X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FAsmWriter.cpp;h=8824fd9244f915673ed85c4e019fd6217183e1bc;hb=98c65173bb27e1df4ebe87f8c864d6dc197209ca;hp=b1ce257105212880dae8f5b4e0636cde6f1d2e08;hpb=533d3b3f37194f0a2af0c52cd748d197bd3a30fa;p=oota-llvm.git diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp index b1ce2571052..8824fd9244f 100644 --- a/lib/VMCore/AsmWriter.cpp +++ b/lib/VMCore/AsmWriter.cpp @@ -23,30 +23,26 @@ #include "llvm/InlineAsm.h" #include "llvm/Instruction.h" #include "llvm/Instructions.h" +#include "llvm/Operator.h" +#include "llvm/Metadata.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/TypeSymbolTable.h" -#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include +#include using namespace llvm; // Make virtual table appear in this compilation unit. AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} -char PrintModulePass::ID = 0; -static RegisterPass -X("print-module", "Print module to stderr"); -char PrintFunctionPass::ID = 0; -static RegisterPass -Y("print-function","Print function to stderr"); - - //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// @@ -68,78 +64,44 @@ static const Module *getModuleFromVal(const Value *V) { return 0; } - -/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped -/// with ""'s. -static std::string QuoteNameIfNeeded(const std::string &Name) { - std::string result; - bool needsQuotes = Name[0] >= '0' && Name[0] <= '9'; - // Scan the name to see if it needs quotes and to replace funky chars with - // their octal equivalent. +// PrintEscapedString - Print each character of the specified string, escaping +// it if it is not printable or if it is an escape char. +static void PrintEscapedString(const StringRef &Name, raw_ostream &Out) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { - char C = Name[i]; - assert(C != '"' && "Illegal character in LLVM value name!"); - if (isalnum(C) || C == '-' || C == '.' || C == '_') - result += C; - else if (C == '\\') { - needsQuotes = true; - result += "\\\\"; - } else if (isprint(C)) { - needsQuotes = true; - result += C; - } else { - needsQuotes = true; - result += "\\"; - char hex1 = (C >> 4) & 0x0F; - if (hex1 < 10) - result += hex1 + '0'; - else - result += hex1 - 10 + 'A'; - char hex2 = C & 0x0F; - if (hex2 < 10) - result += hex2 + '0'; - else - result += hex2 - 10 + 'A'; - } - } - if (needsQuotes) { - result.insert(0,"\""); - result += '"'; + unsigned char C = Name[i]; + if (isprint(C) && C != '\\' && C != '"') + Out << C; + else + Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } - return result; -} - -/// getLLVMName - Turn the specified string into an 'LLVM name', which is -/// surrounded with ""'s and escaped if it has special chars in it. -static std::string getLLVMName(const std::string &Name) { - assert(!Name.empty() && "Cannot get empty name!"); - return QuoteNameIfNeeded(Name); } enum PrefixType { GlobalPrefix, LabelPrefix, - LocalPrefix + LocalPrefix, + NoPrefix }; /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. -static void PrintLLVMName(raw_ostream &OS, const char *NameStr, - unsigned NameLen, PrefixType Prefix) { - assert(NameStr && "Cannot get empty name!"); +static void PrintLLVMName(raw_ostream &OS, const StringRef &Name, + PrefixType Prefix) { + assert(Name.data() && "Cannot get empty name!"); switch (Prefix) { - default: assert(0 && "Bad prefix!"); + default: llvm_unreachable("Bad prefix!"); + case NoPrefix: break; case GlobalPrefix: OS << '@'; break; case LabelPrefix: break; case LocalPrefix: OS << '%'; break; - } + } // Scan the name to see if it needs quotes first. - bool NeedsQuotes = NameStr[0] >= '0' && NameStr[0] <= '9'; + bool NeedsQuotes = isdigit(Name[0]); if (!NeedsQuotes) { - for (unsigned i = 0; i != NameLen; ++i) { - char C = NameStr[i]; + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + char C = Name[i]; if (!isalnum(C) && C != '-' && C != '.' && C != '_') { NeedsQuotes = true; break; @@ -149,34 +111,14 @@ static void PrintLLVMName(raw_ostream &OS, const char *NameStr, // If we didn't need any quotes, just write out the name in one blast. if (!NeedsQuotes) { - OS.write(NameStr, NameLen); + OS << Name; return; } // Okay, we need quotes. Output the quotes and escape any scary characters as // needed. OS << '"'; - for (unsigned i = 0; i != NameLen; ++i) { - char C = NameStr[i]; - assert(C != '"' && "Illegal character in LLVM value name!"); - if (C == '\\') { - OS << "\\\\"; - } else if (isprint(C)) { - OS << C; - } else { - OS << '\\'; - char hex1 = (C >> 4) & 0x0F; - if (hex1 < 10) - OS << (char)(hex1 + '0'); - else - OS << (char)(hex1 - 10 + 'A'); - char hex2 = C & 0x0F; - if (hex2 < 10) - OS << (char)(hex2 + '0'); - else - OS << (char)(hex2 - 10 + 'A'); - } - } + PrintEscapedString(Name, OS); OS << '"'; } @@ -184,11 +126,328 @@ static void PrintLLVMName(raw_ostream &OS, const char *NameStr, /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, const Value *V) { - PrintLLVMName(OS, V->getNameStart(), V->getNameLen(), + PrintLLVMName(OS, V->getName(), isa(V) ? GlobalPrefix : LocalPrefix); } +//===----------------------------------------------------------------------===// +// TypePrinting Class: Type printing machinery +//===----------------------------------------------------------------------===// + +static DenseMap &getTypeNamesMap(void *M) { + return *static_cast*>(M); +} + +void TypePrinting::clear() { + getTypeNamesMap(TypeNames).clear(); +} + +bool TypePrinting::hasTypeName(const Type *Ty) const { + return getTypeNamesMap(TypeNames).count(Ty); +} + +void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { + getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); +} + + +TypePrinting::TypePrinting() { + TypeNames = new DenseMap(); +} + +TypePrinting::~TypePrinting() { + delete &getTypeNamesMap(TypeNames); +} +/// CalcTypeName - Write the specified type to the specified raw_ostream, making +/// use of type names or up references to shorten the type name where possible. +void TypePrinting::CalcTypeName(const Type *Ty, + SmallVectorImpl &TypeStack, + raw_ostream &OS, bool IgnoreTopLevelName) { + // Check to see if the type is named. + if (!IgnoreTopLevelName) { + DenseMap &TM = getTypeNamesMap(TypeNames); + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Check