X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FAsmWriter.cpp;h=889ae4067cbc74f591b34170747de652252c05f0;hb=9530ddcc605cb65d0a19bbfbfb8b73b09c4e4cfa;hp=7695fcb7500b7f4152e004fbaafe9ff2561044e0;hpb=26c6915539bbe3393450ece5d82d7d9ea546d417;p=oota-llvm.git diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp index 7695fcb7500..889ae4067cb 100644 --- a/lib/VMCore/AsmWriter.cpp +++ b/lib/VMCore/AsmWriter.cpp @@ -1,5 +1,12 @@ //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// // +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// // This library implements the functionality defined in llvm/Assembly/Writer.h // // Note that these routines must be extremely tolerant of various errors in the @@ -10,170 +17,346 @@ #include "llvm/Assembly/CachedWriter.h" #include "llvm/Assembly/Writer.h" #include "llvm/Assembly/PrintModulePass.h" -#include "llvm/SlotCalculator.h" +#include "llvm/Assembly/AsmAnnotationWriter.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instruction.h" +#include "llvm/Instructions.h" #include "llvm/Module.h" -#include "llvm/Constants.h" -#include "llvm/iMemory.h" -#include "llvm/iTerminators.h" -#include "llvm/iPHINode.h" -#include "llvm/iOther.h" #include "llvm/SymbolTable.h" +#include "llvm/Assembly/Writer.h" #include "llvm/Support/CFG.h" -#include "Support/StringExtras.h" -#include "Support/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/STLExtras.h" #include +using namespace llvm; + +namespace llvm { + +/// This class provides computation of slot numbers for LLVM Assembly writing. +/// @brief LLVM Assembly Writing Slot Computation. +class SlotMachine { + +/// @name Types +/// @{ +public: + + /// @brief A mapping of Values to slot numbers + typedef std::map ValueMap; + typedef std::map TypeMap; + + /// @brief A plane with next slot number and ValueMap + struct ValuePlane { + unsigned next_slot; ///< The next slot number to use + ValueMap map; ///< The map of Value* -> unsigned + ValuePlane() { next_slot = 0; } ///< Make sure we start at 0 + }; + + struct TypePlane { + unsigned next_slot; + TypeMap map; + TypePlane() { next_slot = 0; } + void clear() { map.clear(); next_slot = 0; } + }; + + /// @brief The map of planes by Type + typedef std::map TypedPlanes; + +/// @} +/// @name Constructors +/// @{ +public: + /// @brief Construct from a module + SlotMachine(const Module *M ); + + /// @brief Construct from a function, starting out in incorp state. + SlotMachine(const Function *F ); + +/// @} +/// @name Accessors +/// @{ +public: + /// Return the slot number of the specified value in it's type + /// plane. Its an error to ask for something not in the SlotMachine. + /// Its an error to ask for a Type* + int getSlot(const Value *V); + int getSlot(const Type*Ty); + + /// Determine if a Value has a slot or not + bool hasSlot(const Value* V); + bool hasSlot(const Type* Ty); + +/// @} +/// @name Mutators +/// @{ +public: + /// If you'd like to deal with a function instead of just a module, use + /// this method to get its data into the SlotMachine. + void incorporateFunction(const Function *F) { + TheFunction = F; + FunctionProcessed = false; + } + + /// After calling incorporateFunction, use this method to remove the + /// most recently incorporated function from the SlotMachine. This + /// will reset the state of the machine back to just the module contents. + void purgeFunction(); + +/// @} +/// @name Implementation Details +/// @{ +private: + /// This function does the actual initialization. + inline void initialize(); + + /// Values can be crammed into here at will. If they haven't + /// been inserted already, they get inserted, otherwise they are ignored. + /// Either way, the slot number for the Value* is returned. + unsigned createSlot(const Value *V); + unsigned createSlot(const Type* Ty); + + /// Insert a value into the value table. Return the slot number + /// that it now occupies. BadThings(TM) will happen if you insert a + /// Value that's already been inserted. + unsigned insertValue( const Value *V ); + unsigned insertValue( const Type* Ty); + + /// Add all of the module level global variables (and their initializers) + /// and function declarations, but not the contents of those functions. + void processModule(); + + /// Add all of the functions arguments, basic blocks, and instructions + void