X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstantFold.cpp;h=ad9a33f845eda22fbfa5f2bcc7c878a13c19be69;hb=b83eb6447ba155342598f0fabe1f08f5baa9164a;hp=db21bd3d7822fff7007e6b9f816381bace9bf2da;hpb=e97148628f8a52fff1752937f6f49945bbe9937b;p=oota-llvm.git diff --git a/lib/VMCore/ConstantFold.cpp b/lib/VMCore/ConstantFold.cpp index db21bd3d782..ad9a33f845e 100644 --- a/lib/VMCore/ConstantFold.cpp +++ b/lib/VMCore/ConstantFold.cpp @@ -1,10 +1,10 @@ //===- ConstantFolding.cpp - LLVM constant folder -------------------------===// -// +// // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. -// +// //===----------------------------------------------------------------------===// // // This file implements folding of constants for LLVM. This implements the @@ -23,14 +23,19 @@ #include "llvm/Instructions.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" +#include "llvm/Support/Compiler.h" #include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include #include using namespace llvm; namespace { - struct ConstRules { + struct VISIBILITY_HIDDEN ConstRules { ConstRules() {} - + virtual ~ConstRules() {} + // Binary Operators... virtual Constant *add(const Constant *V1, const Constant *V2) const = 0; virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0; @@ -59,7 +64,7 @@ namespace { virtual Constant *castToDouble(const Constant *V) const = 0; virtual Constant *castToPointer(const Constant *V, const PointerType *Ty) const = 0; - + // ConstRules::get - Return an instance of ConstRules for the specified // constant operands. // @@ -75,56 +80,58 @@ namespace { // TemplateRules Class //===----------------------------------------------------------------------===// // -// TemplateRules - Implement a subclass of ConstRules that provides all -// operations as noops. All other rules classes inherit from this class so -// that if functionality is needed in the future, it can simply be added here +// TemplateRules - Implement a subclass of ConstRules that provides all +// operations as noops. All other rules classes inherit from this class so +// that if functionality is needed in the future, it can simply be added here // and to ConstRules without changing anything else... -// +// // This class also provides subclasses with typesafe implementations of methods // so that don't have to do type casting. // +namespace { template -class TemplateRules : public ConstRules { +class VISIBILITY_HIDDEN TemplateRules : public ConstRules { + //===--------------------------------------------------------------------===// // Redirecting functions that cast to the appropriate types //===--------------------------------------------------------------------===// - virtual Constant *add(const Constant *V1, const Constant *V2) const { - return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *add(const Constant *V1, const Constant *V2) const { + return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *sub(const Constant *V1, const Constant *V2) const { - return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *sub(const Constant *V1, const Constant *V2) const { + return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *mul(const Constant *V1, const Constant *V2) const { - return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *mul(const Constant *V1, const Constant *V2) const { + return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *div(const Constant *V1, const Constant *V2) const { - return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *div(const Constant *V1, const Constant *V2) const { + return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *rem(const Constant *V1, const Constant *V2) const { - return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *rem(const Constant *V1, const Constant *V2) const { + return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *op_and(const Constant *V1, const Constant *V2) const { - return SubClassName::And((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *op_and(const Constant *V1, const Constant *V2) const { + return SubClassName::And((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *op_or(const Constant *V1, const Constant *V2) const { - return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *op_or(const Constant *V1, const Constant *V2) const { + return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *op_xor(const Constant *V1, const Constant *V2) const { - return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *op_xor(const Constant *V1, const Constant *V2) const { + return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *shl(const Constant *V1, const Constant *V2) const { - return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *shl(const Constant *V1, const Constant *V2) const { + return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *shr(const Constant *V1, const Constant *V2) const { - return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2); + virtual Constant *shr(const Constant *V1, const Constant *V2) const { + return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *lessthan(const Constant *V1, const Constant *V2) const { + virtual Constant *lessthan(const Constant *V1, const Constant *V2) const { return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2); } - virtual Constant *equalto(const Constant *V1, const Constant *V2) const { + virtual Constant *equalto(const Constant *V1, const Constant *V2) const { return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2); } @@ -162,7 +169,7 @@ class TemplateRules : public ConstRules { virtual Constant *castToDouble(const Constant *V) const { return SubClassName::CastToDouble((const ArgType*)V); } - virtual Constant *castToPointer(const Constant *V, + virtual Constant *castToPointer(const Constant *V, const PointerType *Ty) const { return SubClassName::CastToPointer((const ArgType*)V, Ty); } @@ -202,8 +209,11 @@ class TemplateRules : public ConstRules { static Constant *CastToDouble(const Constant *V) { return 0; } static Constant *CastToPointer(const Constant *, const PointerType *) {return 0;} -}; +public: + virtual ~TemplateRules() {} +}; +} // end anonymous namespace //===----------------------------------------------------------------------===// @@ -212,12 +222,15 @@ class TemplateRules : public ConstRules { // // EmptyRules provides a concrete base class of ConstRules that does nothing // -struct EmptyRules : public TemplateRules { +namespace { +struct VISIBILITY_HIDDEN EmptyRules + : public TemplateRules { static Constant *EqualTo(const Constant *V1, const Constant *V2) { - if (V1 == V2) return ConstantBool::True; + if (V1 == V2) return ConstantBool::getTrue(); return 0; } }; +} // end anonymous namespace @@ -227,9 +240,11 @@ struct EmptyRules : public TemplateRules { // // BoolRules provides a concrete base class of ConstRules for the 'bool' type. // -struct BoolRules : public TemplateRules { +namespace { +struct VISIBILITY_HIDDEN BoolRules + : public TemplateRules { - static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2){ + static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2) { return ConstantBool::get(V1->getValue() < V2->getValue()); } @@ -256,18 +271,19 @@ struct BoolRules : public TemplateRules { } DEF_CAST(Bool , ConstantBool, bool) - DEF_CAST(SByte , ConstantSInt, signed char) - DEF_CAST(UByte , ConstantUInt, unsigned char) - DEF_CAST(Short , ConstantSInt, signed short) - DEF_CAST(UShort, ConstantUInt, unsigned short) - DEF_CAST(Int , ConstantSInt, signed int) - DEF_CAST(UInt , ConstantUInt, unsigned int) - DEF_CAST(Long , ConstantSInt, int64_t) - DEF_CAST(ULong , ConstantUInt, uint64_t) + DEF_CAST(SByte , ConstantInt, signed char) + DEF_CAST(UByte , ConstantInt, unsigned char) + DEF_CAST(Short , ConstantInt, signed short) + DEF_CAST(UShort, ConstantInt, unsigned short) + DEF_CAST(Int , ConstantInt, signed int) + DEF_CAST(UInt , ConstantInt, unsigned int) + DEF_CAST(Long , ConstantInt, int64_t) + DEF_CAST(ULong , ConstantInt, uint64_t) DEF_CAST(Float , ConstantFP , float) DEF_CAST(Double, ConstantFP , double) #undef DEF_CAST }; +} // end anonymous namespace //===----------------------------------------------------------------------===// @@ -277,37 +293,38 @@ struct BoolRules : public TemplateRules { // NullPointerRules provides a concrete base class of ConstRules for null // pointers. // -struct NullPointerRules : public TemplateRules { +namespace { +struct VISIBILITY_HIDDEN NullPointerRules + : public TemplateRules { static Constant *EqualTo(const Constant *V1, const Constant *V2) { - return ConstantBool::True; // Null pointers are always equal + return ConstantBool::getTrue(); // Null pointers are always equal } static Constant *CastToBool(const Constant *V) { - return ConstantBool::False; + return ConstantBool::getFalse(); } static Constant *CastToSByte (const Constant *V) { - return ConstantSInt::get(Type::SByteTy, 0); + return ConstantInt::get(Type::SByteTy, 0); } static Constant *CastToUByte (const Constant *V) { - return ConstantUInt::get(Type::UByteTy, 0); + return ConstantInt::get(Type::UByteTy, 0); } static Constant *CastToShort (const Constant *V) { - return ConstantSInt::get(Type::ShortTy, 0); + return ConstantInt::get(Type::ShortTy, 0); } static Constant *CastToUShort(const Constant *V) { - return ConstantUInt::get(Type::UShortTy, 0); + return ConstantInt::get(Type::UShortTy, 0); } static Constant *CastToInt (const Constant *V) { - return ConstantSInt::get(Type::IntTy, 0); + return ConstantInt::get(Type::IntTy, 0); } static Constant *CastToUInt (const Constant *V) { - return ConstantUInt::get(Type::UIntTy, 0); + return ConstantInt::get(Type::UIntTy, 0); } static Constant *CastToLong (const Constant *V) { - return ConstantSInt::get(Type::LongTy, 0); + return ConstantInt::get(Type::LongTy, 0); } static Constant *CastToULong (const Constant *V) { - return ConstantUInt::get(Type::ULongTy, 0); + return ConstantInt::get(Type::ULongTy, 0); } static Constant *CastToFloat (const Constant *V) { return ConstantFP::get(Type::FloatTy, 0); @@ -321,50 +338,136 @@ struct