to see if the Type is already on the stack... + unsigned Slot = 0, CurSize = TypeStack.size(); + while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type + + // This is another base case for the recursion. In this case, we know + // that we have looped back to a type that we have previously visited. + // Generate the appropriate upreference to handle this. + if (Slot < CurSize) { + OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference + return; + } + + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. + + switch (Ty->getTypeID()) { + case Type::VoidTyID: OS << "void"; break; + case Type::FloatTyID: OS << "float"; break; + case Type::DoubleTyID: OS << "double"; break; + case Type::X86_FP80TyID: OS << "x86_fp80"; break; + case Type::FP128TyID: OS << "fp128"; break; + case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; + case Type::LabelTyID: OS << "label"; break; + case Type::MetadataTyID: OS << "metadata"; break; + case Type::IntegerTyID: + OS << 'i' << cast(Ty)->getBitWidth(); + break; + + case Type::FunctionTyID: { + const FunctionType *FTy = cast(Ty); + CalcTypeName(FTy->getReturnType(), TypeStack, OS); + OS << " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) + OS << ", "; + CalcTypeName(*I, TypeStack, OS); + } + if (FTy->isVarArg()) { + if (FTy->getNumParams()) OS << ", "; + OS << "..."; + } + OS << ')'; + break; + } + case Type::StructTyID: { + const StructType *STy = cast(Ty); + if (STy->isPacked()) + OS << '<'; + OS << "{ "; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + CalcTypeName(*I, TypeStack, OS); + if (next(I) != STy->element_end()) + OS << ','; + OS << ' '; + } + OS << '}'; + if (STy->isPacked()) + OS << '>'; + break; + } + case Type::PointerTyID: { + const PointerType *PTy = cast(Ty); + CalcTypeName(PTy->getElementType(), TypeStack, OS); + if (unsigned AddressSpace = PTy->getAddressSpace()) + OS << " addrspace(" << AddressSpace << ')'; + OS << '*'; + break; + } + case Type::ArrayTyID: { + const ArrayType *ATy = cast(Ty); + OS << '[' << ATy->getNumElements() << " x "; + CalcTypeName(ATy->getElementType(), TypeStack, OS); + OS << ']'; + break; + } + case Type::VectorTyID: { + const VectorType *PTy = cast(Ty); + OS << "<" << PTy->getNumElements() << " x "; + CalcTypeName(PTy->getElementType(), TypeStack, OS); + OS << '>'; + break; + } + case Type::OpaqueTyID: + OS << "opaque"; + break; + default: + OS << ""; + break; + } + + TypeStack.pop_back(); // Remove self from stack. +} + +/// printTypeInt - The internal guts of printing out a type that has a +/// potentially named portion. +/// +void TypePrinting::print(const Type *Ty, raw_ostream &OS, + bool IgnoreTopLevelName) { + // Check to see if the type is named. + DenseMap &TM = getTypeNamesMap(TypeNames); + if (!IgnoreTopLevelName) { + DenseMap::iterator I = TM.find(Ty); + if (I != TM.end()) { + OS << I->second; + return; + } + } + + // Otherwise we have a type that has not been named but is a derived type. + // Carefully recurse the type hierarchy to print out any contained symbolic + // names. + SmallVector TypeStack; + std::string TypeName; + + raw_string_ostream TypeOS(TypeName); + CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); + OS << TypeOS.str(); + + // Cache type name for later use. + if (!IgnoreTopLevelName) + TM.insert(std::make_pair(Ty, TypeOS.str())); +} + +namespace { + class TypeFinder { + // To avoid walking constant expressions multiple times and other IR + // objects, we keep several helper maps. + DenseSet VisitedConstants; + DenseSet VisitedTypes; + + TypePrinting &TP; + std::vector &NumberedTypes; + public: + TypeFinder(TypePrinting &tp, std::vector &numberedTypes) + : TP(tp), NumberedTypes(numberedTypes) {} + + void Run(const Module &M) { + // Get types from the type symbol table. This gets opaque types referened + // only through derived named types. + const TypeSymbolTable &ST = M.getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) + IncorporateType(TI->second); + + // Get types from global variables. + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + IncorporateType(I->getType()); + if (I->hasInitializer()) + IncorporateValue(I->getInitializer()); + } + + // Get types from aliases. + for (Module::const_alias_iterator I = M.alias_begin(), + E = M.alias_end(); I != E; ++I) { + IncorporateType(I->getType()); + IncorporateValue(I->getAliasee()); + } + + // Get types from functions. + for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { + IncorporateType(FI->getType()); + + for (Function::const_iterator BB = FI->begin(), E = FI->end(); + BB != E;++BB) + for (BasicBlock::const_iterator II = BB->begin(), + E = BB->end(); II != E; ++II) { + const Instruction &I = *II; + // Incorporate the type of the instruction and all its operands. + IncorporateType(I.getType()); + for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); + OI != OE; ++OI) + IncorporateValue(*OI); + } + } + } + + private: + void IncorporateType(const Type *Ty) { + // Check to see if we're already visited this type. + if (!VisitedTypes.insert(Ty).second) + return; + + // If this is a structure or opaque type, add a name for the type. + if (((isa(Ty) && cast(Ty)->getNumElements()) + || isa(Ty)) && !TP.hasTypeName(Ty)) { + TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); + NumberedTypes.push_back(Ty); + } + + // Recursively walk all contained types. + for (Type::subtype_iterator I = Ty->subtype_begin(), + E = Ty->subtype_end(); I != E; ++I) + IncorporateType(*I); + } + + /// IncorporateValue - This method is used to walk operand lists finding + /// types hiding in constant expressions and other operands that won't be + /// walked in other ways. GlobalValues, basic blocks, instructions, and + /// inst operands are all explicitly enumerated. + void IncorporateValue(const Value *V) { + if (V == 0 || !isa(V) || isa(V)) return; + + // Already visited? + if (!VisitedConstants.insert(V).second) + return; + + // Check this type. + IncorporateType(V->getType()); + + // Look in operands for types. + const Constant *C = cast(V); + for (Constant::const_op_iterator I = C->op_begin(), + E = C->op_end(); I != E;++I) + IncorporateValue(*I); + } + }; +} // end anonymous namespace + + +/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in +/// the specified module to the TypePrinter and all numbered types to it and the +/// NumberedTypes table. +static void AddModuleTypesToPrinter(TypePrinting &TP, + std::vector &NumberedTypes, + const Module *M) { + if (M == 0) return; + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + const TypeSymbolTable &ST = M->getTypeSymbolTable(); + for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); + TI != E; ++TI) { + const Type *Ty = cast(TI->second); + + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + if (const PointerType *PTy = dyn_cast(Ty)) { + const Type *PETy = PTy->getElementType(); + if ((PETy->isPrimitiveType() || PETy->isInteger()) && + !isa(PETy)) + continue; + } + + // Likewise don't insert primitives either. + if (Ty->isInteger() || Ty->isPrimitiveType()) + continue; + + // Get the name as a string and insert it into TypeNames. + std::string NameStr; + raw_string_ostream NameOS(NameStr); + PrintLLVMName(NameOS, TI->first, LocalPrefix); + TP.addTypeName(Ty, NameOS.str()); + } + + // Walk the entire module to find references to unnamed structure and opaque + // types. This is required for correctness by opaque types (because multiple + // uses of an unnamed opaque type needs to be referred to by the same ID) and + // it shrinks complex recursive structure types substantially in some cases. + TypeFinder(TP, NumberedTypes).Run(*M); +} + + +/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +/// type, iff there is an entry in the modules symbol table for the specified +/// type or one of it's component types. +/// +void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { + TypePrinting Printer; + std::vector NumberedTypes; + AddModuleTypesToPrinter(Printer, NumberedTypes, M); + Printer.print(Ty, OS); +} //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values @@ -200,35 +459,49 @@ namespace { /// class SlotTracker { public: - /// ValueMap - A mapping of Values to slot numbers + /// ValueMap - A mapping of Values to slot numbers. typedef DenseMap ValueMap; private: - /// TheModule - The module for which we are holding slot numbers + /// TheModule - The module for which we are holding slot numbers. const Module* TheModule; - /// TheFunction - The function for which we are holding slot numbers + /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction; bool FunctionProcessed; - /// mMap - The TypePlanes map for the module level data + /// TheMDNode - The MDNode for which we are holding slot numbers. + const MDNode *TheMDNode; + + /// TheNamedMDNode - The MDNode for which we are holding slot numbers. + const NamedMDNode *TheNamedMDNode; + + /// mMap - The TypePlanes map for the module level data. ValueMap mMap; unsigned mNext; - /// fMap - The TypePlanes map for the function level data + /// fMap - The TypePlanes map for the function level data. ValueMap fMap; unsigned fNext; + /// mdnMap - Map for MDNodes. + ValueMap mdnMap; + unsigned mdnNext; public: /// Construct from a module explicit SlotTracker(const Module *M); /// Construct from a function, starting out in incorp state. explicit SlotTracker(const Function *F); + /// Construct from a mdnode. + explicit SlotTracker(const MDNode *N); + /// Construct from a named mdnode. + explicit SlotTracker(const NamedMDNode *N); /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. int getLocalSlot(const Value *V); int getGlobalSlot(const GlobalValue *V); + int getMetadataSlot(const MDNode *N); /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotTracker. @@ -242,14 +515,22 @@ public: /// will reset the state of the machine back to just the module contents. void purgeFunction(); - // Implementation Details -private: + /// MDNode map iterators. + ValueMap::iterator mdnBegin() { return mdnMap.begin(); } + ValueMap::iterator mdnEnd() { return mdnMap.end(); } + unsigned mdnSize() { return mdnMap.size(); } + /// This function does the actual initialization. inline void initialize(); + // Implementation Details +private: /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void CreateModuleSlot(const GlobalValue *V); - + + /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. + void CreateMetadataSlot(const MDNode *N); + /// CreateFunctionSlot - Insert the specified Value* into the slot table. void CreateFunctionSlot(const Value *V); @@ -257,9 +538,15 @@ private: /// and function declarations, but not the contents of those functions. void processModule(); - /// Add all of the functions arguments, basic blocks, and instructions + /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); + /// Add all MDNode operands. + void processMDNode(); + + /// Add all MDNode operands. + void processNamedMDNode(); + SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT void operator=(const SlotTracker &); // DO NOT IMPLEMENT }; @@ -290,7 +577,7 @@ static SlotTracker *createSlotTracker(const Value *V) { } #if 0 -#define ST_DEBUG(X) cerr << X +#define ST_DEBUG(X) errs() << X #else #define ST_DEBUG(X) #endif @@ -298,14 +585,27 @@ static SlotTracker *createSlotTracker(const Value *V) { // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. SlotTracker::SlotTracker(const Module *M) - : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) { + : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0), + TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { } // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. SlotTracker::SlotTracker(const Function *F) : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), - mNext(0), fNext(0) { + TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { +} + +// Constructor to handle single MDNode. +SlotTracker::SlotTracker(const MDNode *C) + : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C), + TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) { +} + +// Constructor to handle single NamedMDNode. +SlotTracker::SlotTracker(const NamedMDNode *N) + : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0), + TheNamedMDNode(N), mNext(0), fNext(0), mdnNext(0) { } inline void SlotTracker::initialize() { @@ -316,6 +616,12 @@ inline void SlotTracker::initialize() { if (TheFunction && !FunctionProcessed) processFunction(); + + if (TheMDNode) + processMDNode(); + + if (TheNamedMDNode) + processNamedMDNode(); } // Iterate