processFunction(); + + SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT + void operator=(const SlotMachine &); // DO NOT IMPLEMENT + +/// @} +/// @name Data +/// @{ +public: + + /// @brief The module for which we are holding slot numbers + const Module* TheModule; + + /// @brief The function for which we are holding slot numbers + const Function* TheFunction; + bool FunctionProcessed; + + /// @brief The TypePlanes map for the module level data + TypedPlanes mMap; + TypePlane mTypes; + + /// @brief The TypePlanes map for the function level data + TypedPlanes fMap; + TypePlane fTypes; + +/// @} + +}; + +} // end namespace llvm static RegisterPass X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization); static RegisterPass Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization); -static void WriteAsOperandInternal(std::ostream &Out, const Value *V, +static void WriteAsOperandInternal(std::ostream &Out, const Value *V, + bool PrintName, + std::map &TypeTable, + SlotMachine *Machine); + +static void WriteAsOperandInternal(std::ostream &Out, const Type *T, bool PrintName, std::map &TypeTable, - SlotCalculator *Table); + SlotMachine *Machine); static const Module *getModuleFromVal(const Value *V) { - if (const Argument *MA = dyn_cast(V)) + if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; - else if (const BasicBlock *BB = dyn_cast(V)) + else if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; - else if (const Instruction *I = dyn_cast(V)) { + else if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; - } else if (const GlobalValue *GV = dyn_cast(V)) + } else if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); return 0; } -static SlotCalculator *createSlotCalculator(const Value *V) { - assert(!isa(V) && "Can't create an SC for a type!"); - if (const Argument *FA = dyn_cast(V)) { - return new SlotCalculator(FA->getParent(), true); - } else if (const Instruction *I = dyn_cast(V)) { - return new SlotCalculator(I->getParent()->getParent(), true); - } else if (const BasicBlock *BB = dyn_cast(V)) { - return new SlotCalculator(BB->getParent(), true); - } else if (const GlobalVariable *GV = dyn_cast(V)){ - return new SlotCalculator(GV->getParent(), true); - } else if (const Function *Func = dyn_cast(V)) { - return new SlotCalculator(Func, true); +static SlotMachine *createSlotMachine(const Value *V) { + if (const Argument *FA = dyn_cast(V)) { + return new SlotMachine(FA->getParent()); + } else if (const Instruction *I = dyn_cast(V)) { + return new SlotMachine(I->getParent()->getParent()); + } else if (const BasicBlock *BB = dyn_cast(V)) { + return new SlotMachine(BB->getParent()); + } else if (const GlobalVariable *GV = dyn_cast(V)){ + return new SlotMachine(GV->getParent()); + } else if (const Function *Func = dyn_cast(V)) { + return new SlotMachine(Func); } return 0; } +// getLLVMName - Turn the specified string into an 'LLVM name', which is either +// prefixed with % (if the string only contains simple characters) or is +// surrounded with ""'s (if it has special chars in it). +static std::string getLLVMName(const std::string &Name, + bool prefixName = true) { + assert(!Name.empty() && "Cannot get empty name!"); + + // First character cannot start with a number... + if (Name[0] >= '0' && Name[0] <= '9') + return "\"" + Name + "\""; + + // Scan to see if we have any characters that are not on the "white list" + for (unsigned i = 0, e = Name.size(); i != e; ++i) { + char C = Name[i]; + assert(C != '"' && "Illegal character in LLVM value name!"); + if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') && + C != '-' && C != '.' && C != '_') + return "\"" + Name + "\""; + } -// If the module has a symbol table, take all global types and stuff their -// names into the TypeNames map. -// + // If we get here, then the identifier is legal to use as a "VarID". + if (prefixName) + return "%"+Name; + else + return Name; +} + + +/// fillTypeNameTable - If the module has a symbol table, take all global types +/// and stuff their names into the TypeNames map. +/// static void fillTypeNameTable(const Module *M, std::map &TypeNames) { if (!M) return; const SymbolTable &ST = M->getSymbolTable(); - SymbolTable::const_iterator PI = ST.find(Type::TypeTy); - if (PI != ST.end()) { - SymbolTable::type_const_iterator I = PI->second.begin(); - for (; I != PI->second.end(); ++I) { - // As a heuristic, don't insert pointer to primitive types, because - // they are used too often to have a single useful name. - // - const Type *Ty = cast(I->second); - if (!isa(Ty) || - !cast(Ty)->getElementType()->isPrimitiveType()) - TypeNames.insert(std::make_pair(Ty, "%"+I->first)); - } + SymbolTable::type_const_iterator TI = ST.type_begin(); + for (; TI != ST.type_end(); ++TI ) { + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + // + const Type *Ty = cast(TI->second); + if (!isa(Ty) || + !cast(Ty)->getElementType()->isPrimitiveType() || + isa(cast(Ty)->getElementType())) + TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first))); } } -static std::string calcTypeName(const Type *Ty, - std::vector &TypeStack, - std::map &TypeNames){ - if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case +static void calcTypeName(const Type *Ty, + std::vector &TypeStack, + std::map &TypeNames, + std::string & Result){ + if (Ty->isPrimitiveType() && !isa(Ty)) { + Result += Ty->getDescription(); // Base case + return; + } // Check to see if the type is named. std::map::iterator I = TypeNames.find(Ty); - if (I != TypeNames.end()) return I->second; + if (I != TypeNames.end()) { + Result += I->second; + return; + } + + if (isa(Ty)) { + Result += "opaque"; + return; + } // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type - // This is another base case for the recursion. In this case, we know + // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. - // - if (Slot < CurSize) - return "\\" + utostr(CurSize-Slot); // Here's the upreference + if (Slot < CurSize) { + Result += "\\" + utostr(CurSize-Slot); // Here's the upreference + return; + } TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. - - std::string Result; - switch (Ty->getPrimitiveID()) { + + switch (Ty->getTypeID()) { case Type::FunctionTyID: { - const FunctionType *FTy = cast(Ty); - Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " ("; - for (FunctionType::ParamTypes::const_iterator - I = FTy->getParamTypes().begin(), - E = FTy->getParamTypes().end(); I != E; ++I) { - if (I != FTy->getParamTypes().begin()) + const FunctionType *FTy = cast(Ty); + calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result); + Result += " ("; + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) Result += ", "; - Result += calcTypeName(*I, TypeStack, TypeNames); + calcTypeName(*I, TypeStack, TypeNames, Result); } if (FTy->isVarArg()) { - if (!FTy->getParamTypes().empty()) Result += ", "; + if (FTy->getNumParams()) Result += ", "; Result += "..."; } Result += ")"; break; } case Type::StructTyID: { - const StructType *STy = cast(Ty); - Result = "{ "; - for (StructType::ElementTypes::const_iterator - I = STy->getElementTypes().begin(), - E = STy->getElementTypes().end(); I != E; ++I) { - if (I != STy->getElementTypes().begin()) + const StructType *STy = cast(Ty); + Result += "{ "; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + if (I != STy->element_begin()) Result += ", "; - Result += calcTypeName(*I, TypeStack, TypeNames); + calcTypeName(*I, TypeStack, TypeNames, Result); } Result += " }"; break; } case Type::PointerTyID: - Result = calcTypeName(cast(Ty)->getElementType(), - TypeStack, TypeNames) + "*"; + calcTypeName(cast(Ty)->getElementType(), + TypeStack, TypeNames, Result); + Result += "*"; break; case Type::ArrayTyID: { - const ArrayType *ATy = cast(Ty); - Result = "[" + utostr(ATy->getNumElements()) + " x "; - Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]"; + const ArrayType *ATy = cast(Ty); + Result += "[" + utostr(ATy->getNumElements()) + " x "; + calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result); + Result += "]"; + break; + } + case Type::PackedTyID: { + const PackedType *PTy = cast(Ty); + Result += "<" + utostr(PTy->getNumElements()) + " x "; + calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result); + Result += ">"; break; } case Type::OpaqueTyID: - Result = "opaque"; + Result += "opaque"; break; default: - Result = ""; + Result += ""; } TypeStack.pop_back(); // Remove self from stack... - return Result; + return; } -// printTypeInt - The internal guts of printing out a type that has a -// potentially named portion. -// +/// printTypeInt - The internal guts of printing out a type that