NullPointerRules : public TemplateRules Res; + for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) + Res.push_back(FP(const_cast(V1->getOperand(i)), + const_cast(V2->getOperand(i)))); + return ConstantPacked::get(Res); +} +/// PackedTypeRules provides a concrete base class of ConstRules for +/// ConstantPacked operands. +/// +namespace { +struct VISIBILITY_HIDDEN ConstantPackedRules + : public TemplateRules { + + static Constant *Add(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getAdd); + } + static Constant *Sub(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getSub); + } + static Constant *Mul(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getMul); + } + static Constant *Div(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getDiv); + } + static Constant *Rem(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getRem); + } + static Constant *And(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getAnd); + } + static Constant *Or (const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getOr); + } + static Constant *Xor(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getXor); + } + static Constant *Shl(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getShl); + } + static Constant *Shr(const ConstantPacked *V1, const ConstantPacked *V2) { + return EvalVectorOp(V1, V2, ConstantExpr::getShr); + } + static Constant *LessThan(const ConstantPacked *V1, const ConstantPacked *V2){ + return 0; + } + static Constant *EqualTo(const ConstantPacked *V1, const ConstantPacked *V2) { + for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i) { + Constant *C = + ConstantExpr::getSetEQ(const_cast(V1->getOperand(i)), + const_cast(V2->getOperand(i))); + if (ConstantBool *CB = dyn_cast(C)) + return CB; + } + // Otherwise, could not decide from any element pairs. + return 0; + } +}; +} // end anonymous namespace + + +//===----------------------------------------------------------------------===// +// GeneralPackedRules Class //===----------------------------------------------------------------------===// -// DirectRules Class + +/// GeneralPackedRules provides a concrete base class of ConstRules for +/// PackedType operands, where both operands are not ConstantPacked. The usual +/// cause for this is that one operand is a ConstantAggregateZero. +/// +namespace { +struct VISIBILITY_HIDDEN GeneralPackedRules + : public TemplateRules { +}; +} // end anonymous namespace + + +//===----------------------------------------------------------------------===// +// DirectIntRules Class //===----------------------------------------------------------------------===// // -// DirectRules provides a concrete base classes of ConstRules for a variety of -// different types. This allows the C++ compiler to automatically generate our -// constant handling operations in a typesafe and accurate manner. +// DirectIntRules provides implementations of functions that are valid on +// integer types, but not all types in general. // -template -struct DirectRules : public TemplateRules { - static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); - } +namespace { +template +struct VISIBILITY_HIDDEN DirectIntRules + : public TemplateRules > { - static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Add(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = (BuiltinType)V1->getZExtValue() + + (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Sub(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = (BuiltinType)V1->getZExtValue() - + (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) { - if (V2->isNullValue()) return 0; - BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Mul(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = (BuiltinType)V1->getZExtValue() * + (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) { - bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue(); + static Constant *LessThan(const ConstantInt *V1, const ConstantInt *V2) { + bool R = (BuiltinType)V1->getZExtValue() < (BuiltinType)V2->getZExtValue(); return ConstantBool::get(R); - } + } - static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) { - bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue(); + static Constant *EqualTo(const ConstantInt *V1, const ConstantInt *V2) { + bool R = (BuiltinType)V1->getZExtValue() == (BuiltinType)V2->getZExtValue(); return ConstantBool::get(R); } - static Constant *CastToPointer(const ConstantClass *V, + static Constant *CastToPointer(const ConstantInt *V, const PointerType *PTy) { if (V->isNullValue()) // Is it a FP or Integral null value? return ConstantPointerNull::get(PTy); @@ -373,79 +476,73 @@ struct DirectRules : public TemplateRules { // Casting operators. ick #define DEF_CAST(TYPE, CLASS, CTYPE) \ - static Constant *CastTo##TYPE (const ConstantClass *V) { \ - return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \ + static Constant *CastTo##TYPE (const ConstantInt *V) { \ + return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getZExtValue()); \ } DEF_CAST(Bool , ConstantBool, bool) - DEF_CAST(SByte , ConstantSInt, signed char) - DEF_CAST(UByte , ConstantUInt, unsigned char) - DEF_CAST(Short , ConstantSInt, signed short) - DEF_CAST(UShort, ConstantUInt, unsigned short) - DEF_CAST(Int , ConstantSInt, signed int) - DEF_CAST(UInt , ConstantUInt, unsigned int) - DEF_CAST(Long , ConstantSInt, int64_t) - DEF_CAST(ULong , ConstantUInt, uint64_t) - DEF_CAST(Float , ConstantFP , float) - DEF_CAST(Double, ConstantFP , double) + DEF_CAST(SByte , ConstantInt, signed char) + DEF_CAST(UByte , ConstantInt, unsigned char) + DEF_CAST(Short , ConstantInt, signed short) + DEF_CAST(UShort, ConstantInt, unsigned short) + DEF_CAST(Int , ConstantInt, signed int) + DEF_CAST(UInt , ConstantInt, unsigned int) + DEF_CAST(Long , ConstantInt, int64_t) + DEF_CAST(ULong , ConstantInt, uint64_t) + DEF_CAST(Float , ConstantFP , float) + DEF_CAST(Double, ConstantFP , double) #undef DEF_CAST -}; - -//===----------------------------------------------------------------------===// -// DirectIntRules Class -//===----------------------------------------------------------------------===// -// -// DirectIntRules provides implementations of functions that are valid on -// integer types, but not all types in general. -// -template -struct DirectIntRules - : public DirectRules > { - - static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) { + static Constant *Div(const ConstantInt *V1, const ConstantInt *V2) { if (V2->isNullValue()) return 0; if (V2->isAllOnesValue() && // MIN_INT / -1 - (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue()) + (BuiltinType)V1->getZExtValue() == -(BuiltinType)V1->getZExtValue()) return 0; - BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + BuiltinType R = + (BuiltinType)V1->getZExtValue() / (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Rem(const ConstantClass *V1, - const ConstantClass *V2) { + static Constant *Rem(const ConstantInt *V1, + const ConstantInt *V2) { if (V2->isNullValue()) return 0; // X / 0 if (V2->isAllOnesValue() && // MIN_INT / -1 - (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue()) + (BuiltinType)V1->getZExtValue() == -(BuiltinType)V1->getZExtValue()) return 0; - BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + BuiltinType R = + (BuiltinType)V1->getZExtValue() % (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *And(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *And(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = + (BuiltinType)V1->getZExtValue() & (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Or(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = + (BuiltinType)V1->getZExtValue() | (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Xor(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = + (BuiltinType)V1->getZExtValue() ^ (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Shl(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = + (BuiltinType)V1->getZExtValue() << (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } - static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) { - BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue(); - return ConstantClass::get(*Ty, R); + static Constant *Shr(const ConstantInt *V1, const ConstantInt *V2) { + BuiltinType R = + (BuiltinType)V1->getZExtValue() >> (BuiltinType)V2->getZExtValue(); + return ConstantInt::get(*Ty, R); } }; +} // end anonymous namespace //===----------------------------------------------------------------------===// @@ -455,54 +552,121 @@ struct DirectIntRules /// DirectFPRules provides implementations of functions that are valid on /// floating point types, but not all types in general. /// -template -struct DirectFPRules - : public DirectRules > { - static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) { +namespace { +template +struct VISIBILITY_HIDDEN DirectFPRules + : public TemplateRules > { + + static Constant *Add(const ConstantFP *V1, const ConstantFP *V2) { + BuiltinType R = (BuiltinType)V1->getValue() + + (BuiltinType)V2->getValue(); + return ConstantFP::get(*Ty, R); + } + + static Constant *Sub(const ConstantFP *V1, const ConstantFP *V2) { + BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue(); + return ConstantFP::get(*Ty, R); + } + + static Constant *Mul(const ConstantFP *V1, const ConstantFP *V2) { + BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue(); + return ConstantFP::get(*Ty, R); + } + + static Constant *LessThan(const ConstantFP *V1, const ConstantFP *V2) { + bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue(); + return ConstantBool::get(R); + } + + static Constant *EqualTo(const ConstantFP *V1, const ConstantFP *V2) { + bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue(); + return ConstantBool::get(R); + } + + static Constant *CastToPointer(const ConstantFP *V, + const PointerType *PTy) { + if (V->isNullValue()) // Is it a FP or Integral null value? + return ConstantPointerNull::get(PTy); + return 0; // Can't const prop other types of pointers + } + + // Casting operators. ick +#define