through all the global variables, functions, and global @@ -325,10 +631,27 @@ void SlotTracker::processModule() { // Add all of the unnamed global variables to the value table. for (Module::const_global_iterator I = TheModule->global_begin(), - E = TheModule->global_end(); I != E; ++I) + E = TheModule->global_end(); I != E; ++I) { if (!I->hasName()) CreateModuleSlot(I); + if (I->hasInitializer()) { + if (MDNode *N = dyn_cast(I->getInitializer())) + CreateMetadataSlot(N); + } + } + // Add metadata used by named metadata. + for (Module::const_named_metadata_iterator + I = TheModule->named_metadata_begin(), + E = TheModule->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { + MDNode *MD = dyn_cast_or_null(NMD->getElement(i)); + if (MD) + CreateMetadataSlot(MD); + } + } + // Add all the unnamed functions to the table. for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) @@ -338,7 +661,6 @@ void SlotTracker::processModule() { ST_DEBUG("end processModule!\n"); } - // Process the arguments, basic blocks, and instructions of a function. void SlotTracker::processFunction() { ST_DEBUG("begin processFunction!\n"); @@ -357,9 +679,14 @@ void SlotTracker::processFunction() { E = TheFunction->end(); BB != E; ++BB) { if (!BB->hasName()) CreateFunctionSlot(BB); - for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { if (I->getType() != Type::VoidTy && !I->hasName()) CreateFunctionSlot(I); + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) + if (MDNode *N = dyn_cast(I->getOperand(i))) + CreateMetadataSlot(N); + } } FunctionProcessed = true; @@ -367,6 +694,28 @@ void SlotTracker::processFunction() { ST_DEBUG("end processFunction!\n"); } +/// processMDNode - Process TheMDNode. +void SlotTracker::processMDNode() { + ST_DEBUG("begin processMDNode!\n"); + mdnNext = 0; + CreateMetadataSlot(TheMDNode); + TheMDNode = 0; + ST_DEBUG("end processMDNode!\n"); +} + +/// processNamedMDNode - Process TheNamedMDNode. +void SlotTracker::processNamedMDNode() { + ST_DEBUG("begin processNamedMDNode!\n"); + mdnNext = 0; + for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) { + MDNode *MD = dyn_cast_or_null(TheNamedMDNode->getElement(i)); + if (MD) + CreateMetadataSlot(MD); + } + TheNamedMDNode = 0; + ST_DEBUG("end processNamedMDNode!\n"); +} + /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. @@ -385,7 +734,17 @@ int SlotTracker::getGlobalSlot(const GlobalValue *V) { // Find the type plane in the module map ValueMap::iterator MI = mMap.find(V); - return MI == mMap.end() ? -1 : MI->second; + return MI == mMap.end() ? -1 : (int)MI->second; +} + +/// getGlobalSlot - Get the slot number of a MDNode. +int SlotTracker::getMetadataSlot(const MDNode *N) { + // Check for uninitialized state and do lazy initialization. + initialize(); + + // Find the type plane in the module map + ValueMap::iterator MI = mdnMap.find(N); + return MI == mdnMap.end() ? -1 : (int)MI->second; } @@ -397,7 +756,7 @@ int SlotTracker::getLocalSlot(const Value *V) { initialize(); ValueMap::iterator FI = fMap.find(V); - return FI == fMap.end() ? -1 : FI->second; + return FI == fMap.end() ? -1 : (int)FI->second; } @@ -418,7 +777,6 @@ void SlotTracker::CreateModuleSlot(const GlobalValue *V) { (isa(V) ? 'A' : 'o'))) << "]\n"); } - /// CreateSlot - Create a new slot for the specified value if it has no name. void SlotTracker::CreateFunctionSlot(const Value *V) { assert(V->getType() != Type::VoidTy && !V->hasName() && @@ -432,221 +790,36 @@ void SlotTracker::CreateFunctionSlot(const Value *V) { DestSlot << " [o]\n"); } +/// CreateModuleSlot - Insert the specified MDNode* into the slot table. +void SlotTracker::CreateMetadataSlot(const MDNode *N) { + assert(N && "Can't insert a null Value into SlotTracker!"); + + ValueMap::iterator I = mdnMap.find(N); + if (I != mdnMap.end()) + return; + unsigned DestSlot = mdnNext++; + mdnMap[N] = DestSlot; + + for (MDNode::const_elem_iterator MDI = N->elem_begin(), + MDE = N->elem_end(); MDI != MDE; ++MDI) { + const Value *TV = *MDI; + if (TV) + if (const MDNode *N2 = dyn_cast(TV)) + CreateMetadataSlot(N2); + } +} //===----------------------------------------------------------------------===// // AsmWriter Implementation //===----------------------------------------------------------------------===// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, - std::map &TypeTable, + TypePrinting &TypePrinter, SlotTracker *Machine); -/// fillTypeNameTable - If the module has a symbol table, take all global types -/// and stuff their names into the TypeNames map. -/// -static void fillTypeNameTable(const Module *M, - std::map &TypeNames) { - if (!M) return; - const TypeSymbolTable &ST = M->getTypeSymbolTable(); - TypeSymbolTable::const_iterator TI = ST.begin(); - for (; TI != ST.end(); ++TI) { - // As a heuristic, don't insert pointer to primitive types, because - // they are used too often to have a single useful name. - // - const Type *Ty = cast(TI->second); - if (!isa(Ty) || - !cast(Ty)->getElementType()->isPrimitiveType() || - !cast(Ty)->getElementType()->isInteger() || - isa(cast(Ty)->getElementType())) - TypeNames.insert(std::make_pair(Ty, '%' + getLLVMName(TI->first))); - } -} - - - -static void calcTypeName(const Type *Ty, - std::vector &TypeStack, - std::map &TypeNames, - std::string &Result) { - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) { - Result += Ty->getDescription(); // Base case - return; - } - - // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Result += I->second; - return; - } - - if (isa(Ty)) { - Result += "opaque"; - return; - } - - // Check to see if the Type is already on the stack... - unsigned Slot = 0, CurSize = TypeStack.size(); - while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type - - // This is another base case for the recursion. In this case, we know - // that we have looped back to a type that we have previously visited. - // Generate the appropriate upreference to handle this. - if (Slot < CurSize) { - Result += "\\" + utostr(CurSize-Slot); // Here's the upreference - return; - } - - TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. - - switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - unsigned BitWidth = cast(Ty)->getBitWidth(); - Result += "i" + utostr(BitWidth); - break; - } - case