has a +/// potentially named portion. +/// static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty, std::map &TypeNames) { // Primitive types always print out their description, regardless of whether // they have been named or not. // - if (Ty->isPrimitiveType()) return Out << Ty->getDescription(); + if (Ty->isPrimitiveType() && !isa(Ty)) + return Out << Ty->getDescription(); // Check to see if the type is named. std::map::iterator I = TypeNames.find(Ty); @@ -184,36 +367,38 @@ static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty, // names. // std::vector TypeStack; - std::string TypeName = calcTypeName(Ty, TypeStack, TypeNames); + std::string TypeName; + calcTypeName(Ty, TypeStack, TypeNames, TypeName); TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use - return Out << TypeName; + return (Out << TypeName); } -// WriteTypeSymbolic - This attempts to write the specified type as a symbolic -// type, iff there is an entry in the modules symbol table for the specified -// type or one of it's component types. This is slower than a simple x << Type; -// -std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty, - const Module *M) { - Out << " "; +/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +/// type, iff there is an entry in the modules symbol table for the specified +/// type or one of it's component types. This is slower than a simple x << Type +/// +std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty, + const Module *M) { + Out << ' '; // If they want us to print out a type, attempt to make it symbolic if there // is a symbol table in the module... if (M) { std::map TypeNames; fillTypeNameTable(M, TypeNames); - + return printTypeInt(Out, Ty, TypeNames); } else { return Out << Ty->getDescription(); } } -static void WriteConstantInt(std::ostream &Out, const Constant *CV, +/// @brief Internal constant writer. +static void WriteConstantInt(std::ostream &Out, const Constant *CV, bool PrintName, std::map &TypeTable, - SlotCalculator *Table) { + SlotMachine *Machine) { if (const ConstantBool *CB = dyn_cast(CV)) { Out << (CB == ConstantBool::True ? "true" : "false"); } else if (const ConstantSInt *CI = dyn_cast(CV)) { @@ -234,28 +419,34 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, // if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && - (StrVal[0] >= '0' && StrVal[0] <= '9'))) + (StrVal[1] >= '0' && StrVal[1] <= '9'))) // Reparse stringized version! if (atof(StrVal.c_str()) == CFP->getValue()) { - Out << StrVal; return; + Out << StrVal; + return; } - + // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! // // Behave nicely in the face of C TBAA rules... see: // http://www.nullstone.com/htmls/category/aliastyp.htm // - double Val = CFP->getValue(); - char *Ptr = (char*)&Val; - assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 && + union { + double D; + uint64_t U; + } V; + V.D = CFP->getValue(); + assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); - Out << "0x" << utohexstr(*(uint64_t*)Ptr); + Out << "0x" << utohexstr(V.U); + } else if (isa(CV)) { + Out << "zeroinitializer"; } else if (const ConstantArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of // ubytes or an array of sbytes with positive values. - // + // const Type *ETy = CA->getType()->getElementType(); bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); @@ -269,10 +460,9 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, if (isString) { Out << "c\""; for (unsigned i = 0; i < CA->getNumOperands(); ++i) { - unsigned char C = (ETy == Type::SByteTy) ? - (unsigned char)cast(CA->getOperand(i))->getValue() : - (unsigned char)cast(CA->getOperand(i))->getValue(); - + unsigned char C = + (unsigned char)cast(CA->getOperand(i))->getRawValue(); + if (isprint(C) && C != '"' && C != '\\') { Out << C; } else { @@ -284,72 +474,77 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, Out << "\""; } else { // Cannot output in string format... - Out << "["; + Out << '['; if (CA->getNumOperands()) { - Out << " "; + Out << ' '; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CA->getOperand(0), - PrintName, TypeTable, Table); + PrintName, TypeTable, Machine); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; printTypeInt(Out, ETy, TypeTable); WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, - TypeTable, Table); + TypeTable, Machine); } } Out << " ]"; } } else if (const ConstantStruct *CS = dyn_cast(CV)) { - Out << "{"; + Out << '{'; if (CS->getNumOperands()) { - Out << " "; + Out << ' '; printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); WriteAsOperandInternal(Out, CS->getOperand(0), - PrintName, TypeTable, Table); + PrintName, TypeTable, Machine); for (unsigned i = 1; i < CS->getNumOperands(); i++) { Out << ", "; printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); WriteAsOperandInternal(Out, CS->getOperand(i), - PrintName, TypeTable, Table); + PrintName, TypeTable, Machine); } } Out << " }"; + } else if (const ConstantPacked *CP = dyn_cast(CV)) { + const Type *ETy = CP->getType()->getElementType(); + assert(CP->getNumOperands() > 0 && + "Number of operands for a PackedConst must be > 0"); + Out << '<'; + Out << ' '; + printTypeInt(Out, ETy, TypeTable); + WriteAsOperandInternal(Out, CP->getOperand(0), + PrintName, TypeTable, Machine); + for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { + Out << ", "; + printTypeInt(Out, ETy, TypeTable); + WriteAsOperandInternal(Out, CP->getOperand(i), PrintName, + TypeTable, Machine); + } + Out << " >"; } else if (isa(CV)) { Out << "null"; - } else if (const ConstantPointerRef *PR = dyn_cast(CV)) { - const GlobalValue *V = PR->getValue(); - if (V->hasName()) { - Out << "%" << V->getName(); - } else if (Table) { - int Slot = Table->getValSlot(V); - if (Slot >= 0) - Out << "%" << Slot; - else - Out << ""; - } else { - Out << ""; - } + } else if (isa(CV)) { + Out << "undef"; } else if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName() << " ("; - + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { printTypeInt(Out, (*OI)->getType(), TypeTable); - WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table); + WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine); if (OI+1 != CE->op_end()) Out << ", "; } - + if (CE->getOpcode() == Instruction::Cast) { Out << " to "; printTypeInt(Out, CE->getType(), TypeTable); } - Out << ")"; + Out << ')'; } else { Out << ""; @@ -357,51 +552,48 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV, } -// WriteAsOperand - Write the name of the specified value out to the specified -// ostream. This can be useful when you just want to print int %reg126, not the -// whole instruction that generated it. -// -static void WriteAsOperandInternal(std::ostream &Out, const Value *V, +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +static void WriteAsOperandInternal(std::ostream &Out, const Value *V, bool PrintName, std::map &TypeTable, - SlotCalculator *Table) { - Out << " "; - if (PrintName && V->hasName()) { - Out << "%" << V->getName(); - } else { - if (const Constant *CV = dyn_cast(V)) { - WriteConstantInt(Out, CV, PrintName, TypeTable, Table); - } else { + SlotMachine *Machine) { + Out << ' '; + if ((PrintName || isa(V)) && V->hasName()) + Out << getLLVMName(V->getName()); + else { + const Constant *CV = dyn_cast(V); + if (CV && !isa(CV)) + WriteConstantInt(Out, CV, PrintName, TypeTable, Machine); + else { int Slot; - if (Table) { - Slot = Table->getValSlot(V); + if (Machine) { + Slot = Machine->getSlot(V); } else { - if (const Type *Ty = dyn_cast(V)) { - Out << Ty->getDescription(); - return; - } - - Table = createSlotCalculator(V); - if (Table == 0) { Out << "BAD VALUE TYPE!"; return; } - - Slot = Table->getValSlot(V); - delete Table; + Machine = createSlotMachine(V); + if (Machine == 0) + Slot = Machine->getSlot(V); + else + Slot = -1; + delete Machine; } - if (Slot >= 0) Out << "%" << Slot; - else if (PrintName) - Out << ""; // Not embeded into a location? + if (Slot != -1) + Out << '%' << Slot; + else + Out << ""; } } } - - -// WriteAsOperand - Write the name of the specified value out to the specified -// ostream. This can be useful when you just want to print int %reg126, not the -// whole instruction that generated it. -// -std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, - bool PrintName, const Module *Context) { +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V, + bool PrintType, bool PrintName, + const Module *Context) { std::map TypeNames; if (Context == 0) Context = getModuleFromVal(V); @@ -410,21 +602,65 @@ std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType, if (PrintType) printTypeInt(Out, V->getType(), TypeNames); - + WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); return Out; } +/// WriteAsOperandInternal - Write the name of the specified value out to +/// the specified ostream. This can be useful when you just want to print +/// int %reg126, not the whole instruction that generated it. +/// +static void WriteAsOperandInternal(std::ostream &Out, const Type *T, + bool PrintName, + std::map &TypeTable, + SlotMachine *Machine) { + Out << ' '; + int Slot; + if (Machine) { + Slot = Machine->getSlot(T); + if (Slot != -1) + Out << '%' << Slot; + else + Out << ""; + } else { + Out << T->getDescription(); + } +} + +/// WriteAsOperand - Write the name of the specified value out to the specified +/// ostream. This can be useful when you just want to print int %reg126, not +/// the whole instruction that generated it. +/// +std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty, + bool PrintType, bool PrintName, + const Module *Context) { + std::map TypeNames; + assert(Context != 0 && "Can't write types as operand without module context"); + + fillTypeNameTable(Context, TypeNames); + // if (PrintType) + // printTypeInt(Out, V->getType(), TypeNames); + + printTypeInt(Out, Ty, TypeNames); + + WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0); + return Out; +} + +namespace llvm { class AssemblyWriter { std::ostream &Out; - SlotCalculator &Table; + SlotMachine &Machine; const Module *TheModule; std::map TypeNames; + AssemblyAnnotationWriter *AnnotationWriter; public: - inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M) - : Out(o), Table(Tab), TheModule(M) { + inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M, + AssemblyAnnotationWriter *AAW) + : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { // If the module has a symbol table, take all global types and stuff their // names into the TypeNames map. @@ -442,7 +678,9 @@ public: void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); -private : + const Module* getModule() { return TheModule; } + +private: void printModule(const Module *M); void printSymbolTable(const SymbolTable &ST); void printConstant(const Constant *CPV); @@ -468,42 +706,44 @@ private : // which slot it occupies. void printInfoComment(const Value &V); }; +} // end of llvm namespace - -// printTypeAtLeastOneLevel - Print out one level of the possibly complex type -// without considering any symbolic types that we may have equal to it. -// +/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type +/// without considering any symbolic types that we may have equal to it. +/// std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { if (const FunctionType *FTy = dyn_cast(Ty)) { printType(FTy->getReturnType()) << " ("; - for (FunctionType::ParamTypes::const_iterator - I = FTy->getParamTypes().begin(), - E = FTy->getParamTypes().end(); I != E; ++I) { - if (I != FTy->getParamTypes().begin()) + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I) { + if (I != FTy->param_begin()) Out << ", "; printType(*I); } if (FTy->isVarArg()) { - if (!FTy->getParamTypes().empty()) Out << ", "; + if (FTy->getNumParams()) Out << ", "; Out << "..."; } - Out << ")"; + Out << ')'; } else if (const StructType *STy = dyn_cast(Ty)) { Out << "{ "; - for (StructType::ElementTypes::const_iterator - I = STy->getElementTypes().begin(), - E = STy->getElementTypes().end(); I != E; ++I) { - if (I != STy->getElementTypes().begin()) + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + if (I != STy->element_begin()) Out << ", "; printType(*I); } Out << " }"; } else if (const PointerType *PTy = dyn_cast(Ty)) { - printType(PTy->getElementType()) << "*"; + printType(PTy->getElementType()) << '*'; } else if (const ArrayType *ATy = dyn_cast(Ty)) { - Out << "[" << ATy->getNumElements() << " x "; - printType(ATy->getElementType()) << "]"; - } else if (const OpaqueType *OTy = dyn_cast(Ty)) { + Out << '[' << ATy->getNumElements() << " x "; + printType(ATy->getElementType()) << ']'; + } else if (const PackedType *PTy = dyn_cast(Ty)) { + Out << '<' << PTy->getNumElements() << " x "; + printType(PTy->getElementType()) << '>'; + } + else if (const OpaqueType *OTy = dyn_cast(Ty)) { Out << "opaque"; } else { if (!Ty->isPrimitiveType()) @@ -514,87 +754,135 @@ std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { } -void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, - bool PrintName) { - if (PrintType) { Out << " "; printType(Operand->getType()); } - WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table); +void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, + bool PrintName) { + if (Operand != 0) { + if (PrintType) { Out << ' '; printType(Operand->getType()); } + WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine); + } else { + Out << ""; + } } void AssemblyWriter::printModule(const Module *M) { - Out << "target endian = " << (M->isLittleEndian() ? "little" : "big") << "\n"; - Out << "target pointersize = " << (M->has32BitPointers() ? 