DEF_CAST(TYPE, CLASS, CTYPE) \ + static Constant *CastTo##TYPE (const ConstantFP *V) { \ + return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \ + } + + DEF_CAST(Bool , ConstantBool, bool) + DEF_CAST(SByte , ConstantInt, signed char) + DEF_CAST(UByte , ConstantInt, unsigned char) + DEF_CAST(Short , ConstantInt, signed short) + DEF_CAST(UShort, ConstantInt, unsigned short) + DEF_CAST(Int , ConstantInt, signed int) + DEF_CAST(UInt , ConstantInt, unsigned int) + DEF_CAST(Long , ConstantInt, int64_t) + DEF_CAST(ULong , ConstantInt, uint64_t) + DEF_CAST(Float , ConstantFP , float) + DEF_CAST(Double, ConstantFP , double) +#undef DEF_CAST + + static Constant *Rem(const ConstantFP *V1, const ConstantFP *V2) { if (V2->isNullValue()) return 0; BuiltinType Result = std::fmod((BuiltinType)V1->getValue(), (BuiltinType)V2->getValue()); - return ConstantClass::get(*Ty, Result); + return ConstantFP::get(*Ty, Result); + } + static Constant *Div(const ConstantFP *V1, const ConstantFP *V2) { + BuiltinType inf = std::numeric_limits::infinity(); + if (V2->isExactlyValue(0.0)) return ConstantFP::get(*Ty, inf); + if (V2->isExactlyValue(-0.0)) return ConstantFP::get(*Ty, -inf); + BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue(); + return ConstantFP::get(*Ty, R); } }; - +} // end anonymous namespace + +static ManagedStatic EmptyR; +static ManagedStatic BoolR; +static ManagedStatic NullPointerR; +static ManagedStatic ConstantPackedR; +static ManagedStatic GeneralPackedR; +static ManagedStatic > SByteR; +static ManagedStatic > UByteR; +static ManagedStatic > ShortR; +static ManagedStatic > UShortR; +static ManagedStatic > IntR; +static ManagedStatic > UIntR; +static ManagedStatic > LongR; +static ManagedStatic > ULongR; +static ManagedStatic > FloatR; +static ManagedStatic > DoubleR; /// ConstRules::get - This method returns the constant rules implementation that /// implements the semantics of the two specified constants. ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) { - static EmptyRules EmptyR; - static BoolRules BoolR; - static NullPointerRules NullPointerR; - static DirectIntRules SByteR; - static DirectIntRules UByteR; - static DirectIntRules ShortR; - static DirectIntRules UShortR; - static DirectIntRules IntR; - static DirectIntRules UIntR; - static DirectIntRules LongR; - static DirectIntRules ULongR; - static DirectFPRules FloatR; - static DirectFPRules DoubleR; - if (isa(V1) || isa(V2) || - isa(V1) || isa(V2)) - return EmptyR; + isa(V1) || isa(V2) || + isa(V1) || isa(V2)) + return *EmptyR; - switch (V1->getType()->getPrimitiveID()) { + switch (V1->getType()->getTypeID()) { default: assert(0 && "Unknown value type for constant folding!"); - case Type::BoolTyID: return BoolR; - case Type::PointerTyID: return NullPointerR; - case Type::SByteTyID: return SByteR; - case Type::UByteTyID: return UByteR; - case Type::ShortTyID: return ShortR; - case Type::UShortTyID: return UShortR; - case Type::IntTyID: return IntR; - case Type::UIntTyID: return UIntR; - case Type::LongTyID: return LongR; - case Type::ULongTyID: return ULongR; - case Type::FloatTyID: return FloatR; - case Type::DoubleTyID: return DoubleR; + case Type::BoolTyID: return *BoolR; + case Type::PointerTyID: return *NullPointerR; + case Type::SByteTyID: return *SByteR; + case Type::UByteTyID: return *UByteR; + case Type::ShortTyID: return *ShortR; + case Type::UShortTyID: return *UShortR; + case Type::IntTyID: return *IntR; + case Type::UIntTyID: return *UIntR; + case Type::LongTyID: return *LongR; + case Type::ULongTyID: return *ULongR; + case Type::FloatTyID: return *FloatR; + case Type::DoubleTyID: return *DoubleR; + case Type::PackedTyID: + if (isa(V1) && isa(V2)) + return *ConstantPackedR; + return *GeneralPackedR; // Constant folding rules for ConstantAggregateZero. } } @@ -520,26 +684,99 @@ static unsigned getSize(const Type *Ty) { return S ? S : 8; // Treat pointers at 8 bytes } +/// CastConstantPacked - Convert the specified ConstantPacked node to the +/// specified packed type. At this point, we know that the elements of the +/// input packed constant are all simple integer or FP values. +static Constant *CastConstantPacked(ConstantPacked *CP, + const PackedType *DstTy) { + unsigned SrcNumElts = CP->getType()->getNumElements(); + unsigned DstNumElts = DstTy->getNumElements(); + const Type *SrcEltTy = CP->getType()->getElementType(); + const Type *DstEltTy = DstTy->getElementType(); + + // If both vectors have the same number of elements (thus, the elements + // are the same size), perform the conversion now. + if (SrcNumElts == DstNumElts) { + std::vector Result; + + // If the src and dest elements are both integers, just cast each one + // which will do the appropriate bit-convert. + if (SrcEltTy->isIntegral() && DstEltTy->isIntegral()) { + for (unsigned i = 0; i != SrcNumElts; ++i) + Result.push_back(ConstantExpr::getCast(CP->getOperand(i), + DstEltTy)); + return ConstantPacked::get(Result); + } + + if (SrcEltTy->isIntegral()) { + // Otherwise, this is an