Type::FunctionTyID: { - const FunctionType *FTy = cast(Ty); - calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); - Result += " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Result += ", "; - calcTypeName(*I, TypeStack, TypeNames, Result); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Result += ", "; - Result += "..."; - } - Result += ")"; - break; - } - case Type::StructTyID: { - const StructType *STy = cast(Ty); - if (STy->isPacked()) - Result += '<'; - Result += "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - calcTypeName(*I, TypeStack, TypeNames, Result); - if (next(I) != STy->element_end()) - Result += ','; - Result += ' '; - } - Result += '}'; - if (STy->isPacked()) - Result += '>'; - break; - } - case Type::PointerTyID: { - const PointerType *PTy = cast(Ty); - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - if (unsigned AddressSpace = PTy->getAddressSpace()) - Result += " addrspace(" + utostr(AddressSpace) + ")"; - Result += "*"; - break; - } - case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); - Result += "[" + utostr(ATy->getNumElements()) + " x "; - calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); - Result += "]"; - break; - } - case Type::VectorTyID: { - const VectorType *PTy = cast(Ty); - Result += "<" + utostr(PTy->getNumElements()) + " x "; - calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); - Result += ">"; - break; - } - case Type::OpaqueTyID: - Result += "opaque"; - break; - default: - Result += ""; - break; - } - - TypeStack.pop_back(); // Remove self from stack... -} - - -/// printTypeInt - The internal guts of printing out a type that has a -/// potentially named portion. -/// -static void printTypeInt(raw_ostream &Out, const Type *Ty, - std::map &TypeNames) { - // Primitive types always print out their description, regardless of whether - // they have been named or not. - // - if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa(Ty))) { - Out << Ty->getDescription(); - return; - } - - // Check to see if the type is named. - std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) { - Out << I->second; - return; - } - - // Otherwise we have a type that has not been named but is a derived type. - // Carefully recurse the type hierarchy to print out any contained symbolic - // names. - // - std::vector TypeStack; - std::string TypeName; - calcTypeName(Ty, TypeStack, TypeNames, TypeName); - TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use - Out << TypeName; -} - - -/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic -/// type, iff there is an entry in the modules symbol table for the specified -/// type or one of it's component types. This is slower than a simple x << Type -/// -void llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty, - const Module *M) { - raw_os_ostream RO(Out); - WriteTypeSymbolic(RO, Ty, M); -} - -void llvm::WriteTypeSymbolic(raw_ostream &Out, const Type *Ty, const Module *M){ - Out << ' '; - - // If they want us to print out a type, but there is no context, we can't - // print it symbolically. - if (!M) { - Out << Ty->getDescription(); - } else { - std::map TypeNames; - fillTypeNameTable(M, TypeNames); - printTypeInt(Out, Ty, TypeNames); - } -} - -// PrintEscapedString - Print each character of the specified string, escaping -// it if it is not printable or if it is an escape char. -static void PrintEscapedString(const std::string &Str, raw_ostream &Out) { - for (unsigned i = 0, e = Str.size(); i != e; ++i) { - unsigned char C = Str[i]; - if (isprint(C) && C != '"' && C != '\\') { - Out << C; - } else { - Out << '\\' - << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) - << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); - } - } -} - static const char *getPredicateText(unsigned predicate) { const char * pred = "unknown"; switch (predicate) { @@ -680,9 +853,57 @@ static const char *getPredicateText(unsigned predicate) { return pred; } +static void WriteMDNodes(raw_ostream &Out, TypePrinting &TypePrinter, + SlotTracker &Machine) { + SmallVector Nodes; + Nodes.resize(Machine.mdnSize()); + for (SlotTracker::ValueMap::iterator I = + Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I) + Nodes[I->second] = cast(I->first); + + for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { + Out << '!' << i << " = metadata "; + const MDNode *Node = Nodes[i]; + Out << "!{"; + for (MDNode::const_elem_iterator NI = Node->elem_begin(), + NE = Node->elem_end(); NI != NE;) { + const Value *V = *NI; + if (!V) + Out << "null"; + else if (const MDNode *N = dyn_cast(V)) { + Out << "metadata "; + Out << '!' << Machine.getMetadataSlot(N); + } + else { + TypePrinter.print((*NI)->getType(), Out); + Out << ' '; + WriteAsOperandInternal(Out, *NI, TypePrinter, &Machine); + } + if (++NI != NE) + Out << ", "; + } + Out << "}\n"; + } +} + +static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { + if (const OverflowingBinaryOperator *OBO = + dyn_cast(U)) { + if (OBO->hasNoUnsignedOverflow()) + Out << " nuw"; + if (OBO->hasNoSignedOverflow()) + Out << " nsw"; + } else if (const SDivOperator *Div = dyn_cast(U)) { + if (Div->isExact()) + Out << " exact"; + } else if (const GEPOperator *GEP = dyn_cast(U)) { + if (GEP->isInBounds()) + Out << " inbounds"; + } +} + static void WriteConstantInt(raw_ostream &Out, const Constant *CV, - std::map &TypeTable, - SlotTracker *Machine) { + TypePrinting &TypePrinter, SlotTracker *Machine) { if (const ConstantInt *CI = dyn_cast(CV)) { if (CI->getType() == Type::Int1Ty) { Out << (CI->getZExtValue() ? "true" : "false"); @@ -700,6 +921,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // + bool ignored; bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; double Val = isDouble ? CFP->getValueAPF().convertToDouble() : CFP->getValueAPF().convertToFloat(); @@ -719,26 +941,56 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, } } // Otherwise we could not reparse it to exactly the same value, so we must - // output the string in hexadecimal format! + // output the string in hexadecimal format! Note that loading and storing + // floating point types changes the bits of NaNs on some hosts, notably + // x86, so we must not use these types. assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); - Out << "0x" << utohexstr(DoubleToBits(Val)); + char Buffer[40]; + APFloat apf = CFP->getValueAPF(); + // Floats are represented in ASCII IR as double, convert. + if (!isDouble) + apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + Out << "0x" << + utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), + Buffer+40); return; } // Some form of long double. These appear as a magic letter identifying // the type, then a fixed number of hex digits. Out << "0x"; - if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) + if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { Out << 'K'; - else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) + // api needed to prevent premature destruction + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t* p = api.getRawData(); + uint64_t word = p[1]; + int shiftcount=12; + int width = api.getBitWidth(); + for (int j=0; j>shiftcount) & 15; + if (nibble < 10) + Out << (unsigned char)(nibble + '0'); + else + Out << (unsigned char)(nibble - 10 + 'A'); + if (shiftcount == 0 && j+4 < width) { + word = *p; + shiftcount = 64; + if (width-j-4 < 64) + shiftcount = width-j-4; + } + } + return; + } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) Out << 'L'; else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) Out << 'M'; else - assert(0 && "Unsupported floating point type"); + llvm_unreachable("Unsupported floating point type"); // api needed to prevent premature destruction - APInt api = CFP->getValueAPF().convertToAPInt(); + APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); uint64_t word = *p; int shiftcount=60; @@ -776,18 +1028,16 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, } else { // Cannot output in string format... Out << '['; if (CA->getNumOperands()) { - Out << ' '; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(0), - TypeTable, Machine); + TypePrinter, Machine); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine); } - Out << ' '; } Out << ']'; } @@ -801,17 +1051,17 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, unsigned N = CS->getNumOperands(); if (N) { Out << ' '; - printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); + TypePrinter.print(CS->getOperand(0)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine); for (unsigned i = 1; i < N; i++) { Out << ", "; - printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); + TypePrinter.print(CS->getOperand(i)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine); } Out << ' '; } @@ -826,17 +1076,17 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, const Type *ETy = CP->getType()->getElementType(); assert(CP->getNumOperands() > 0 && "Number of operands for a PackedConst must be > 0"); - Out << "< "; - printTypeInt(Out, ETy, TypeTable); + Out << '<'; + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine); + WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; - printTypeInt(Out, ETy, TypeTable); + TypePrinter.print(ETy, Out); Out << ' '; - WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine); + WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine); } - Out << " >"; + Out << '>'; return; } @@ -849,17 +1099,23 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, Out << "undef"; return; } + + if (const MDNode *Node = dyn_cast(CV)) { + Out << "!" << Machine->getMetadataSlot(Node); + return; + } if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName(); + WriteOptimizationInfo(Out, CE); if (CE->isCompare()) Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { - printTypeInt(Out, (*OI)->getType(), TypeTable); + TypePrinter.print((*OI)->getType(), Out); Out << ' '; - WriteAsOperandInternal(Out, *OI, TypeTable, Machine); + WriteAsOperandInternal(Out, *OI, TypePrinter, Machine); if (OI+1 != CE->op_end()) Out << ", "; } @@ -872,7 +1128,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, if (CE->isCast()) { Out << " to "; - printTypeInt(Out, CE->getType(), TypeTable); + TypePrinter.print(CE->getType(), Out); } Out << ')'; @@ -888,7 +1144,7 @@ static void WriteConstantInt(raw_ostream &Out, const Constant *CV, /// the whole instruction that generated it. /// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, - std::map &TypeTable, + TypePrinting &TypePrinter, SlotTracker *Machine) { if (V->hasName()) { PrintLLVMName(Out, V); @@ -897,7 +1153,7 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, const Constant *CV = dyn_cast(V); if (CV && !isa(CV)) { - WriteConstantInt(Out, CV, TypeTable, Machine); + WriteConstantInt(Out, CV, TypePrinter, Machine); return; } @@ -912,7 +1168,19 @@ static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, Out << '"'; return; } - + + if (const MDNode *N = dyn_cast(V)) { + Out << '!' << Machine->getMetadataSlot(N); + return; + } + + if (const MDString *MDS = dyn_cast(V)) { + Out << "!\""; + PrintEscapedString(MDS->getString(), Out); + Out << '"'; + return; + } + char Prefix = '%'; int Slot; if (Machine) { @@ -955,18 +1223,17 @@ void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType, const Module *Context) { - std::map TypeNames; if (Context == 0) Context = getModuleFromVal(V); - if (Context) - fillTypeNameTable(Context, TypeNames); - + TypePrinting TypePrinter; + std::vector NumberedTypes; + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); if (PrintType) { - printTypeInt(Out, V->getType(), TypeNames); + TypePrinter.print(V->getType(), Out); Out << ' '; } - WriteAsOperandInternal(Out, V, TypeNames, 0); + WriteAsOperandInternal(Out, V, TypePrinter, 0); } @@ -976,20 +1243,21 @@ class AssemblyWriter { raw_ostream &Out; SlotTracker &Machine; const Module *TheModule; - std::map TypeNames; + TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter; + std::vector NumberedTypes; + + // Each MDNode is assigned unique MetadataIDNo. + std::map MDNodes; + unsigned MetadataIDNo; public: inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW) - : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { - - // If the module has a symbol table, take all global types and stuff their - // names into the TypeNames map. - // - fillTypeNameTable(M, TypeNames); + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) { + AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); } - void write(const Module *M) { printModule(M); } + void