32 : 64) << "\n"; + if (!M->getModuleIdentifier().empty() && + // Don't print the ID if it will start a new line (which would + // require a comment char before it). + M->getModuleIdentifier().find('\n') == std::string::npos) + Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; + + switch (M->getEndianness()) { + case Module::LittleEndian: Out << "target endian = little\n"; break; + case Module::BigEndian: Out << "target endian = big\n"; break; + case Module::AnyEndianness: break; + } + switch (M->getPointerSize()) { + case Module::Pointer32: Out << "target pointersize = 32\n"; break; + case Module::Pointer64: Out << "target pointersize = 64\n"; break; + case Module::AnyPointerSize: break; + } + if (!M->getTargetTriple().empty()) + Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; + + // Loop over the dependent libraries and emit them. + Module::lib_iterator LI = M->lib_begin(); + Module::lib_iterator LE = M->lib_end(); + if (LI != LE) { + Out << "deplibs = [ "; + while (LI != LE) { + Out << '"' << *LI << '"'; + ++LI; + if (LI != LE) + Out << ", "; + } + Out << " ]\n"; + } - // Loop over the symbol table, emitting all named constants... + // Loop over the symbol table, emitting all named constants. printSymbolTable(M->getSymbolTable()); - - for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I) + + for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) printGlobal(I); Out << "\nimplementation ; Functions:\n"; - - // Output all of the functions... + + // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { - if (GV->hasName()) Out << "%" << GV->getName() << " = "; + if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = "; - if (!GV->hasInitializer()) + if (!GV->hasInitializer()) Out << "external "; else switch (GV->getLinkage()) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; + case GlobalValue::WeakLinkage: Out << "weak "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::ExternalLinkage: break; + case GlobalValue::GhostLinkage: + std::cerr << "GhostLinkage not allowed in AsmWriter!\n"; + abort(); } Out << (GV->isConstant() ? "constant " : "global "); printType(GV->getType()->getElementType()); - if (GV->hasInitializer()) - writeOperand(GV->getInitializer(), false, false); + if (GV->hasInitializer()) { + Constant* C = cast(GV->getInitializer()); + assert(C && "GlobalVar initializer isn't constant?"); + writeOperand(GV->getInitializer(), false, isa(C)); + } printInfoComment(*GV); Out << "\n"; } -// printSymbolTable - Run through symbol table looking for named constants -// if a named constant is found, emit it's declaration... -// +// printSymbolTable - Run through symbol table looking for constants +// and types. Emit their declarations. void AssemblyWriter::printSymbolTable(const SymbolTable &ST) { - for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) { - SymbolTable::type_const_iterator I = ST.type_begin(TI->first); - SymbolTable::type_const_iterator End = ST.type_end(TI->first); - - for (; I != End; ++I) { - const Value *V = I->second; - if (const Constant *CPV = dyn_cast(V)) { - printConstant(CPV); - } else if (const Type *Ty = dyn_cast(V)) { - Out << "\t%" << I->first << " = type "; - - // Make sure we print out at least one level of the type structure, so - // that we do not get %FILE = type %FILE - // - printTypeAtLeastOneLevel(Ty) << "\n"; + + // Print the types. + for (SymbolTable::type_const_iterator TI = ST.type_begin(); + TI != ST.type_end(); ++TI ) { + Out << "\t" << getLLVMName(TI->first) << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %FILE = type %FILE + // + printTypeAtLeastOneLevel(TI->second) << "\n"; + } + + // Print the constants, in type plane order. + for (SymbolTable::plane_const_iterator PI = ST.plane_begin(); + PI != ST.plane_end(); ++PI ) { + SymbolTable::value_const_iterator VI = ST.value_begin(PI->first); + SymbolTable::value_const_iterator VE = ST.value_end(PI->first); + + for (; VI != VE; ++VI) { + const Value* V = VI->second; + const Constant *CPV = dyn_cast(V) ; + if (CPV && !isa(V)) { + printConstant(CPV); } } } } -// printConstant - Print out a constant pool entry... -// +/// printConstant - Print out a constant pool entry... +/// void AssemblyWriter::printConstant(const Constant *CPV) { // Don't print out unnamed constants, they will be inlined if (!CPV->hasName()) return; // Print out name... - Out << "\t%" << CPV->getName() << " ="; + Out << "\t" << getLLVMName(CPV->getName()) << " ="; // Write the value out now... writeOperand(CPV, true, false); @@ -603,43 +891,65 @@ void AssemblyWriter::printConstant(const Constant *CPV) { Out << "\n"; } -// printFunction - Print all aspects of a function. -// +/// printFunction - Print all aspects of a function. +/// void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name... Out << "\n"; + // Ensure that no local symbols conflict with global symbols. + const_cast(F)->renameLocalSymbols(); + + if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); + if (F->isExternal()) Out << "declare "; else switch (F->getLinkage()) { - case GlobalValue::InternalLinkage: Out << "internal "; break; - case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; + case GlobalValue::InternalLinkage: Out << "internal "; break; + case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break; + case GlobalValue::WeakLinkage: Out << "weak "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::ExternalLinkage: break; + case GlobalValue::GhostLinkage: + std::cerr << "GhostLinkage not allowed in AsmWriter!\n"; + abort(); } - printType(F->getReturnType()) << " %" << F->getName() << "("; - Table.incorporateFunction(F); + // Print the calling convention. + switch (F->getCallingConv()) { + case CallingConv::C: break; // default + case CallingConv::Fast: Out << "fastcc "; break; + case CallingConv::Cold: Out << "coldcc "; break; + default: Out << "cc" << F->getCallingConv() << " "; break; + } + + printType(F->getReturnType()) << ' '; + if (!F->getName().empty()) + Out << getLLVMName(F->getName()); + else + Out << "\"\""; + Out << '('; + Machine.incorporateFunction(F); // Loop over the arguments, printing them... const FunctionType *FT = F->getFunctionType(); - for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) + for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) printArgument(I); // Finish printing arguments... if (FT->isVarArg()) { - if (FT->getParamTypes().size()) Out << ", "; + if (FT->getNumParams()) Out << ", "; Out << "..."; // Output varargs portion of signature! } - Out << ")"; + Out << ')'; if (F->isExternal()) { Out << "\n"; } else { Out << " {"; - + // Output all of its basic blocks... for the function for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) printBasicBlock(I); @@ -647,88 +957,109 @@ void AssemblyWriter::printFunction(const Function *F) { Out << "}\n"; } - Table.purgeFunction(); + Machine.purgeFunction(); } -// printArgument - This member is called for every argument that -// is passed into the function. Simply print it out -// +/// printArgument - This member is called for every argument that is passed into +/// the function. Simply print it out +/// void AssemblyWriter::printArgument(const Argument *Arg) { // Insert commas as we go... the first arg doesn't get a comma - if (Arg != &Arg->getParent()->afront()) Out << ", "; + if (Arg != Arg->getParent()->arg_begin()) Out << ", "; // Output type... printType(Arg->getType()); - + // Output name, if available... if (Arg->hasName()) - Out << " %" << Arg->getName(); - else if (Table.getValSlot(Arg) < 0) - Out << ""; + Out << ' ' << getLLVMName(Arg->getName()); } -// printBasicBlock - This member is called for each basic block in a methd. -// +/// printBasicBlock - This member is called for each basic block in a method. +/// void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... - Out << "\n" << BB->getName() << ":"; + Out << "\n" << getLLVMName(BB->getName(), false) << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... - int Slot = Table.getValSlot(BB); Out << "\n;