int-to-fp cast. + assert(DstEltTy->isFloatingPoint()); + if (DstEltTy->getTypeID() == Type::DoubleTyID) { + for (unsigned i = 0; i != SrcNumElts; ++i) { + double V = + BitsToDouble(cast(CP->getOperand(i))->getZExtValue()); + Result.push_back(ConstantFP::get(Type::DoubleTy, V)); + } + return ConstantPacked::get(Result); + } + assert(DstEltTy == Type::FloatTy && "Unknown fp type!"); + for (unsigned i = 0; i != SrcNumElts; ++i) { + float V = + BitsToFloat(cast(CP->getOperand(i))->getZExtValue()); + Result.push_back(ConstantFP::get(Type::FloatTy, V)); + } + return ConstantPacked::get(Result); + } + + // Otherwise, this is an fp-to-int cast. + assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral()); + + if (SrcEltTy->getTypeID() == Type::DoubleTyID) { + for (unsigned i = 0; i != SrcNumElts; ++i) { + uint64_t V = + DoubleToBits(cast(CP->getOperand(i))->getValue()); + Constant *C = ConstantInt::get(Type::ULongTy, V); + Result.push_back(ConstantExpr::getCast(C, DstEltTy)); + } + return ConstantPacked::get(Result); + } + + assert(SrcEltTy->getTypeID() == Type::FloatTyID); + for (unsigned i = 0; i != SrcNumElts; ++i) { + uint32_t V = FloatToBits(cast(CP->getOperand(i))->getValue()); + Constant *C = ConstantInt::get(Type::UIntTy, V); + Result.push_back(ConstantExpr::getCast(C, DstEltTy)); + } + return ConstantPacked::get(Result); + } + + // Otherwise, this is a cast that changes element count and size. Handle + // casts which shrink the elements here. + + // FIXME: We need to know endianness to do this! + + return 0; +} + + Constant *llvm::ConstantFoldCastInstruction(const Constant *V, const Type *DestTy) { if (V->getType() == DestTy) return (Constant*)V; // Cast of a global address to boolean is always true. - if (const ConstantPointerRef *CPR = dyn_cast(V)) + if (const GlobalValue *GV = dyn_cast(V)) { if (DestTy == Type::BoolTy) // FIXME: When we support 'external weak' references, we have to prevent - // this transformation from happening. In the meantime we avoid folding - // any cast of an external symbol. - if (!CPR->getValue()->isExternal()) - return ConstantBool::True; - - if (const ConstantExpr *CE = dyn_cast(V)) + // this transformation from happening. This code will need to be updated + // to ignore external weak symbols when we support it. + return ConstantBool::getTrue(); + } else if (const ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::Cast) { Constant *Op = const_cast(CE->getOperand(0)); // Try to not produce a cast of a cast, which is almost always redundant. if (!Op->getType()->isFloatingPoint() && !CE->getType()->isFloatingPoint() && - !DestTy->getType()->isFloatingPoint()) { + !DestTy->isFloatingPoint()) { unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType()); unsigned S3 = getSize(DestTy); if (Op->getType() == DestTy && S3 >= S2) @@ -561,10 +798,70 @@ Constant *llvm::ConstantFoldCastInstruction(const Constant *V, if (isAllNull) return ConstantExpr::getCast(CE->getOperand(0), DestTy); } + } else if (isa(V)) { + return UndefValue::get(DestTy); + } + + // Check to see if we are casting an pointer to an aggregate to a pointer to + // the first element. If so, return the appropriate GEP instruction. + if (const PointerType *PTy = dyn_cast(V->getType())) + if (const PointerType *DPTy = dyn_cast(DestTy)) { + std::vector IdxList; + IdxList.push_back(Constant::getNullValue(Type::IntTy)); + const Type *ElTy = PTy->getElementType(); + while (ElTy != DPTy->getElementType()) { + if (const StructType *STy = dyn_cast(ElTy)) { + if (STy->getNumElements() == 0) break; + ElTy = STy->getElementType(0); + IdxList.push_back(Constant::getNullValue(Type::UIntTy)); + } else if (const SequentialType *STy = dyn_cast(ElTy)) { + if (isa(ElTy)) break; // Can't index into pointers! + ElTy = STy->getElementType(); + IdxList.push_back(IdxList[0]); + } else { + break; + } + } + + if (ElTy == DPTy->getElementType()) + return ConstantExpr::getGetElementPtr(const_cast(V),IdxList); + } + + // Handle casts from one packed constant to another. We know that the src and + // dest type have the same size. + if (const PackedType *DestPTy = dyn_cast(DestTy)) { + if (const PackedType *SrcTy = dyn_cast(V->getType())) { + assert(DestPTy->getElementType()->getPrimitiveSizeInBits() * + DestPTy->getNumElements() == + SrcTy->getElementType()->getPrimitiveSizeInBits() * + SrcTy->getNumElements() && "Not cast between same sized vectors!"); + if (isa(V)) + return Constant::getNullValue(DestTy); + if (isa(V)) + return UndefValue::get(DestTy); + if (const ConstantPacked *CP = dyn_cast(V)) { + // This is a cast from a ConstantPacked of one type to a ConstantPacked + // of another type. Check to see if all elements of the input are + // simple. + bool AllSimpleConstants = true; + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) { + if (!isa(CP->getOperand(i)) && + !isa(CP->getOperand(i))) { + AllSimpleConstants = false; + break; + } + } + + // If all of the elements are simple constants, we can fold this. + if (AllSimpleConstants) + return