iterator LI = M->lib_begin(); Module::lib_iterator LE = M->lib_end(); if (LI != LE) { + Out << '\n'; Out << "deplibs = [ "; while (LI != LE) { Out << '"' << *LI << '"'; @@ -1126,16 +1383,19 @@ void AssemblyWriter::printModule(const Module *M) { if (LI != LE) Out << ", "; } - Out << " ]\n"; + Out << " ]"; } - // Loop over the symbol table, emitting all named constants. + // Loop over the symbol table, emitting all id'd types. + if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n'; printTypeSymbolTable(M->getTypeSymbolTable()); + // Output all globals. + if (!M->global_empty()) Out << '\n'; for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) printGlobal(I); - + // Output all aliases. if (!M->alias_empty()) Out << "\n"; for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); @@ -1145,30 +1405,55 @@ void AssemblyWriter::printModule(const Module *M) { // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); + + // Output named metadata. + if (!M->named_metadata_empty()) Out << '\n'; + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + Out << "!" << NMD->getName() << " = !{"; + for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { + if (i) Out << ", "; + MDNode *MD = dyn_cast_or_null(NMD->getElement(i)); + Out << '!' << Machine.getMetadataSlot(MD); + } + Out << "}\n"; + } + + // Output metadata. + if (!Machine.mdnEmpty()) Out << '\n'; + WriteMDNodes(Out, TypePrinter, Machine); } -static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) { +static void PrintLinkage(GlobalValue::LinkageTypes LT, + formatted_raw_ostream &Out) { switch (LT) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; - case GlobalValue::WeakLinkage: Out << "weak "; break; - case GlobalValue::CommonLinkage: Out << "common "; break; - case GlobalValue::AppendingLinkage: Out << "appending "; break; - case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; - case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; - case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; case GlobalValue::ExternalLinkage: break; + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; + case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; + case GlobalValue::WeakAnyLinkage: Out << "weak "; break; + case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::AvailableExternallyLinkage: + Out << "available_externally "; + break; case GlobalValue::GhostLinkage: - Out << "GhostLinkage not allowed in AsmWriter!\n"; - abort(); + llvm_unreachable("GhostLinkage not allowed in AsmWriter!"); } } - + static void PrintVisibility(GlobalValue::VisibilityTypes Vis, - raw_ostream &Out) { + formatted_raw_ostream &Out) { switch (Vis) { - default: assert(0 && "Invalid visibility style!"); + default: llvm_unreachable("Invalid visibility style!"); case GlobalValue::DefaultVisibility: break; case GlobalValue::HiddenVisibility: Out << "hidden "; break; case GlobalValue::ProtectedVisibility: Out << "protected "; break; @@ -1176,29 +1461,26 @@ static void PrintVisibility(GlobalValue::VisibilityTypes Vis, } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { - if (GV->hasName()) { - PrintLLVMName(Out, GV); - Out << " = "; - } + WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine); + Out << " = "; if (!GV->hasInitializer() && GV->hasExternalLinkage()) Out << "external "; - + PrintLinkage(GV->getLinkage(), Out); PrintVisibility(GV->getVisibility(), Out); if (GV->isThreadLocal()) Out << "thread_local "; + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; Out << (GV->isConstant() ? "constant " : "global "); - printType(GV->getType()->getElementType()); + TypePrinter.print(GV->getType()->getElementType(), Out); if (GV->hasInitializer()) { Out << ' '; writeOperand(GV->getInitializer(), false); } - if (unsigned AddressSpace = GV->getType()->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ") "; - if (GV->hasSection()) Out << ", section \"" << GV->getSection() << '"'; if (GV->getAlignment()) @@ -1221,50 +1503,55 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) { Out << "alias "; PrintLinkage(GA->getLinkage(), Out); - + const Constant *Aliasee = GA->getAliasee(); - + if (const GlobalVariable *GV = dyn_cast(Aliasee)) { - printType(GV->getType()); + TypePrinter.print(GV->getType(), Out); Out << ' '; PrintLLVMName(Out, GV); } else if (const Function *F = dyn_cast(Aliasee)) { - printType(F->getFunctionType()); + TypePrinter.print(F->getFunctionType(), Out); Out << "* "; - if (F->hasName()) - PrintLLVMName(Out, F); - else - Out << "@\"\""; + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine); } else if (const GlobalAlias *GA = dyn_cast(Aliasee)) { - printType(GA->getType()); - Out << " "; + TypePrinter.print(GA->getType(), Out); + Out << ' '; PrintLLVMName(Out, GA); } else { - const ConstantExpr *CE = 0; - if ((CE = dyn_cast(Aliasee)) && - (CE->getOpcode() == Instruction::BitCast)) { - writeOperand(CE, false); - } else - assert(0 && "Unsupported aliasee"); - } - + const ConstantExpr *CE = cast(Aliasee); + // The only valid GEP is an all zero GEP. + assert((CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + "Unsupported aliasee"); + writeOperand(CE, false); + } + printInfoComment(*GA); Out << '\n'; } void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { - // Print the types. + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << '%' << i << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); + Out << '\n'; + } + + // Print the named types. for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) { - Out << '\t'; - PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix); + PrintLLVMName(Out, TI->first, LocalPrefix); Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE - // - printTypeAtLeastOneLevel(TI->second); + TypePrinter.printAtLeastOneLevel(TI->second, Out); Out << '\n'; } } @@ -1281,7 +1568,7 @@ void AssemblyWriter::printFunction(const Function *F) { Out << "declare "; else Out << "define "; - + PrintLinkage(F->getLinkage(), Out); PrintVisibility(F->getVisibility(), Out); @@ -1291,7 +1578,10 @@ void AssemblyWriter::printFunction(const Function *F) { case CallingConv::Fast: Out << "fastcc "; break; case CallingConv::Cold: Out << "coldcc "; break; case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; - case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; default: Out << "cc" << F->getCallingConv() << " "; break; } @@ -1300,12 +1590,9 @@ void AssemblyWriter::printFunction(const Function *F) { Attributes RetAttrs = Attrs.getRetAttributes(); if (RetAttrs != Attribute::None) Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; - printType(F->getReturnType()); + TypePrinter.print(F->getReturnType(), Out); Out << ' '; - if (F->hasName()) - PrintLLVMName(Out, F); - else - Out << "@\"\""; + WriteAsOperandInternal(Out, F, &TypePrinter, &Machine); Out << '('; Machine.incorporateFunction(F); @@ -1326,10 +1613,10 @@ void AssemblyWriter::printFunction(const Function *F) { for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { // Insert commas as we go... the first arg doesn't get a comma if (i) Out << ", "; - + // Output type... - printType(FT->getParamType(i)); - + TypePrinter.print(FT->getParamType(i), Out); + Attributes ArgAttrs = Attrs.getParamAttributes(i+1); if (ArgAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(ArgAttrs); @@ -1369,10 +1656,10 @@ void AssemblyWriter::printFunction(const Function *F) { /// printArgument - This member is called for every argument that is passed into /// the function. Simply print it out /// -void AssemblyWriter::printArgument(const Argument *Arg, +void AssemblyWriter::printArgument(const Argument *Arg, Attributes Attrs) { // Output type... - printType(Arg->getType()); + TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list if (Attrs != Attribute::None) @@ -1390,7 +1677,7 @@ void AssemblyWriter::printArgument(const Argument *Arg, void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n"; - PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix); + PrintLLVMName(Out, BB->getName(), LabelPrefix); Out << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n;