write(const Module *M) { printModule(M); } void write(const GlobalValue *G) { if (const GlobalVariable *GV = dyn_cast(G)) @@ -999,12 +1267,11 @@ public: else if (const Function *F = dyn_cast(G)) printFunction(F); else - assert(0 && "Unknown global"); + llvm_unreachable("Unknown global"); } void write(const BasicBlock *BB) { printBasicBlock(BB); } void write(const Instruction *I) { printInstruction(*I); } - void write(const Type *Ty) { printType(Ty); } void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, Attributes Attrs); @@ -1021,97 +1288,11 @@ private: void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction &I); - // printType - Go to extreme measures to attempt to print out a short, - // symbolic version of a type name. - // - void printType(const Type *Ty) { - printTypeInt(Out, Ty, TypeNames); - } - - // printTypeAtLeastOneLevel - Print out one level of the possibly complex type - // without considering any symbolic types that we may have equal to it. - // - void printTypeAtLeastOneLevel(const Type *Ty); - // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); }; -} // end of llvm namespace - -/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type -/// without considering any symbolic types that we may have equal to it. -/// -void AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { - if (const IntegerType *ITy = dyn_cast(Ty)) { - Out << "i" << utostr(ITy->getBitWidth()); - return; - } - - if (const FunctionType *FTy = dyn_cast(Ty)) { - printType(FTy->getReturnType()); - Out << " ("; - for (FunctionType::param_iterator I = FTy->param_begin(), - E = FTy->param_end(); I != E; ++I) { - if (I != FTy->param_begin()) - Out << ", "; - printType(*I); - } - if (FTy->isVarArg()) { - if (FTy->getNumParams()) Out << ", "; - Out << "..."; - } - Out << ')'; - return; - } - - if (const StructType *STy = dyn_cast(Ty)) { - if (STy->isPacked()) - Out << '<'; - Out << "{ "; - for (StructType::element_iterator I = STy->element_begin(), - E = STy->element_end(); I != E; ++I) { - if (I != STy->element_begin()) - Out << ", "; - printType(*I); - } - Out << " }"; - if (STy->isPacked()) - Out << '>'; - return; - } - - if (const PointerType *PTy = dyn_cast(Ty)) { - printType(PTy->getElementType()); - if (unsigned AddressSpace = PTy->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ")"; - Out << '*'; - return; - } - - if (const ArrayType *ATy = dyn_cast(Ty)) { - Out << '[' << ATy->getNumElements() << " x "; - printType(ATy->getElementType()); - Out << ']'; - return; - } - - if (const VectorType *PTy = dyn_cast(Ty)) { - Out << '<' << PTy->getNumElements() << " x "; - printType(PTy->getElementType()); - Out << '>'; - return; - } - - if (isa(Ty)) { - Out << "opaque"; - return; - } - - if (!Ty->isPrimitiveType()) - Out << ""; - printType(Ty); -} +} // end of anonymous namespace void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { @@ -1119,10 +1300,10 @@ void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { Out << ""; } else { if (PrintType) { - printType(Operand->getType()); + TypePrinter.print(Operand->getType(), Out); Out << ' '; } - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine); } } @@ -1132,13 +1313,13 @@ void AssemblyWriter::writeParamOperand(const Value *Operand, Out << ""; } else { // Print the type - printType(Operand->getType()); + TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); Out << ' '; // Print the operand - WriteAsOperandInternal(Out, Operand, TypeNames, &Machine); + WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine); } } @@ -1188,7 +1369,7 @@ void AssemblyWriter::printModule(const Module *M) { Out << " ]\n"; } - // Loop over the symbol table, emitting all named constants. + // Loop over the symbol table, emitting all id'd types. printTypeSymbolTable(M->getTypeSymbolTable()); for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); @@ -1204,30 +1385,52 @@ void AssemblyWriter::printModule(const Module *M) { // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); + + // Output named metadata. + for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), + E = M->named_metadata_end(); I != E; ++I) { + const NamedMDNode *NMD = I; + Out << "!" << NMD->getName() << " = !{"; + for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { + if (i) Out << ", "; + MDNode *MD = dyn_cast_or_null(NMD->getElement(i)); + Out << '!' << Machine.getMetadataSlot(MD); + } + Out << "}\n"; + } + + // Output metadata. + WriteMDNodes(Out, TypePrinter, Machine); } static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) { switch (LT) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; - case GlobalValue::WeakLinkage: Out << "weak "; break; - case GlobalValue::CommonLinkage: Out << "common "; break; - case GlobalValue::AppendingLinkage: Out << "appending "; break; - case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; - case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; - case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; case GlobalValue::ExternalLinkage: break; + case GlobalValue::PrivateLinkage: Out << "private "; break; + case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; + case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; + case GlobalValue::WeakAnyLinkage: Out << "weak "; break; + case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; + case GlobalValue::CommonLinkage: Out << "common "; break; + case GlobalValue::AppendingLinkage: Out << "appending "; break; + case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; + case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; + case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; + case GlobalValue::AvailableExternallyLinkage: + Out << "available_externally "; + break; case GlobalValue::GhostLinkage: - Out << "GhostLinkage not allowed in AsmWriter!