CastConstantPacked(const_cast(CP), DestPTy); + } + } + } ConstRules &Rules = ConstRules::get(V, V); - switch (DestTy->getPrimitiveID()) { + switch (DestTy->getTypeID()) { case Type::BoolTyID: return Rules.castToBool(V); case Type::UByteTyID: return Rules.castToUByte(V); case Type::SByteTyID: return Rules.castToSByte(V); @@ -585,14 +882,117 @@ Constant *llvm::ConstantFoldCastInstruction(const Constant *V, Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond, const Constant *V1, const Constant *V2) { - if (Cond == ConstantBool::True) - return const_cast(V1); - else if (Cond == ConstantBool::False) - return const_cast(V2); + if (const ConstantBool *CB = dyn_cast(Cond)) + return const_cast(CB->getValue() ? V1 : V2); + + if (isa(V1)) return const_cast(V2); + if (isa(V2)) return const_cast(V1); + if (isa(Cond)) return const_cast(V1); + if (V1 == V2) return const_cast(V1); + return 0; +} + +Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val, + const Constant *Idx) { + if (isa(Val)) // ee(undef, x) -> undef + return UndefValue::get(cast(Val->getType())->getElementType()); + if (Val->isNullValue()) // ee(zero, x) -> zero + return Constant::getNullValue( + cast(Val->getType())->getElementType()); + + if (const ConstantPacked *CVal = dyn_cast(Val)) { + if (const ConstantInt *CIdx = dyn_cast(Idx)) { + return const_cast(CVal->getOperand(CIdx->getZExtValue())); + } else if (isa(Idx)) { + // ee({w,x,y,z}, undef) -> w (an arbitrary value). + return const_cast(CVal->getOperand(0)); + } + } + return 0; +} + +Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val, + const Constant *Elt, + const Constant *Idx) { + const ConstantInt *CIdx = dyn_cast(Idx); + if (!CIdx) return 0; + uint64_t idxVal = CIdx->getZExtValue(); + if (const UndefValue *UVal = dyn_cast(Val)) { + // Insertion of scalar constant into packed undef + // Optimize away insertion of undef + if (isa(Elt)) + return const_cast(Val); + // Otherwise break the aggregate undef into multiple undefs and do + // the insertion + unsigned numOps = + cast(Val->getType())->getNumElements(); + std::vector Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Constant *Op = + (i == idxVal) ? Elt : UndefValue::get(Elt->getType()); + Ops.push_back(const_cast(Op)); + } + return ConstantPacked::get(Ops); + } + if (const ConstantAggregateZero *CVal = + dyn_cast(Val)) { + // Insertion of scalar constant into packed aggregate zero + // Optimize away insertion of zero + if (Elt->isNullValue()) + return const_cast(Val); + // Otherwise break the aggregate zero into multiple zeros and do + // the insertion + unsigned numOps = + cast(Val->getType())->getNumElements(); + std::vector Ops; + Ops.reserve(numOps); + for (unsigned i = 0; i < numOps; ++i) { + const Constant *Op = + (i == idxVal) ? Elt : Constant::getNullValue(Elt->getType()); + Ops.push_back(const_cast(Op)); + } + return ConstantPacked::get(Ops); + } + if (const ConstantPacked *CVal = dyn_cast(Val)) { + // Insertion of scalar constant into packed constant + std::vector Ops; + Ops.reserve(CVal->getNumOperands()); + for (unsigned i = 0; i < CVal->getNumOperands(); ++i) { + const Constant *Op = + (i == idxVal) ? Elt : cast(CVal->getOperand(i)); + Ops.push_back(const_cast(Op)); + } + return ConstantPacked::get(Ops); + } + return 0; +} + +Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1, + const Constant *V2, + const Constant *Mask) { + // TODO: return 0; } +/// isZeroSizedType - This type is zero sized if its an array or structure of +/// zero sized types. The only leaf zero sized type is an empty structure. +static bool isMaybeZeroSizedType(const Type *Ty) { + if (isa(Ty)) return true; // Can't say. + if (const StructType *STy = dyn_cast(Ty)) { + + // If all of elements have zero size, this does too. + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) + if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; + return true; + + } else if (const ArrayType *ATy = dyn_cast(Ty)) { + return isMaybeZeroSizedType(ATy->getElementType()); + } + return false; +} + /// IdxCompare - Compare the two constants as though they were getelementptr /// indices. This allows coersion of the types to be the same thing. /// @@ -600,23 +1000,29 @@ Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond, /// first is less than the second, return -1, if the second is less than the /// first, return 1. If the constants are not integral, return -2. /// -static int IdxCompare(Constant *C1, Constant *C2) { +static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) { if (C1 == C2) return 0; // Ok, we found a different index. Are either of the operands // ConstantExprs? If so, we can't do anything with them. if (!isa(C1) || !isa(C2)) return -2; // don't know! - - // Ok, we have two differing integer indices. Convert them to - // be the same type. Long is always big enough, so we use it. - C1 = ConstantExpr::getCast(C1, Type::LongTy); - C2 = ConstantExpr::getCast(C2, Type::LongTy); + + // Ok, we have two differing integer indices. Sign extend them to be the same + // type. Long