X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FAsmWriter.cpp;h=239760d2b085e69d2c20e1132c44649c5bfaf0aa;hb=f45a82890e34984ad1e1e259f8fb902caddfb0b1;hp=7af26d0e8a73b46ad4c603fceaef840bd9b25958;hpb=280a6e607d8eb7401749a92db624a82de47da777;p=oota-llvm.git diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp index 7af26d0e8a7..239760d2b08 100644 --- a/lib/VMCore/AsmWriter.cpp +++ b/lib/VMCore/AsmWriter.cpp @@ -26,408 +26,685 @@ #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/TypeSymbolTable.h" +#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/Streams.h" +#include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; -namespace llvm { - // Make virtual table appear in this compilation unit. AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} -/// This class provides computation of slot numbers for LLVM Assembly writing. -/// @brief LLVM Assembly Writing Slot Computation. -class SlotMachine { - -/// @name Types -/// @{ -public: - - /// @brief A mapping of Values to slot numbers - typedef std::map ValueMap; - -/// @} -/// @name Constructors -/// @{ -public: - /// @brief Construct from a module - explicit SlotMachine(const Module *M); - - /// @brief Construct from a function, starting out in incorp state. - explicit SlotMachine(const Function *F); - -/// @} -/// @name Accessors -/// @{ -public: - /// Return the slot number of the specified value in it's type - /// plane. If something is not in the SlotMachine, return -1. - int getLocalSlot(const Value *V); - int getGlobalSlot(const GlobalValue *V); - -/// @} -/// @name Mutators -/// @{ -public: - /// If you'd like to deal with a function instead of just a module, use - /// this method to get its data into the SlotMachine. - void incorporateFunction(const Function *F) { - TheFunction = F; - FunctionProcessed = false; - } - - /// After calling incorporateFunction, use this method to remove the - /// most recently incorporated function from the SlotMachine. This - /// will reset the state of the machine back to just the module contents. - void purgeFunction(); - -/// @} -/// @name Implementation Details -/// @{ -private: - /// This function does the actual initialization. - inline void initialize(); - - /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. - void CreateModuleSlot(const GlobalValue *V); - - /// CreateFunctionSlot - Insert the specified Value* into the slot table. - void CreateFunctionSlot(const Value *V); - - /// Add all of the module level global variables (and their initializers) - /// and function declarations, but not the contents of those functions. - void processModule(); - - /// Add all of the functions arguments, basic blocks, and instructions - void processFunction(); - - SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT - void operator=(const SlotMachine &); // DO NOT IMPLEMENT - -/// @} -/// @name Data -/// @{ -public: - - /// @brief The module for which we are holding slot numbers - const Module* TheModule; - - /// @brief The function for which we are holding slot numbers - const Function* TheFunction; - bool FunctionProcessed; - - /// @brief The TypePlanes map for the module level data - ValueMap mMap; - unsigned mNext; - - /// @brief The TypePlanes map for the function level data - ValueMap fMap; - unsigned fNext; - -/// @} - -}; - -} // end namespace llvm - -char PrintModulePass::ID = 0; -static RegisterPass -X("printm", "Print module to stderr"); -char PrintFunctionPass::ID = 0; -static RegisterPass -Y("print","Print function to stderr"); - -static void WriteAsOperandInternal(std::ostream &Out, const Value *V, - std::map &TypeTable, - SlotMachine *Machine); +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; - else if (const BasicBlock *BB = dyn_cast(V)) + + if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; - else if (const Instruction *I = dyn_cast(V)) { + + if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; - } else if (const GlobalValue *GV = dyn_cast(V)) + } + + if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); return 0; } -static SlotMachine *createSlotMachine(const Value *V) { - if (const Argument *FA = dyn_cast(V)) { - return new SlotMachine(FA->getParent()); - } else if (const Instruction *I = dyn_cast(V)) { - return new SlotMachine(I->getParent()->getParent()); - } else if (const BasicBlock *BB = dyn_cast(V)) { - return new SlotMachine(BB->getParent()); - } else if (const GlobalVariable *GV = dyn_cast(V)){ - return new SlotMachine(GV->getParent()); - } else if (const GlobalAlias *GA = dyn_cast(V)){ - return new SlotMachine(GA->getParent()); - } else if (const Function *Func = dyn_cast(V)) { - return new SlotMachine(Func); +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(const char *Str, unsigned Length, + raw_ostream &Out) { + for (unsigned i = 0; i != Length; ++i) { + unsigned char C = Str[i]; + if (isprint(C) && C != '\\' && C != '"' && isprint(C)) + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } - return 0; } -/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped -/// with ""'s. -static std::string QuoteNameIfNeeded(const std::string &Name) { - std::string result; - bool needsQuotes = Name[0] >= '0' && Name[0] <= '9'; - // Scan the name to see if it needs quotes and to replace funky chars with - // their octal equivalent. - for (unsigned i = 0, e = Name.size(); i != e; ++i) { - char C = Name[i]; - assert(C != '"' && "Illegal character in LLVM value name!"); - if (isalnum(C) || C == '-' || C == '.' || C == '_') - result += C; - else if (C == '\\') { - needsQuotes = true; - result += "\\\\"; - } else if (isprint(C)) { - needsQuotes = true; - result += C; - } else { - needsQuotes = true; - result += "\\"; - char hex1 = (C >> 4) & 0x0F; - if (hex1 < 10) - result += hex1 + '0'; - else - result += hex1 - 10 + 'A'; - char hex2 = C & 0x0F; - if (hex2 < 10) - result += hex2 + '0'; - else - result += hex2 - 10 + 'A'; - } - } - if (needsQuotes) { - result.insert(0,"\""); - result += '"'; - } - return result; +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { + PrintEscapedString(Str.c_str(), Str.size(), Out); } enum PrefixType { GlobalPrefix, LabelPrefix, - LocalPrefix + LocalPrefix, + NoPrefix }; -/// getLLVMName - Turn the specified string into an 'LLVM name', which is either +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is -/// surrounded with ""'s (if it has special chars in it). -static std::string getLLVMName(const std::string &Name, PrefixType Prefix) { - assert(!Name.empty() && "Cannot get empty name!"); +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const char *NameStr, + unsigned NameLen, PrefixType Prefix) { + assert(NameStr && "Cannot get empty name!"); switch (Prefix) { default: assert(0 && "Bad prefix!"); - case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name); - case LabelPrefix: return QuoteNameIfNeeded(Name); - case LocalPrefix: return '%' + QuoteNameIfNeeded(Name); + case NoPrefix: break; + case GlobalPrefix: OS << '@'; break; + case LabelPrefix: break; + case LocalPrefix: OS << '%'; break; } + + // Scan the name to see if it needs quotes first. + bool NeedsQuotes = isdigit(NameStr[0]); + if (!NeedsQuotes) { + for (unsigned i = 0; i != NameLen; ++i) { + char C = NameStr[i]; + if (!isalnum(C) && C != '-' && C != '.' && C != '_') { + NeedsQuotes = true; + break; + } + } + } + + // If we didn't need any quotes, just write out the name in one blast. + if (!NeedsQuotes) { + OS.write(NameStr, NameLen); + return; + } + + // Okay, we need quotes. Output the quotes and escape any scary characters as + // needed. + OS << '"'; + PrintEscapedString(NameStr, NameLen, OS); + OS << '"'; } +/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either +/// prefixed with % (if the string only contains simple characters) or is +/// surrounded with ""'s (if it has special chars in it). Print it out. +static void PrintLLVMName(raw_ostream &OS, const Value *V) { + PrintLLVMName(OS, V->getNameStart(), V->getNameLen(), + isa(V) ? GlobalPrefix : LocalPrefix); +} -/// fillTypeNameTable - If the module has a symbol table, take all global types -/// and stuff their names into the TypeNames map. -/// -static void fillTypeNameTable(const Module *M, - std::map &TypeNames) { - if (!M) return; - const TypeSymbolTable &ST = M->getTypeSymbolTable(); - TypeSymbolTable::const_iterator TI = ST.begin(); - for (; TI != ST.end(); ++TI) { - // As a heuristic, don't insert pointer to primitive types, because - // they are used too often to have a single useful name. - // - const Type *Ty = cast(TI->second); - if (!isa(Ty) || - !cast(Ty)->getElementType()->isPrimitiveType() || - !cast(Ty)->getElementType()->isInteger() || - isa(cast(Ty)->getElementType())) - TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix))); - } +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +static DenseMap &getTypeNamesMap(void *M) { + return *static_cast*>(M); } +void TypePrinting::clear() { + getTypeNamesMap(TypeNames).clear(); +} +bool TypePrinting::hasTypeName(const Type *Ty) const { + return getTypeNamesMap(TypeNames).count(Ty); +} -static void calcTypeName(const Type *Ty, - std::vector &TypeStack, - std::map &TypeNames, - std::string & Result){ - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) { - Result += Ty->getDescription(); // Base case - return; - } +void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { + getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); +} - // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Result += I->second; - return; - } - if (isa(Ty)) { - Result += "opaque"; - return; - } +TypePrinting::TypePrinting() { + TypeNames = new DenseMap(); +} + +TypePrinting::~TypePrinting() { + delete &getTypeNamesMap(TypeNames); +} +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::CalcTypeName(const Type *Ty, + SmallVectorImpl &TypeStack, + raw_ostream &OS, bool IgnoreTopLevelName) { + // Check to see if the type is named. + if (!IgnoreTopLevelName) { + DenseMap &TM = getTypeNamesMap(TypeNames); + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type - + // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. if (Slot < CurSize) { - Result += "\\" + utostr(CurSize-Slot); // Here's the upreference + OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference return; } - + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. - + switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - Result += "i" + utostr(BitWidth); + case Type::VoidTyID: OS << "void"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::IntegerTyID: + OS << 'i' << cast(Ty)->getBitWidth(); break; - } + case Type::FunctionTyID: { const FunctionType *FTy = cast(Ty); - calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); - Result += " ("; + CalcTypeName(FTy->getReturnType(), TypeStack, OS); + OS << " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); + OS << ", "; + CalcTypeName(*I, TypeStack, OS); } if (FTy->isVarArg()) { - if (FTy->getNumParams()) Result += ", "; - Result += "..."; + if (FTy->getNumParams()) OS << ", "; + OS << "..."; } - Result += ")"; + OS << ')'; break; } case Type::StructTyID: { const StructType *STy = cast(Ty); if (STy->isPacked()) - Result += '<'; - Result += "{ "; + OS << '<'; + OS << "{ "; for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); + E = STy->element_end(); I != E; ++I) { + CalcTypeName(*I, TypeStack, OS); + if (next(I) != STy->element_end()) + OS << ','; + OS << ' '; } - Result += " }"; + OS << '}'; if (STy->isPacked()) - Result += '>'; + OS << '>'; break; } case Type::PointerTyID: { const PointerType *PTy = cast(Ty); - calcTypeName(PTy->getElementType(), - TypeStack, TypeNames, Result); + CalcTypeName(PTy->getElementType(), TypeStack, OS); if (unsigned AddressSpace = PTy->getAddressSpace()) - Result += " addrspace(" + utostr(AddressSpace) + ")"; - Result += "*"; + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; break; } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); - Result += "[" + utostr(ATy->getNumElements()) + " x "; - calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); - Result += "]"; + OS << '[' << ATy->getNumElements() << " x "; + CalcTypeName(ATy->getElementType(), TypeStack, OS); + OS << ']'; break; } case Type::VectorTyID: { const VectorType *PTy = cast(Ty); - Result += "<" + utostr(PTy->getNumElements()) + " x "; - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - Result += ">"; + OS << "<" << PTy->getNumElements() << " x "; + CalcTypeName(PTy->getElementType(), TypeStack, OS); + OS << '>'; break; } case Type::OpaqueTyID: - Result += "opaque"; + OS << "opaque"; break; default: - Result += ""; + OS << ""; break; } - - TypeStack.pop_back(); // Remove self from stack... + + TypeStack.pop_back(); // Remove self from stack. } - /// printTypeInt - The internal guts of printing out a type that has a /// potentially named portion. /// -static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty, - std::map &TypeNames) { - // Primitive types always print out their description, regardless of whether - // they have been named or not. - // - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) - return Out << Ty->getDescription(); - +void TypePrinting::print(const Type *Ty, raw_ostream &OS, + bool IgnoreTopLevelName) { // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) return Out << I->second; - + DenseMap &TM = getTypeNamesMap(TypeNames); + if (!IgnoreTopLevelName) { + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + // Otherwise we have a type that has not been named but is a derived type. // Carefully recurse the type hierarchy to print out any contained symbolic // names. - // - std::vector TypeStack; + SmallVector TypeStack; std::string TypeName; - calcTypeName(Ty, TypeStack, TypeNames, TypeName); - TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use - return (Out << TypeName); + + raw_string_ostream TypeOS(TypeName); + CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); + OS << TypeOS.str(); + + // Cache type name for later use. + if (!IgnoreTopLevelName) + TM.insert(std::make_pair(Ty, TypeOS.str())); +} + +namespace { + class TypeFinder { + // To avoid walking constant expressions multiple times and other IR + // objects, we keep several helper maps. + DenseSet VisitedConstants; + DenseSet VisitedTypes; + + TypePrinting &TP; + std::vector &NumberedTypes; + public: + TypeFinder(TypePrinting &tp, std::vector &numberedTypes) + : TP(tp), NumberedTypes(numberedTypes) {} + + void Run(const Module &M) { + // Get types from the type symbol table. This gets opaque types referened + // only through derived named types. + const TypeSymbolTable &ST = M.getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) + IncorporateType(TI->second); + + // Get types from global variables. + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + // Get types from aliases. + for (Module::const_alias_iterator I = M.alias_begin(), + E = M.alias_end(); I != E; ++I) { + IncorporateType(I->getType()); + IncorporateValue(I->getAliasee()); + } + + // Get types from functions. + for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { + IncorporateType(FI->getType()); + + for (Function::const_iterator BB = FI->begin(), E = FI->end(); + BB != E;++BB) + for (BasicBlock::const_iterator II = BB->begin(), + E = BB->end(); II != E; ++II) { + const Instruction &I = *II; + // Incorporate the type of the instruction and all its operands. + IncorporateType(I.getType()); + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } + } + } + + private: + void IncorporateType(const Type *Ty) { + // Check to see if we're already visited this type. + if (!VisitedTypes.insert(Ty).second) + return; + + // If this is a structure or opaque type, add a name for the type. + if ((isa(Ty) || isa(Ty)) + && !TP.hasTypeName(Ty)) { + TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); + NumberedTypes.push_back(Ty); + } + + // Recursively walk all contained types. + for (Type::subtype_iterator I = Ty->subtype_begin(), + E = Ty->subtype_end(); I != E; ++I) + IncorporateType(*I); + } + + /// IncorporateValue - This method is used to walk operand lists finding + /// types hiding in constant expressions and other operands that won't be + /// walked in other ways. GlobalValues, basic blocks, instructions, and + /// inst operands are all explicitly enumerated. + void IncorporateValue(const Value *V) { + if (V == 0 || !isa(V) || isa(V)) return; + + // Already visited? + if (!VisitedConstants.insert(V).second) + return; + + // Check this type. + IncorporateType(V->getType()); + + // Look in operands for types. + const Constant *C = cast(V); + for (Constant::const_op_iterator I = C->op_begin(), + E = C->op_end(); I != E;++I) + IncorporateValue(*I); + } + }; +} // end anonymous namespace + + +/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in +/// the specified module to the TypePrinter and all numbered types to it and the +/// NumberedTypes table. +static void AddModuleTypesToPrinter(TypePrinting &TP, + std::vector &NumberedTypes, + const Module *M) { + if (M == 0) return; + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + const TypeSymbolTable &ST = M->getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) { + const Type *Ty = cast(TI->second); + + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + if (const PointerType *PTy = dyn_cast(Ty)) { + const Type *PETy = PTy->getElementType(); + if ((PETy->isPrimitiveType() || PETy->isInteger()) && + !isa(PETy)) + continue; + } + + // Likewise don't insert primitives either. + if (Ty->isInteger() || Ty->isPrimitiveType()) + continue; + + // Get the name as a string and insert it into TypeNames. + std::string NameStr; + raw_string_ostream NameOS(NameStr); + PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix); + TP.addTypeName(Ty, NameOS.str()); + } + + // Walk the entire module to find references to unnamed structure and opaque + // types. This is required for correctness by opaque types (because multiple + // uses of an unnamed opaque type needs to be referred to by the same ID) and + // it shrinks complex recursive structure types substantially in some cases. + TypeFinder(TP, NumberedTypes).Run(*M); } /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic /// type, iff there is an entry in the modules symbol table for the specified -/// type or one of it's component types. This is slower than a simple x << Type +/// type or one of it's component types. /// -std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty, - const Module *M) { - Out << ' '; +void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { + TypePrinting Printer; + std::vector NumberedTypes; + AddModuleTypesToPrinter(Printer, NumberedTypes, M); + Printer.print(Ty, OS); +} - // If they want us to print out a type, but there is no context, we can't - // print it symbolically. - if (!M) - return Out << Ty->getDescription(); - - std::map TypeNames; - fillTypeNameTable(M, TypeNames); - return printTypeInt(Out, Ty, TypeNames); +//===----------------------------------------------------------------------===// +// SlotTracker Class: Enumerate slot numbers for unnamed values +//===----------------------------------------------------------------------===// + +namespace { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// +class SlotTracker { +public: + /// ValueMap - A mapping of Values to slot numbers + typedef DenseMap ValueMap; + +private: + /// TheModule - The module for which we are holding slot numbers + const Module* TheModule; + + /// TheFunction - The function for which we are holding slot numbers + const Function* TheFunction; + bool FunctionProcessed; + + /// mMap - The TypePlanes map for the module level data + ValueMap mMap; + unsigned mNext; + + /// fMap - The TypePlanes map for the function level data + ValueMap fMap; + unsigned fNext; + +public: + /// Construct from a module + explicit SlotTracker(const Module *M); + /// Construct from a function, starting out in incorp state. + explicit SlotTracker(const Function *F); + + /// Return the slot number of the specified value in it's type + /// plane. If something is not in the SlotTracker, return -1. + int getLocalSlot(const Value *V); + int getGlobalSlot(const GlobalValue *V); + + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotTracker. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotTracker. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + + // Implementation Details +private: + /// This function does the actual initialization. + inline void initialize(); + + /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. + void CreateModuleSlot(const GlobalValue *V); + + /// CreateFunctionSlot - Insert the specified Value* into the slot table. + void CreateFunctionSlot(const Value *V); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions + void processFunction(); + + SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT + void operator=(const SlotTracker &); // DO NOT IMPLEMENT +}; + +} // end anonymous namespace + + +static SlotTracker *createSlotTracker(const Value *V) { + if (const Argument *FA = dyn_cast(V)) + return new SlotTracker(FA->getParent()); + + if (const Instruction *I = dyn_cast(V)) + return new SlotTracker(I->getParent()->getParent()); + + if (const BasicBlock *BB = dyn_cast(V)) + return new SlotTracker(BB->getParent()); + + if (const GlobalVariable *GV = dyn_cast(V)) + return new SlotTracker(GV->getParent()); + + if (const GlobalAlias *GA = dyn_cast(V)) + return new SlotTracker(GA->getParent()); + + if (const Function *Func = dyn_cast(V)) + return new SlotTracker(Func); + + return 0; } -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -static void PrintEscapedString(const std::string &Str, std::ostream &Out) { - for (unsigned i = 0, e = Str.size(); i != e; ++i) { - unsigned char C = Str[i]; - if (isprint(C) && C != '"' && C != '\\') { - Out << C; - } else { - Out << '\\' - << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) - << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - } +#if 0 +#define ST_DEBUG(X) cerr << X +#else +#define ST_DEBUG(X) +#endif + +// Module level constructor. Causes the contents of the Module (sans functions) +// to be added to the slot table. +SlotTracker::SlotTracker(const Module *M) + : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) { +} + +// Function level constructor. Causes the contents of the Module and the one +// function provided to be added to the slot table. +SlotTracker::SlotTracker(const Function *F) + : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), + mNext(0), fNext(0) { +} + +inline void SlotTracker::initialize() { + if (TheModule) { + processModule(); + TheModule = 0; ///< Prevent re-processing next time we're called. + } + + if (TheFunction && !FunctionProcessed) + processFunction(); +} + +// Iterate through all the global variables, functions, and global +// variable initializers and create slots for them. +void SlotTracker::processModule() { + ST_DEBUG("begin processModule!\n"); + + // Add all of the unnamed global variables to the value table. + for (Module::const_global_iterator I = TheModule->global_begin(), + E = TheModule->global_end(); I != E; ++I) + if (!I->hasName()) + CreateModuleSlot(I); + + // Add all the unnamed functions to the table. + for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); + I != E; ++I) + if (!I->hasName()) + CreateModuleSlot(I); + + ST_DEBUG("end processModule!\n"); +} + + +// Process the arguments, basic blocks, and instructions of a function. +void SlotTracker::processFunction() { + ST_DEBUG("begin processFunction!\n"); + fNext = 0; + + // Add all the function arguments with no names. + for(Function::const_arg_iterator AI = TheFunction->arg_begin(), + AE = TheFunction->arg_end(); AI != AE; ++AI) + if (!AI->hasName()) + CreateFunctionSlot(AI); + + ST_DEBUG("Inserting Instructions:\n"); + + // Add all of the basic blocks and instructions with no names. + for (Function::const_iterator BB = TheFunction->begin(), + E = TheFunction->end(); BB != E; ++BB) { + if (!BB->hasName()) + CreateFunctionSlot(BB); + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) + if (I->getType() != Type::VoidTy && !I->hasName()) + CreateFunctionSlot(I); } + + FunctionProcessed = true; + + ST_DEBUG("end processFunction!\n"); +} + +/// Clean up after incorporating a function. This is the only way to get out of +/// the function incorporation state that affects get*Slot/Create*Slot. Function +/// incorporation state is indicated by TheFunction != 0. +void SlotTracker::purgeFunction() { + ST_DEBUG("begin purgeFunction!\n"); + fMap.clear(); // Simply discard the function level map + TheFunction = 0; + FunctionProcessed = false; + ST_DEBUG("end purgeFunction!\n"); +} + +/// getGlobalSlot - Get the slot number of a global value. +int SlotTracker::getGlobalSlot(const GlobalValue *V) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + ValueMap::iterator MI = mMap.find(V); + return MI == mMap.end() ? -1 : (int)MI->second; +} + + +/// getLocalSlot - Get the slot number for a value that is local to a function. +int SlotTracker::getLocalSlot(const Value *V) { + assert(!isa(V) && "Can't get a constant or global slot with this!"); + + // Check for uninitialized state and do lazy initialization. + initialize(); + + ValueMap::iterator FI = fMap.find(V); + return FI == fMap.end() ? -1 : (int)FI->second; +} + + +/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. +void SlotTracker::CreateModuleSlot(const GlobalValue *V) { + assert(V && "Can't insert a null Value into SlotTracker!"); + assert(V->getType() != Type::VoidTy && "Doesn't need a slot!"); + assert(!V->hasName() && "Doesn't need a slot!"); + + unsigned DestSlot = mNext++; + mMap[V] = DestSlot; + + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " ["); + // G = Global, F = Function, A = Alias, o = other + ST_DEBUG((isa(V) ? 'G' : + (isa(V) ? 'F' : + (isa(V) ? 