\n"; - abort(); + llvm_unreachable("GhostLinkage not allowed in AsmWriter!"); } } - + static void PrintVisibility(GlobalValue::VisibilityTypes Vis, raw_ostream &Out) { switch (Vis) { - default: assert(0 && "Invalid visibility style!"); + default: llvm_unreachable("Invalid visibility style!"); case GlobalValue::DefaultVisibility: break; case GlobalValue::HiddenVisibility: Out << "hidden "; break; case GlobalValue::ProtectedVisibility: Out << "protected "; break; @@ -1247,16 +1450,15 @@ void AssemblyWriter::printGlobal(const GlobalVariable *GV) { PrintVisibility(GV->getVisibility(), Out); if (GV->isThreadLocal()) Out << "thread_local "; + if (unsigned AddressSpace = GV->getType()->getAddressSpace()) + Out << "addrspace(" << AddressSpace << ") "; Out << (GV->isConstant() ? "constant " : "global "); - printType(GV->getType()->getElementType()); + TypePrinter.print(GV->getType()->getElementType(), Out); if (GV->hasInitializer()) { Out << ' '; writeOperand(GV->getInitializer(), false); } - - if (unsigned AddressSpace = GV->getType()->getAddressSpace()) - Out << " addrspace(" << AddressSpace << ") "; if (GV->hasSection()) Out << ", section \"" << GV->getSection() << '"'; @@ -1284,28 +1486,25 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) { const Constant *Aliasee = GA->getAliasee(); if (const GlobalVariable *GV = dyn_cast(Aliasee)) { - printType(GV->getType()); + TypePrinter.print(GV->getType(), Out); Out << ' '; PrintLLVMName(Out, GV); } else if (const Function *F = dyn_cast(Aliasee)) { - printType(F->getFunctionType()); + TypePrinter.print(F->getFunctionType(), Out); Out << "* "; - if (F->hasName()) - PrintLLVMName(Out, F); - else - Out << "@\"\""; + WriteAsOperandInternal(Out, F, TypePrinter, &Machine); } else if (const GlobalAlias *GA = dyn_cast(Aliasee)) { - printType(GA->getType()); - Out << " "; + TypePrinter.print(GA->getType(), Out); + Out << ' '; PrintLLVMName(Out, GA); } else { - const ConstantExpr *CE = 0; - if ((CE = dyn_cast(Aliasee)) && - (CE->getOpcode() == Instruction::BitCast)) { - writeOperand(CE, false); - } else - assert(0 && "Unsupported aliasee"); + const ConstantExpr *CE = cast(Aliasee); + // The only valid GEP is an all zero GEP. + assert((CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && + "Unsupported aliasee"); + writeOperand(CE, false); } printInfoComment(*GA); @@ -1313,17 +1512,26 @@ void AssemblyWriter::printAlias(const GlobalAlias *GA) { } void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { - // Print the types. + // Emit all numbered types. + for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { + Out << "\ttype "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %2 = type %2 + TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); + Out << "\t\t; type %" << i << '\n'; + } + + // Print the named types. for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) { Out << '\t'; - PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix); + PrintLLVMName(Out, TI->first, LocalPrefix); Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE - // - printTypeAtLeastOneLevel(TI->second); + TypePrinter.printAtLeastOneLevel(TI->second, Out); Out << '\n'; } } @@ -1350,18 +1558,21 @@ void AssemblyWriter::printFunction(const Function *F) { case CallingConv::Fast: Out << "fastcc "; break; case CallingConv::Cold: Out << "coldcc "; break; case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; - case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; + case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; + case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; + case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; default: Out << "cc" << F->getCallingConv() << " "; break; } const FunctionType *FT = F->getFunctionType(); const AttrListPtr &Attrs = F->getAttributes(); - printType(F->getReturnType()); + Attributes RetAttrs = Attrs.getRetAttributes(); + if (RetAttrs != Attribute::None) + Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; + TypePrinter.print(F->getReturnType(), Out); Out << ' '; - if (F->hasName()) - PrintLLVMName(Out, F); - else - Out << "@\"\""; + WriteAsOperandInternal(Out, F, TypePrinter, &Machine); Out << '('; Machine.incorporateFunction(F); @@ -1374,7 +1585,7 @@ void AssemblyWriter::printFunction(const Function *F) { I != E; ++I) { // Insert commas as we go... the first arg doesn't get a comma if (I != F->arg_begin()) Out << ", "; - printArgument(I, Attrs.getAttributes(Idx)); + printArgument(I, Attrs.getParamAttributes(Idx)); Idx++; } } else { @@ -1384,9 +1595,9 @@ void AssemblyWriter::printFunction(const Function *F) { if (i) Out << ", "; // Output type... - printType(FT->getParamType(i)); + TypePrinter.print(FT->getParamType(i), Out); - Attributes ArgAttrs = Attrs.getAttributes(i+1); + Attributes ArgAttrs = Attrs.getParamAttributes(i+1); if (ArgAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(ArgAttrs); } @@ -1398,9 +1609,9 @@ void AssemblyWriter::printFunction(const Function *F) { Out << "..."; // Output varargs portion of signature! } Out << ')'; - Attributes RetAttrs = Attrs.getAttributes(0); - if (RetAttrs != Attribute::None) - Out << ' ' << Attribute::getAsString(Attrs.getAttributes(0)); + Attributes FnAttrs = Attrs.getFnAttributes(); + if (FnAttrs != Attribute::None) + Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); if (F->hasSection()) Out << " section \"" << F->getSection() << '"'; if (F->getAlignment()) @@ -1410,34 +1621,6 @@ void AssemblyWriter::printFunction(const Function *F) { if (F->isDeclaration()) { Out << "\n"; } else { - - bool insideNotes = false; - if (F->hasNote(Attribute::AlwaysInline)) { - Out << " notes("; - insideNotes = true; - Out << "inline=always"; - } - if (F->hasNote(Attribute::NoInline)) { - if (insideNotes) - Out << ","; - else { - Out << " notes("; - insideNotes = true; - } - Out << "inline=never"; - } - if (F->hasNote(Attribute::OptimizeForSize)) { - if (insideNotes) - Out << ","; - else { - Out << " notes("; - insideNotes = true; - } - Out << "opt_size"; - } - if (insideNotes) - Out << ")"; - Out << " {"; // Output all of its basic blocks... for the function @@ -1456,7 +1639,7 @@ void AssemblyWriter::printFunction(const Function *F) { void AssemblyWriter::printArgument(const Argument *Arg, Attributes Attrs) { // Output type... - printType(Arg->getType()); + TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list if (Attrs != Attribute::None) @@ -1474,7 +1657,7 @@ void AssemblyWriter::printArgument(const Argument *Arg, void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n"; - PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix); + PrintLLVMName(Out, BB->getName(), LabelPrefix); Out << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n;