X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FAsmWriter.cpp;h=aeca6f7e21eacc883b2fe0a020bcef58feacbadd;hb=9c16dba29f2b8d894683b398802d590685e6f7a1;hp=78ef8c75537f141ee0d8026173868a0ce6640743;hpb=54d56e3a995352784e290f97f11d1cf277080410;p=oota-llvm.git diff --git a/lib/VMCore/AsmWriter.cpp b/lib/VMCore/AsmWriter.cpp index 78ef8c75537..aeca6f7e21e 100644 --- a/lib/VMCore/AsmWriter.cpp +++ b/lib/VMCore/AsmWriter.cpp @@ -1,220 +1,797 @@ -//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=// +//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// // // This library implements the functionality defined in llvm/Assembly/Writer.h // -// This library uses the Analysis library to figure out offsets for -// variables in the method tables... -// -// TODO: print out the type name instead of the full type if a particular type -// is in the symbol table... +// Note that these routines must be extremely tolerant of various errors in the +// LLVM code, because of of the primary uses of it is for debugging +// transformations. // //===----------------------------------------------------------------------===// +#include "llvm/Assembly/CachedWriter.h" #include "llvm/Assembly/Writer.h" -#include "llvm/Analysis/SlotCalculator.h" +#include "llvm/Assembly/PrintModulePass.h" +#include "llvm/SlotCalculator.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Instruction.h" #include "llvm/Module.h" -#include "llvm/Method.h" -#include "llvm/BasicBlock.h" -#include "llvm/ConstPoolVals.h" -#include "llvm/iOther.h" +#include "llvm/Constants.h" #include "llvm/iMemory.h" +#include "llvm/iTerminators.h" +#include "llvm/iPHINode.h" +#include "llvm/iOther.h" +#include "llvm/SymbolTable.h" +#include "Support/StringExtras.h" +#include "Support/STLExtras.h" +#include +using std::string; +using std::map; +using std::vector; +using std::ostream; + +static RegisterPass +X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization); +static RegisterPass +Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization); + +static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName, + map &TypeTable, + SlotCalculator *Table); + +static const Module *getModuleFromVal(const Value *V) { + if (const Argument *MA = dyn_cast(V)) + return MA->getParent() ? MA->getParent()->getParent() : 0; + else if (const BasicBlock *BB = dyn_cast(V)) + return BB->getParent() ? BB->getParent()->getParent() : 0; + else if (const Instruction *I = dyn_cast(V)) { + const Function *M = I->getParent() ? I->getParent()->getParent() : 0; + return M ? M->getParent() : 0; + } else if (const GlobalValue *GV = dyn_cast(V)) + return GV->getParent(); + return 0; +} + +static SlotCalculator *createSlotCalculator(const Value *V) { + assert(!isa(V) && "Can't create an SC for a type!"); + if (const Argument *FA = dyn_cast(V)) { + return new SlotCalculator(FA->getParent(), true); + } else if (const Instruction *I = dyn_cast(V)) { + return new SlotCalculator(I->getParent()->getParent(), true); + } else if (const BasicBlock *BB = dyn_cast(V)) { + return new SlotCalculator(BB->getParent(), true); + } else if (const GlobalVariable *GV = dyn_cast(V)){ + return new SlotCalculator(GV->getParent(), true); + } else if (const Function *Func = dyn_cast(V)) { + return new SlotCalculator(Func, true); + } + return 0; +} + + +// If the module has a symbol table, take all global types and stuff their +// names into the TypeNames map. +// +static void fillTypeNameTable(const Module *M, + map &TypeNames) { + if (M && M->hasSymbolTable()) { + const SymbolTable *ST = M->getSymbolTable(); + SymbolTable::const_iterator PI = ST->find(Type::TypeTy); + if (PI != ST->end()) { + SymbolTable::type_const_iterator I = PI->second.begin(); + for (; I != PI->second.end(); ++I) { + // As a heuristic, don't insert pointer to primitive types, because + // they are used too often to have a single useful name. + // + const Type *Ty = cast(I->second); + if (!isa(Ty) || + !cast(Ty)->getElementType()->isPrimitiveType()) + TypeNames.insert(std::make_pair(Ty, "%"+I->first)); + } + } + } +} + + + +static string calcTypeName(const Type *Ty, vector &TypeStack, + map &TypeNames) { + if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case + + // Check to see if the type is named. + map::iterator I = TypeNames.find(Ty); + if (I != TypeNames.end()) return I->second; + + // Check to see if the Type is already on the stack... + unsigned Slot = 0, CurSize = TypeStack.size(); + while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type + + // This is another base case for the recursion. In this case, we know + // that we have looped back to a type that we have previously visited. + // Generate the appropriate upreference to handle this. + // + if (Slot < CurSize) + return "\\" + utostr(CurSize-Slot); // Here's the upreference + + TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. + + string Result; + switch (Ty->getPrimitiveID()) { + case Type::FunctionTyID: { + const FunctionType *FTy = cast(Ty); + Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " ("; + for (FunctionType::ParamTypes::const_iterator + I = FTy->getParamTypes().begin(), + E = FTy->getParamTypes().end(); I != E; ++I) { + if (I != FTy->getParamTypes().begin()) + Result += ", "; + Result += calcTypeName(*I, TypeStack, TypeNames); + } + if (FTy->isVarArg()) { + if (!FTy->getParamTypes().empty()) Result += ", "; + Result += "..."; + } + Result += ")"; + break; + } + case Type::StructTyID: { + const StructType *STy = cast(Ty); + Result = "{ "; + for (StructType::ElementTypes::const_iterator + I = STy->getElementTypes().begin(), + E = STy->getElementTypes().end(); I != E; ++I) { + if (I != STy->getElementTypes().begin()) + Result += ", "; + Result += calcTypeName(*I, TypeStack, TypeNames); + } + Result += " }"; + break; + } + case Type::PointerTyID: + Result = calcTypeName(cast(Ty)->getElementType(), + TypeStack, TypeNames) + "*"; + break; + case Type::ArrayTyID: { + const ArrayType *ATy = cast(Ty); + Result = "[" + utostr(ATy->getNumElements()) + " x "; + Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]"; + break; + } + default: + Result = ""; + } + + TypeStack.pop_back(); // Remove self from stack... + return Result; +} + + +// printTypeInt - The internal guts of printing out a type that has a +// potentially named portion. +// +static ostream &printTypeInt(ostream &Out, const Type *Ty, + map &TypeNames) { + // Primitive types always print out their description, regardless of whether + // they have been named or not. + // + if (Ty->isPrimitiveType()) return Out << Ty->getDescription(); + + // Check to see if the type is named. + map::iterator I = TypeNames.find(Ty); + if (I != TypeNames.end()) return Out << I->second; + + // Otherwise we have a type that has not been named but is a derived type. + // Carefully recurse the type hierarchy to print out any contained symbolic + // names. + // + vector TypeStack; + string TypeName = calcTypeName(Ty, TypeStack, TypeNames); + TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use + return Out << TypeName; +} + + +// WriteTypeSymbolic - This attempts to write the specified type as a symbolic +// type, iff there is an entry in the modules symbol table for the specified +// type or one of it's component types. This is slower than a simple x << Type; +// +ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) { + Out << " "; + + // If they want us to print out a type, attempt to make it symbolic if there + // is a symbol table in the module... + if (M && M->hasSymbolTable()) { + map TypeNames; + fillTypeNameTable(M, TypeNames); + + return printTypeInt(Out, Ty, TypeNames); + } else { + return Out << Ty->getDescription(); + } +} + +static void WriteConstantInt(ostream &Out, const Constant *CV, bool PrintName, + map &TypeTable, + SlotCalculator *Table) { + if (const ConstantBool *CB = dyn_cast(CV)) { + Out << (CB == ConstantBool::True ? "true" : "false"); + } else if (const ConstantSInt *CI = dyn_cast(CV)) { + Out << CI->getValue(); + } else if (const ConstantUInt *CI = dyn_cast(CV)) { + Out << CI->getValue(); + } else if (const ConstantFP *CFP = dyn_cast(CV)) { + // We would like to output the FP constant value in exponential notation, + // but we cannot do this if doing so will lose precision. Check here to + // make sure that we only output it in exponential format if we can parse + // the value back and get the same value. + // + std::string StrVal = ftostr(CFP->getValue()); + + // Check to make sure that the stringized number is not some string like + // "Inf" or NaN, that atof will accept, but the lexer will not. Check that + // the string matches the "[-+]?[0-9]" regex. + // + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[0] >= '0' && StrVal[0] <= '9'))) + // Reparse stringized version! + if (atof(StrVal.c_str()) == CFP->getValue()) { + Out << StrVal; return; + } + + // Otherwise we could not reparse it to exactly the same value, so we must + // output the string in hexadecimal format! + // + // Behave nicely in the face of C TBAA rules... see: + // http://www.nullstone.com/htmls/category/aliastyp.htm + // + double Val = CFP->getValue(); + char *Ptr = (char*)&Val; + assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 && + "assuming that double is 64 bits!"); + Out << "0x" << utohexstr(*(uint64_t*)Ptr); + + } else if (const ConstantArray *CA = dyn_cast(CV)) { + // As a special case, print the array as a string if it is an array of + // ubytes or an array of sbytes with positive values. + // + const Type *ETy = CA->getType()->getElementType(); + bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); + + if (ETy == Type::SByteTy) + for (unsigned i = 0; i < CA->getNumOperands(); ++i) + if (cast(CA->getOperand(i))->getValue() < 0) { + isString = false; + break; + } + + if (isString) { + Out << "c\""; + for (unsigned i = 0; i < CA->getNumOperands(); ++i) { + unsigned char C = (ETy == Type::SByteTy) ? + (unsigned char)cast(CA->getOperand(i))->getValue() : + (unsigned char)cast(CA->getOperand(i))->getValue(); + + if (isprint(C) && C != '"' && C != '\\') { + Out << C; + } else { + Out << '\\' + << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')) + << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); + } + } + Out << "\""; + + } else { // Cannot output in string format... + Out << "["; + if (CA->getNumOperands()) { + Out << " "; + printTypeInt(Out, ETy, TypeTable); + WriteAsOperandInternal(Out, CA->getOperand(0), + PrintName, TypeTable, Table); + for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { + Out << ", "; + printTypeInt(Out, ETy, TypeTable); + WriteAsOperandInternal(Out, CA->getOperand(i), PrintName, + TypeTable, Table); + } + } + Out << " ]"; + } + } else if (const ConstantStruct *CS = dyn_cast(CV)) { + Out << "{"; + if (CS->getNumOperands()) { + Out << " "; + printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable); + + WriteAsOperandInternal(Out, CS->getOperand(0), + PrintName, TypeTable, Table); + + for (unsigned i = 1; i < CS->getNumOperands(); i++) { + Out << ", "; + printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable); + + WriteAsOperandInternal(Out, CS->getOperand(i), + PrintName, TypeTable, Table); + } + } + + Out << " }"; + } else if (isa(CV)) { + Out << "null"; + + } else if (const ConstantPointerRef *PR = dyn_cast(CV)) { + const GlobalValue *V = PR->getValue(); + if (V->hasName()) { + Out << "%" << V->getName(); + } else if (Table) { + int Slot = Table->getValSlot(V); + if (Slot >= 0) + Out << "%" << Slot; + else + Out << ""; + } else { + Out << ""; + } + + } else if (const ConstantExpr *CE = dyn_cast(CV)) { + Out << CE->getOpcodeName(); + + bool isGEP = CE->getOpcode() == Instruction::GetElementPtr; + Out << (isGEP? " (" : " "); + + for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { + printTypeInt(Out, (*OI)->getType(), TypeTable); + WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table); + if (OI+1 != CE->op_end()) + Out << ", "; + } + + if (isGEP) + Out << ")"; + } else { + Out << ""; + } +} + + +// WriteAsOperand - Write the name of the specified value out to the specified +// ostream. This can be useful when you just want to print int %reg126, not the +// whole instruction that generated it. +// +static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName, + map &TypeTable, + SlotCalculator *Table) { + Out << " "; + if (PrintName && V->hasName()) { + Out << "%" << V->getName(); + } else { + if (const Constant *CV = dyn_cast(V)) { + WriteConstantInt(Out, CV, PrintName, TypeTable, Table); + } else { + int Slot; + if (Table) { + Slot = Table->getValSlot(V); + } else { + if (const Type *Ty = dyn_cast(V)) { + Out << Ty->getDescription(); + return; + } + + Table = createSlotCalculator(V); + if (Table == 0) { Out << "BAD VALUE TYPE!"; return; } + + Slot = Table->getValSlot(V); + delete Table; + } + if (Slot >= 0) Out << "%" << Slot; + else if (PrintName) + Out << ""; // Not embeded into a location? + } + } +} -void DebugValue(const Value *V) { - cerr << V << endl; + + +// WriteAsOperand - Write the name of the specified value out to the specified +// ostream. This can be useful when you just want to print int %reg126, not the +// whole instruction that generated it. +// +ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType, + bool PrintName, const Module *Context) { + map TypeNames; + if (Context == 0) Context = getModuleFromVal(V); + + if (Context && Context->hasSymbolTable()) + fillTypeNameTable(Context, TypeNames); + + if (PrintType) + printTypeInt(Out, V->getType(), TypeNames); + + WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0); + return Out; } -class AssemblyWriter : public ModuleAnalyzer { + +class AssemblyWriter { ostream &Out; SlotCalculator &Table; + const Module *TheModule; + map TypeNames; public: - inline AssemblyWriter(ostream &o, SlotCalculator &Tab) : Out(o), Table(Tab) { + inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M) + : Out(o), Table(Tab), TheModule(M) { + + // If the module has a symbol table, take all global types and stuff their + // names into the TypeNames map. + // + fillTypeNameTable(M, TypeNames); } - inline void write(const Module *M) { processModule(M); } - inline void write(const Method *M) { processMethod(M); } - inline void write(const BasicBlock *BB) { processBasicBlock(BB); } - inline void write(const Instruction *I) { processInstruction(I); } - inline void write(const ConstPoolVal *CPV) { processConstant(CPV); } - -protected: - virtual bool visitMethod(const Method *M); - virtual bool processConstPool(const ConstantPool &CP, bool isMethod); - virtual bool processConstant(const ConstPoolVal *CPV); - virtual bool processMethod(const Method *M); - virtual bool processMethodArgument(const MethodArgument *MA); - virtual bool processBasicBlock(const BasicBlock *BB); - virtual bool processInstruction(const Instruction *I); + inline void write(const Module *M) { printModule(M); } + inline void write(const GlobalVariable *G) { printGlobal(G); } + inline void write(const Function *F) { printFunction(F); } + inline void write(const BasicBlock *BB) { printBasicBlock(BB); } + inline void write(const Instruction *I) { printInstruction(*I); } + inline void write(const Constant *CPV) { printConstant(CPV); } + inline void write(const Type *Ty) { printType(Ty); } -private : void writeOperand(const Value *Op, bool PrintType, bool PrintName = true); -}; +private : + void printModule(const Module *M); + void printSymbolTable(const SymbolTable &ST); + void printConstant(const Constant *CPV); + void printGlobal(const GlobalVariable *GV); + void printFunction(const Function *F); + void printArgument(const Argument *FA); + void printBasicBlock(const BasicBlock *BB); + void printInstruction(const Instruction &I); + + // printType - Go to extreme measures to attempt to print out a short, + // symbolic version of a type name. + // + ostream &printType(const Type *Ty) { + return printTypeInt(Out, Ty, TypeNames); + } + + // printTypeAtLeastOneLevel - Print out one level of the possibly complex type + // without considering any symbolic types that we may have equal to it. + // + ostream &printTypeAtLeastOneLevel(const Type *Ty); + + // printInfoComment - Print a little comment after the instruction indicating + // which slot it occupies. + void printInfoComment(const Value &V); +}; -// visitMethod - This member is called after the above two steps, visting each -// method, because they are effectively values that go into the constant pool. +// printTypeAtLeastOneLevel - Print out one level of the possibly complex type +// without considering any symbolic types that we may have equal to it. // -bool AssemblyWriter::visitMethod(const Method *M) { - return false; +ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) { + if (const FunctionType *FTy = dyn_cast(Ty)) { + printType(FTy->getReturnType()) << " ("; + for (FunctionType::ParamTypes::const_iterator + I = FTy->getParamTypes().begin(), + E = FTy->getParamTypes().end(); I != E; ++I) { + if (I != FTy->getParamTypes().begin()) + Out << ", "; + printType(*I); + } + if (FTy->isVarArg()) { + if (!FTy->getParamTypes().empty()) Out << ", "; + Out << "..."; + } + Out << ")"; + } else if (const StructType *STy = dyn_cast(Ty)) { + Out << "{ "; + for (StructType::ElementTypes::const_iterator + I = STy->getElementTypes().begin(), + E = STy->getElementTypes().end(); I != E; ++I) { + if (I != STy->getElementTypes().begin()) + Out << ", "; + printType(*I); + } + Out << " }"; + } else if (const PointerType *PTy = dyn_cast(Ty)) { + printType(PTy->getElementType()) << "*"; + } else if (const ArrayType *ATy = dyn_cast(Ty)) { + Out << "[" << ATy->getNumElements() << " x "; + printType(ATy->getElementType()) << "]"; + } else if (const OpaqueType *OTy = dyn_cast(Ty)) { + Out << OTy->getDescription(); + } else { + if (!Ty->isPrimitiveType()) + Out << ""; + printType(Ty); + } + return Out; +} + + +void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, + bool PrintName) { + if (PrintType) { Out << " "; printType(Operand->getType()); } + WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table); } -bool AssemblyWriter::processConstPool(const ConstantPool &CP, bool isMethod) { - // Done printing arguments... - if (isMethod) Out << ")\n"; - ModuleAnalyzer::processConstPool(CP, isMethod); +void AssemblyWriter::printModule(const Module *M) { + // Loop over the symbol table, emitting all named constants... + if (M->hasSymbolTable()) + printSymbolTable(*M->getSymbolTable()); - if (isMethod) - Out << "begin"; - else - Out << "implementation\n"; - return false; + for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I) + printGlobal(I); + + Out << "\nimplementation ; Functions:\n"; + + // Output all of the functions... + for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) + printFunction(I); } +void AssemblyWriter::printGlobal(const GlobalVariable *GV) { + if (GV->hasName()) Out << "%" << GV->getName() << " = "; + + if (GV->hasInternalLinkage()) Out << "internal "; + if (!GV->hasInitializer()) Out << "uninitialized "; + + Out << (GV->isConstant() ? "constant " : "global "); + printType(GV->getType()->getElementType()); + + if (GV->hasInitializer()) + writeOperand(GV->getInitializer(), false, false); -// processConstant - Print out a constant pool entry... + printInfoComment(*GV); + Out << "\n"; +} + + +// printSymbolTable - Run through symbol table looking for named constants +// if a named constant is found, emit it's declaration... // -bool AssemblyWriter::processConstant(const ConstPoolVal *CPV) { - Out << "\t"; +void AssemblyWriter::printSymbolTable(const SymbolTable &ST) { + for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) { + SymbolTable::type_const_iterator I = ST.type_begin(TI->first); + SymbolTable::type_const_iterator End = ST.type_end(TI->first); + + for (; I != End; ++I) { + const Value *V = I->second; + if (const Constant *CPV = dyn_cast(V)) { + printConstant(CPV); + } else if (const Type *Ty = dyn_cast(V)) { + Out << "\t%" << I->first << " = type "; + + // Make sure we print out at least one level of the type structure, so + // that we do not get %FILE = type %FILE + // + printTypeAtLeastOneLevel(Ty) << "\n"; + } + } + } +} - // Print out name if it exists... - if (CPV->hasName()) - Out << "%" << CPV->getName() << " = "; - // Print out the opcode... - Out << CPV->getType(); +// printConstant - Print out a constant pool entry... +// +void AssemblyWriter::printConstant(const Constant *CPV) { + // Don't print out unnamed constants, they will be inlined + if (!CPV->hasName()) return; - // Write the value out now... - writeOperand(CPV, false, false); + // Print out name... + Out << "\t%" << CPV->getName() << " ="; - if (!CPV->hasName() && CPV->getType() != Type::VoidTy) { - int Slot = Table.getValSlot(CPV); // Print out the def slot taken... - Out << "\t\t; <" << CPV->getType() << ">:"; - if (Slot >= 0) Out << Slot; - else Out << ""; - } + // Write the value out now... + writeOperand(CPV, true, false); - Out << endl; - return false; + printInfoComment(*CPV); + Out << "\n"; } -// processMethod - Process all aspects of a method. +// printFunction - Print all aspects of a function. // -bool AssemblyWriter::processMethod(const Method *M) { +void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name... - Out << "\n" << M->getReturnType() << " \"" << M->getName() << "\"("; - Table.incorporateMethod(M); - ModuleAnalyzer::processMethod(M); - Table.purgeMethod(); - Out << "end\n"; - return false; + Out << "\n" << (F->isExternal() ? "declare " : "") + << (F->hasInternalLinkage() ? "internal " : ""); + printType(F->getReturnType()) << " %" << F->getName() << "("; + Table.incorporateFunction(F); + + // Loop over the arguments, printing them... + const FunctionType *FT = F->getFunctionType(); + + if (!F->isExternal()) { + for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I) + printArgument(I); + } else { + // Loop over the arguments, printing them... + for (FunctionType::ParamTypes::const_iterator I = FT->getParamTypes().begin(), + E = FT->getParamTypes().end(); I != E; ++I) { + if (I != FT->getParamTypes().begin()) Out << ", "; + printType(*I); + } + } + + // Finish printing arguments... + if (FT->isVarArg()) { + if (FT->getParamTypes().size()) Out << ", "; + Out << "..."; // Output varargs portion of signature! + } + Out << ")"; + + if (F->isExternal()) { + Out << "\n"; + } else { + Out << " {"; + + // Output all of its basic blocks... for the function + for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) + printBasicBlock(I); + + Out << "}\n"; + } + + Table.purgeFunction(); } -// processMethodArgument - This member is called for every argument that -// is passed into the method. Simply print it out +// printArgument - This member is called for every argument that +// is passed into the function. Simply print it out // -bool AssemblyWriter::processMethodArgument(const MethodArgument *Arg) { +void AssemblyWriter::printArgument(const Argument *Arg) { // Insert commas as we go... the first arg doesn't get a comma - if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", "; + if (Arg != &Arg->getParent()->afront()) Out << ", "; // Output type... - Out << Arg->getType(); + printType(Arg->getType()); // Output name, if available... if (Arg->hasName()) Out << " %" << Arg->getName(); else if (Table.getValSlot(Arg) < 0) Out << ""; - - return false; } -// processBasicBlock - This member is called for each basic block in a methd. +// printBasicBlock - This member is called for each basic block in a methd. // -bool AssemblyWriter::processBasicBlock(const BasicBlock *BB) { +void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... - Out << "\n" << BB->getName() << ":"; - } else { + Out << "\n" << BB->getName() << ":\t\t\t\t\t;[#uses=" + << BB->use_size() << "]"; // Output # uses + } else if (!BB->use_empty()) { // Don't print block # of no uses... int Slot = Table.getValSlot(BB); Out << "\n;