'A' : 'o'))) << "]\n"); } + +/// CreateSlot - Create a new slot for the specified value if it has no name. +void SlotTracker::CreateFunctionSlot(const Value *V) { + assert(V->getType() != Type::VoidTy && !V->hasName() && + "Doesn't need a slot!"); + + unsigned DestSlot = fNext++; + fMap[V] = DestSlot; + + // G = Global, F = Function, o = other + ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << + DestSlot << " [o]\n"); +} + + + +//===----------------------------------------------------------------------===// +// AsmWriter Implementation +//===----------------------------------------------------------------------===// + +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting &TypePrinter, + SlotTracker *Machine); + + + static const char *getPredicateText(unsigned predicate) { const char * pred = "unknown"; switch (predicate) { @@ -461,18 +738,18 @@ static const char *getPredicateText(unsigned predicate) { return pred; } -/// @brief Internal constant writer. -static void WriteConstantInt(std::ostream &Out, const Constant *CV, - std::map &TypeTable, - SlotMachine *Machine) { - const int IndentSize = 4; - static std::string Indent = "\n"; +static void WriteConstantInt(raw_ostream &Out, const Constant *CV, + TypePrinting &TypePrinter, SlotTracker *Machine) { if (const ConstantInt *CI = dyn_cast(CV)) { - if (CI->getType() == Type::Int1Ty) + if (CI->getType() == Type::Int1Ty) { Out << (CI->getZExtValue() ? "true" : "false"); - else - Out << CI->getValue().toStringSigned(10); - } else if (const ConstantFP *CFP = dyn_cast(CV)) { + return; + } + Out << CI->getValue(); + return; + } + + if (const ConstantFP *CFP = dyn_cast(CV)) { if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { // We would like to output the FP constant value in exponential notation, @@ -480,9 +757,10 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // + bool ignored; bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; - double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() : - CFP->getValueAPF().convertToFloat(); + double Val = isDouble ? CFP->getValueAPF().convertToDouble() : + CFP->getValueAPF().convertToFloat(); std::string StrVal = ftostr(CFP->getValueAPF()); // Check to make sure that the stringized number is not some string like @@ -499,141 +777,175 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, } } // Otherwise we could not reparse it to exactly the same value, so we must - // output the string in hexadecimal format! + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); - Out << "0x" << utohexstr(DoubleToBits(Val)); - } else { - // Some form of long double. These appear as a magic letter identifying - // the type, then a fixed number of hex digits. - Out << "0x"; - if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) - Out << 'K'; - else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) - Out << 'L'; - else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) - Out << 'M'; + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); + return; + } + + // Some form of long double. These appear as a magic letter identifying + // the type, then a fixed number of hex digits. + Out << "0x"; + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) + Out << 'K'; + else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) + Out << 'L'; + else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) + Out << 'M'; + else + assert(0 && "Unsupported floating point type"); + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = *p; + int shiftcount=60; + int width = api.getBitWidth(); + for (int j=0; j>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); else - assert(0 && "Unsupported floating point type"); - // api needed to prevent premature destruction - APInt api = CFP->getValueAPF().convertToAPInt(); - const uint64_t* p = api.getRawData(); - uint64_t word = *p; - int shiftcount=60; - int width = api.getBitWidth(); - for (int j=0; j>shiftcount) & 15; - if (nibble < 10) - Out << (unsigned char)(nibble + '0'); - else - Out << (unsigned char)(nibble - 10 + 'A'); - if (shiftcount == 0 && j+4 < width) { - word = *(++p); - shiftcount = 64; - if (width-j-4 < 64) - shiftcount = width-j-4; - } + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *(++p); + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; } } - } else if (isa(CV)) { + return; + } + + if (isa(CV)) { Out << "zeroinitializer"; - } else if (const ConstantArray *CA = dyn_cast(CV)) { + return; + } + + if (const ConstantArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of - // ubytes or an array of sbytes with positive values. + // i8 with ConstantInt values. // const Type *ETy = CA->getType()->getElementType(); if (CA->isString()) { Out << "c\""; PrintEscapedString(CA->getAsString(), Out); - Out << "\""; - + Out << '"'; } else { // Cannot output in string format... Out << '['; if (CA->getNumOperands()) { + TypePrinter.print(ETy, Out); Out << ' '; - printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CA->getOperand(0), - TypeTable, Machine); + TypePrinter, Machine); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine); + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine); } } - Out << " ]"; + Out << ']'; } - } else if (const ConstantStruct *CS = dyn_cast(CV)) { + return; + } + + if (const ConstantStruct *CS = dyn_cast(CV)) { if (CS->getType()->isPacked()) Out << '<'; Out << '{'; unsigned N = CS->getNumOperands(); if (N) { - if (N > 2) { - Indent += std::string(IndentSize, ' '); - Out << Indent; - } else { - Out << ' '; - } - printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); + Out << ' '; + TypePrinter.print(CS->getOperand(0)->getType(), Out); + Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine); for (unsigned i = 1; i < N; i++) { Out << ", "; - if (N > 2) Out << Indent; - printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); + TypePrinter.print(CS->getOperand(i)->getType(), Out); + Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine); } - if (N > 2) Indent.resize(Indent.size() - IndentSize); + Out << ' '; } - Out << " }"; + Out << '}'; if (CS->getType()->isPacked()) Out << '>'; - } else if (const ConstantVector *CP = dyn_cast(CV)) { - const Type *ETy = CP->getType()->getElementType(); - assert(CP->getNumOperands() > 0 && - "Number of operands for a PackedConst must be > 0"); - Out << '<'; + return; + } + + if (const ConstantVector *CP = dyn_cast(CV)) { + const Type *ETy = CP->getType()->getElementType(); + assert(CP->getNumOperands() > 0 && + "Number of operands for a PackedConst must be > 0"); + Out << '<'; + TypePrinter.print(ETy, Out); + Out << ' '; + WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine); + for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { + Out << ", "; + TypePrinter.print(ETy, Out); Out << ' '; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine); - for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { - Out << ", "; - printTypeInt(Out, ETy, TypeTable); - WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine); - } - Out << " >"; - } else if (isa(CV)) { + WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine); + } + Out << '>'; + return; + } + + if (isa(CV)) { Out << "null"; - - } else if (isa(CV)) { + return; + } + + if (isa(CV)) { Out << "undef"; + return; + } - } else if (const ConstantExpr *CE = dyn_cast(CV)) { + if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName(); if (CE->isCompare()) - Out << " " << getPredicateText(CE->getPredicate()); + Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { - printTypeInt(Out, (*OI)->getType(), TypeTable); - WriteAsOperandInternal(Out, *OI, TypeTable, Machine); + TypePrinter.print((*OI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *OI, TypePrinter, Machine); if (OI+1 != CE->op_end()) Out << ", "; } + if (CE->hasIndices()) { + const SmallVector &Indices = CE->getIndices(); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + Out << ", " << Indices[i]; + } + if (CE->isCast()) { Out << " to "; - printTypeInt(Out, CE->getType(), TypeTable); + TypePrinter.print(CE->getType(), Out); } Out << ')'; - - } else { - Out << ""; + return; } + + Out << ""; } @@ -641,216 +953,167 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// -static void WriteAsOperandInternal(std::ostream &Out, const Value *V, - std::map &TypeTable, - SlotMachine *Machine) { - Out << ' '; - if (V->hasName()) - Out << getLLVMName(V->getName(), - isa(V) ? GlobalPrefix : LocalPrefix); - else { - const Constant *CV = dyn_cast(V); - if (CV && !isa(CV)) { - WriteConstantInt(Out, CV, TypeTable, Machine); - } else if (const InlineAsm *IA = dyn_cast(V)) { - Out << "asm "; - if (IA->hasSideEffects()) - Out << "sideeffect "; - Out << '"'; - PrintEscapedString(IA->getAsmString(), Out); - Out << "\", \""; - PrintEscapedString(IA->getConstraintString(), Out); - Out << '"'; +static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, + TypePrinting &TypePrinter, + SlotTracker *Machine) { + if (V->hasName()) { + PrintLLVMName(Out, V); + return; + } + + const Constant *CV = dyn_cast(V); + if (CV && !isa(CV)) { + WriteConstantInt(Out, CV, TypePrinter, Machine); + return; + } + + if (const InlineAsm *IA = dyn_cast(V)) { + Out << "asm "; + if (IA->hasSideEffects()) + Out << "sideeffect "; + Out << '"'; + PrintEscapedString(IA->getAsmString(), Out); + Out << "\", \""; + PrintEscapedString(IA->getConstraintString(), Out); + Out << '"'; + return; + } + + char Prefix = '%'; + int Slot; + if (Machine) { + if (const GlobalValue *GV = dyn_cast(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; } else { - char Prefix = '%'; - int Slot; - if (Machine) { - if (const GlobalValue *GV = dyn_cast(V)) { - Slot = Machine->getGlobalSlot(GV); - Prefix = '@'; - } else { - Slot = Machine->getLocalSlot(V); - } + Slot = Machine->getLocalSlot(V); + } + } else { + Machine = createSlotTracker(V); + if (Machine) { + if (const GlobalValue *GV = dyn_cast(V)) { + Slot = Machine->getGlobalSlot(GV); + Prefix = '@'; } else { - Machine = createSlotMachine(V); - if (Machine) { - if (const GlobalValue *GV = dyn_cast(V)) { - Slot = Machine->getGlobalSlot(GV); - Prefix = '@'; - } else { - Slot = Machine->getLocalSlot(V); - } - } else { - Slot = -1; - } - delete Machine; + Slot = Machine->getLocalSlot(V); } - if (Slot != -1) - Out << Prefix << Slot; - else - Out << ""; + } else { + Slot = -1; } + delete Machine; } + + if (Slot != -1) + Out << Prefix << Slot; + else + Out << ""; } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// -std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V, - bool PrintType, const Module *Context) { - std::map TypeNames; - if (Context == 0) Context = getModuleFromVal(V); +void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, + const Module *Context) { + raw_os_ostream OS(Out); + WriteAsOperand(OS, V, PrintType, Context); +} - if (Context) - fillTypeNameTable(Context, TypeNames); +void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType, + const Module *Context) { + if (Context == 0) Context = getModuleFromVal(V); - if (PrintType) - printTypeInt(Out, V->getType(), TypeNames); + TypePrinting TypePrinter; + std::vector NumberedTypes; + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); + if (PrintType) { + TypePrinter.print(V->getType(), Out); + Out << ' '; + } - WriteAsOperandInternal(Out, V, TypeNames, 0); - return Out; + WriteAsOperandInternal(Out, V, TypePrinter, 0); } -namespace llvm { +namespace { class AssemblyWriter { - std::ostream &Out; - SlotMachine &Machine; + raw_ostream &Out; + SlotTracker &Machine; const Module *TheModule; - std::map TypeNames; + TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter; + std::vector NumberedTypes; public: - inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M, + inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW) : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { - - // If the module has a symbol table, take all global types and stuff their - // names into the TypeNames map. - // - fillTypeNameTable(M, TypeNames); + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); } - inline void write(const Module *M) { printModule(M); } - inline void write(const GlobalVariable *G) { printGlobal(G); } - inline void write(const GlobalAlias *G) { printAlias(G); } - inline void write(const Function *F) { printFunction(F); } - inline void write(const BasicBlock *BB) { printBasicBlock(BB); } - inline void write(const Instruction *I) { printInstruction(*I); } - inline void write(const Type *Ty) { printType(Ty); } - - void writeOperand(const Value *Op, bool PrintType); - void writeParamOperand(const Value *Operand, ParameterAttributes Attrs); - - const Module* getModule() { return TheModule; } - -private: - void printModule(const Module *M); - void printTypeSymbolTable(const TypeSymbolTable &ST); - void printGlobal(const GlobalVariable *GV); - void printAlias(const GlobalAlias *GV); - void printFunction(const Function *F); - void printArgument(const Argument *FA, ParameterAttributes Attrs); - void printBasicBlock(const BasicBlock *BB); - void printInstruction(const Instruction &I); - - // printType - Go to extreme measures to attempt to print out a short, - // symbolic version of a type name. - // - std::ostream &printType(const Type *Ty) { - return printTypeInt(Out, Ty, TypeNames); + void write(const Module *M) { printModule(M); } + + void write(const GlobalValue *G) { + if (const GlobalVariable *GV = dyn_cast(G)) + printGlobal(GV); + else if (const GlobalAlias *GA = dyn_cast(G)) + printAlias(GA); + else if (const Function *F = dyn_cast(G)) + printFunction(F); + else + assert(0 && "Unknown global"); } + + void write(const BasicBlock *BB) { printBasicBlock(BB); } + void write(const Instruction *I) { printInstruction(*I); } - // printTypeAtLeastOneLevel - Print out one level of the possibly complex type - // without considering any symbolic types that we may have equal to it. - // - std::ostream &printTypeAtLeastOneLevel(const Type *Ty); - - // printInfoComment - Print a little comment after the instruction indicating - // which slot it occupies. - void printInfoComment(const Value &V); -}; -} // end of llvm namespace + void writeOperand(const Value *Op, bool PrintType); + void writeParamOperand(const Value *Operand, Attributes Attrs); -/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type -/// without considering any symbolic types that we may have equal to it. -/// -std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { - if (const IntegerType *ITy = dyn_cast(Ty)) - Out << "i" << utostr(ITy->getBitWidth()); - else if (const FunctionType *FTy = dyn_cast(Ty)) { - printType(FTy->getReturnType()); - Out << " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Out << ", "; - printType(*I); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Out << ", "; - Out << "..."; - } - Out << ')'; - } else if (const StructType *STy = dyn_cast(Ty)) { - if (STy->isPacked()) - Out << '<'; - Out << "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Out << ", "; - printType(*I); - } - Out << " }"; - if (STy->isPacked()) - Out << '>'; - } else if (const PointerType *PTy = dyn_cast(Ty)) { - printType(PTy->getElementType()); - if (unsigned AddressSpace = PTy->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ")"; - Out << '*'; - } else if (const ArrayType *ATy = dyn_cast(Ty)) { - Out << '[' << ATy->getNumElements() << " x "; - printType(ATy->getElementType()) << ']'; - } else if (const VectorType *PTy = dyn_cast(Ty)) { - Out << '<' << PTy->getNumElements() << " x "; - printType(PTy->getElementType()) << '>'; - } - else if (isa(Ty)) { - Out << "opaque"; - } else { - if (!Ty->isPrimitiveType()) - Out << ""; - printType(Ty); - } - return Out; -} + const Module* getModule() { return TheModule; } + +private: + void printModule(const Module *M); + void printTypeSymbolTable(const TypeSymbolTable &ST); + void printGlobal(const GlobalVariable *GV); + void printAlias(const GlobalAlias *GV); + void printFunction(const Function *F); + void printArgument(const Argument *FA, Attributes Attrs); + void printBasicBlock(const BasicBlock *BB); + void printInstruction(const Instruction &I); + + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; +} // end of anonymous namespace void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { if (Operand == 0) { Out << ""; } else { - if (PrintType) { Out << ' '; printType(Operand->getType()); } - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + if (PrintType) { + TypePrinter.print(Operand->getType(), Out); + Out << ' '; + } + WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine); } } void AssemblyWriter::writeParamOperand(const Value *Operand, - ParameterAttributes Attrs) { + Attributes Attrs) { if (Operand == 0) { Out << ""; } else { - Out << ' '; // Print the type - printType(Operand->getType()); + TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list - if (Attrs != ParamAttr::None) - Out << ' ' << ParamAttr::getAsString(Attrs); + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); + Out << ' '; // Print the operand - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine); } } @@ -900,7 +1163,7 @@ void AssemblyWriter::printModule(const Module *M) { Out << " ]\n"; } - // Loop over the symbol table, emitting all named constants. + // Loop over the symbol table, emitting all id'd types. printTypeSymbolTable(M->getTypeSymbolTable()); for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); @@ -918,49 +1181,57 @@ void AssemblyWriter::printModule(const Module *M) { printFunction(I); } -void AssemblyWriter::printGlobal(const GlobalVariable *GV) { - if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = "; +static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) { + switch (LT) { + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; + case GlobalValue::WeakLinkage: Out << "weak "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::ExternalLinkage: break; + case GlobalValue::GhostLinkage: + Out << "GhostLinkage not allowed in AsmWriter!\n"; + abort(); + } +} + - if (!GV->hasInitializer()) { - switch (GV->getLinkage()) { - case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; - case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; - default: Out << "external "; break; - } - } else { - switch (GV->getLinkage()) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; - case GlobalValue::WeakLinkage: Out << "weak "; break; - case GlobalValue::AppendingLinkage: Out << "appending "; break; - case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; - case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; - case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; - case GlobalValue::ExternalLinkage: break; - case GlobalValue::GhostLinkage: - cerr << "GhostLinkage not allowed in AsmWriter!\n"; - abort(); - } - switch (GV->getVisibility()) { - default: assert(0 && "Invalid visibility style!"); - case GlobalValue::DefaultVisibility: break; - case GlobalValue::HiddenVisibility: Out << "hidden "; break; - case GlobalValue::ProtectedVisibility: Out << "protected "; break; - } +static void PrintVisibility(GlobalValue::VisibilityTypes Vis, + raw_ostream &Out) { + switch (Vis) { + default: assert(0 && "Invalid visibility style!"); + case GlobalValue::DefaultVisibility: break; + case GlobalValue::HiddenVisibility: Out << "hidden "; break; + case GlobalValue::ProtectedVisibility: Out << "protected "; break; + } +} + +void AssemblyWriter::printGlobal(const GlobalVariable *GV) { + if (GV->hasName()) { + PrintLLVMName(Out, GV); + Out << " = "; } + if (!GV->hasInitializer() && GV->hasExternalLinkage()) + Out << "external "; + + PrintLinkage(GV->getLinkage(), Out); + PrintVisibility(GV->getVisibility(), Out); + if (GV->isThreadLocal()) Out << "thread_local "; + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; Out << (GV->isConstant() ? "constant " : "global "); - printType(GV->getType()->getElementType()); + TypePrinter.print(GV->getType()->getElementType(), Out); if (GV->hasInitializer()) { - Constant* C = cast(GV->getInitializer()); - assert(C && "GlobalVar initializer isn't constant?"); + Out << ' '; writeOperand(GV->getInitializer(), false); } - - if (unsigned AddressSpace = GV->getType()->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ") "; if (GV->hasSection()) Out << ", section \"" << GV->getSection() << '"'; @@ -968,44 +1239,38 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) { Out << ", align " << GV->getAlignment(); printInfoComment(*GV); - Out << "\n"; + Out << '\n'; } void AssemblyWriter::printAlias(const GlobalAlias *GA) { - Out << getLLVMName(GA->getName(), GlobalPrefix) << " = "; - switch (GA->getVisibility()) { - default: assert(0 && "Invalid visibility style!"); - case GlobalValue::DefaultVisibility: break; - case GlobalValue::HiddenVisibility: Out << "hidden "; break; - case GlobalValue::ProtectedVisibility: Out << "protected "; break; + // Don't crash when dumping partially built GA + if (!GA->hasName()) + Out << "<> = "; + else { + PrintLLVMName(Out, GA); + Out << " = "; } + PrintVisibility(GA->getVisibility(), Out); Out << "alias "; - switch (GA->getLinkage()) { - case GlobalValue::WeakLinkage: Out << "weak "; break; - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::ExternalLinkage: break; - default: - assert(0 && "Invalid alias linkage"); - } + PrintLinkage(GA->getLinkage(), Out); const Constant *Aliasee = GA->getAliasee(); if (const GlobalVariable *GV = dyn_cast(Aliasee)) { - printType(GV->getType()); - Out << " " << getLLVMName(GV->getName(), GlobalPrefix); + TypePrinter.print(GV->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GV); } else if (const Function *F = dyn_cast(Aliasee)) { - printType(F->getFunctionType()); + TypePrinter.print(F->getFunctionType(), Out); Out << "* "; - if (!F->getName().empty()) - Out << getLLVMName(F->getName(), GlobalPrefix); - else - Out << "@\"\""; + WriteAsOperandInternal(Out, F, TypePrinter, &Machine); } else if (const GlobalAlias *GA = dyn_cast(Aliasee)) { - printType(GA->getType()); - Out << " " << getLLVMName(GA->getName(), GlobalPrefix); + TypePrinter.print(GA->getType(), Out); + Out << ' '; + PrintLLVMName(Out, GA); } else { const ConstantExpr *CE = 0; if ((CE = dyn_cast(Aliasee)) && @@ -1016,27 +1281,39 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) { } printInfoComment(*GA); - Out << "\n"; + Out << '\n'; } void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { - // Print the types. + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << "\ttype "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); + Out << "\t\t; type %" << i << '\n'; + } + + // Print the named types. for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) { - Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type "; + Out << '\t'; + PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix); + Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE - // - printTypeAtLeastOneLevel(TI->second) << "\n"; + TypePrinter.printAtLeastOneLevel(TI->second, Out); + Out << '\n'; } } /// printFunction - Print all aspects of a function. /// void AssemblyWriter::printFunction(const Function *F) { - // Print out the return type and name... - Out << "\n"; + // Print out the return type and name. + Out << '\n'; if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); @@ -1044,26 +1321,9 @@ void AssemblyWriter::printFunction(const Function *F) { Out << "declare "; else Out << "define "; - - switch (F->getLinkage()) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; - case GlobalValue::WeakLinkage: Out << "weak "; break; - case GlobalValue::AppendingLinkage: Out << "appending "; break; - case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; - case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; - case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; - case GlobalValue::ExternalLinkage: break; - case GlobalValue::GhostLinkage: - cerr << "GhostLinkage not allowed in AsmWriter!\n"; - abort(); - } - switch (F->getVisibility()) { - default: assert(0 && "Invalid visibility style!"); - case GlobalValue::DefaultVisibility: break; - case GlobalValue::HiddenVisibility: Out << "hidden "; break; - case GlobalValue::ProtectedVisibility: Out << "protected "; break; - } + + PrintLinkage(F->getLinkage(), Out); + PrintVisibility(F->getVisibility(), Out); // Print the calling convention. switch (F->getCallingConv()) { @@ -1076,12 +1336,13 @@ void AssemblyWriter::printFunction(const Function *F) { } const FunctionType *FT = F->getFunctionType(); - const PAListPtr &Attrs = F->getParamAttrs(); - printType(F->getReturnType()) << ' '; - if (!F->getName().empty()) - Out << getLLVMName(F->getName(), GlobalPrefix); - else - Out << "@\"\""; + const AttrListPtr &Attrs = F->getAttributes(); + Attributes RetAttrs = Attrs.getRetAttributes(); + if (RetAttrs != Attribute::None) + Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; + TypePrinter.print(F->getReturnType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, F, TypePrinter, &Machine); Out << '('; Machine.incorporateFunction(F); @@ -1094,7 +1355,7 @@ void AssemblyWriter::printFunction(const Function *F) { I != E; ++I) { // Insert commas as we go... the first arg doesn't get a comma if (I != F->arg_begin()) Out << ", "; - printArgument(I, Attrs.getParamAttrs(Idx)); + printArgument(I, Attrs.getParamAttributes(Idx)); Idx++; } } else { @@ -1104,11 +1365,11 @@ void AssemblyWriter::printFunction(const Function *F) { if (i) Out << ", "; // Output type... - printType(FT->getParamType(i)); + TypePrinter.print(FT->getParamType(i), Out); - ParameterAttributes ArgAttrs = Attrs.getParamAttrs(i+1); - if (ArgAttrs != ParamAttr::None) - Out << ' ' << ParamAttr::getAsString(ArgAttrs); + Attributes ArgAttrs = Attrs.getParamAttributes(i+1); + if (ArgAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(ArgAttrs); } } @@ -1118,16 +1379,15 @@ void AssemblyWriter::printFunction(const Function *F) { Out << "..."; // Output varargs portion of signature! } Out << ')'; - ParameterAttributes RetAttrs = Attrs.getParamAttrs(0); - if (RetAttrs != ParamAttr::None) - Out << ' ' << ParamAttr::getAsString(Attrs.getParamAttrs(0)); + Attributes FnAttrs = Attrs.getFnAttributes(); + if (FnAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); if (F->hasSection()) Out << " section \"" << F->getSection() << '"'; if (F->getAlignment()) Out << " align " << F->getAlignment(); - if (F->hasCollector()) - Out << " gc \"" << F->getCollector() << '"'; - + if (F->hasGC()) + Out << " gc \"" << F->getGC() << '"'; if (F->isDeclaration()) { Out << "\n"; } else { @@ -1147,24 +1407,28 @@ void AssemblyWriter::printFunction(const Function *F) { /// the function. Simply print it out /// void AssemblyWriter::printArgument(const Argument *Arg, - ParameterAttributes Attrs) { + Attributes Attrs) { // Output type... - printType(Arg->getType()); + TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list - if (Attrs != ParamAttr::None) - Out << ' ' << ParamAttr::getAsString(Attrs); + if (Attrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs); // Output name, if available... - if (Arg->hasName()) - Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix); + if (Arg->hasName()) { + Out << ' '; + PrintLLVMName(Out, Arg); + } } /// printBasicBlock - This member is called for each basic block in a method. /// void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... - Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':'; + Out << "\n"; + PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix); + Out << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n;