is always big enough, so we use it. + C1 = ConstantExpr::getSignExtend(C1, Type::LongTy); + C2 = ConstantExpr::getSignExtend(C2, Type::LongTy); if (C1 == C2) return 0; // Are they just differing types? + // If the type being indexed over is really just a zero sized type, there is + // no pointer difference being made here. + if (isMaybeZeroSizedType(ElTy)) + return -2; // dunno. + // If they are really different, now that they are the same type, then we // found a difference! - if (cast(C1)->getValue() < cast(C2)->getValue()) + if (cast(C1)->getSExtValue() < + cast(C2)->getSExtValue()) return -1; else return 1; @@ -624,44 +1030,55 @@ static int IdxCompare(Constant *C1, Constant *C2) { /// evaluateRelation - This function determines if there is anything we can /// decide about the two constants provided. This doesn't need to handle simple -/// things like integer comparisons, but should instead handle ConstantExpr's -/// and ConstantPointerRef's. If we can determine that the two constants have a +/// things like integer comparisons, but should instead handle ConstantExprs +/// and GlobalValuess. If we can determine that the two constants have a /// particular relation to each other, we should return the corresponding SetCC /// code, otherwise return Instruction::BinaryOpsEnd. /// /// To simplify this code we canonicalize the relation so that the first /// operand is always the most "complex" of the two. We consider simple /// constants (like ConstantInt) to be the simplest, followed by -/// ConstantPointerRef's, followed by ConstantExpr's (the most complex). +/// GlobalValues, followed by ConstantExpr's (the most complex). /// -static Instruction::BinaryOps evaluateRelation(const Constant *V1, - const Constant *V2) { +static Instruction::BinaryOps evaluateRelation(Constant *V1, Constant *V2) { assert(V1->getType() == V2->getType() && "Cannot compare different types of values!"); if (V1 == V2) return Instruction::SetEQ; - if (!isa(V1) && !isa(V1)) { + if (!isa(V1) && !isa(V1)) { + if (!isa(V2) && !isa(V2)) { + // We distilled this down to a simple case, use the standard constant + // folder. + ConstantBool *R = dyn_cast(ConstantExpr::getSetEQ(V1, V2)); + if (R && R->getValue()) return Instruction::SetEQ; + R = dyn_cast(ConstantExpr::getSetLT(V1, V2)); + if (R && R->getValue()) return Instruction::SetLT; + R = dyn_cast(ConstantExpr::getSetGT(V1, V2)); + if (R && R->getValue()) return Instruction::SetGT; + + // If we couldn't figure it out, bail. + return Instruction::BinaryOpsEnd; + } + // If the first operand is simple, swap operands. - assert((isa(V2) || isa(V2)) && - "Simple cases should have been handled by caller!"); Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1); if (SwappedRelation != Instruction::BinaryOpsEnd) return SetCondInst::getSwappedCondition(SwappedRelation); - } else if (const ConstantPointerRef *CPR1 = dyn_cast(V1)){ + } else if (const GlobalValue *CPR1 = dyn_cast(V1)) { if (isa(V2)) { // Swap as necessary. - Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1); - if (SwappedRelation != Instruction::BinaryOpsEnd) - return SetCondInst::getSwappedCondition(SwappedRelation); - else - return Instruction::BinaryOpsEnd; + Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1); + if (SwappedRelation != Instruction::BinaryOpsEnd) + return SetCondInst::getSwappedCondition(SwappedRelation); + else + return Instruction::BinaryOpsEnd; } - // Now we know that the RHS is a ConstantPointerRef or simple constant, + // Now we know that the RHS is a GlobalValue or simple constant, // which (since the types must match) means that it's a ConstantPointerNull. - if (const ConstantPointerRef *CPR2 = dyn_cast(V2)) { - assert(CPR1->getValue() != CPR2->getValue() && - "CPRs for the same value exist at different addresses??"); + if (const GlobalValue *CPR2 = dyn_cast(V2)) { + assert(CPR1 != CPR2 && + "GVs for the same value exist at different addresses??"); // FIXME: If both globals are external weak, they might both be null! return Instruction::SetNE; } else { @@ -674,7 +1091,7 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1, } else { // Ok, the LHS is known to be a constantexpr. The RHS can be any of a // constantexpr, a CPR, or a simple constant. - const ConstantExpr *CE1 = cast(V1); + ConstantExpr *CE1 = cast(V1); Constant *CE1Op0 = CE1->getOperand(0); switch (CE1->getOpcode()) { @@ -682,17 +1099,30 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1, // If the cast is not actually changing bits, and the second operand is a // null pointer, do the comparison with the pre-casted value. if (V2->isNullValue() && - CE1->getType()->isLosslesslyConvertibleTo(CE1Op0->getType())) + (isa(CE1->getType()) || CE1->getType()->isIntegral())) return evaluateRelation(CE1Op0, Constant::getNullValue(CE1Op0->getType())); + // If the dest type is a pointer type, and the RHS is a constantexpr cast + // from the same type as the src of the LHS, evaluate the inputs. This is + // important for things like "seteq (cast 4 to int*), (cast 5 to int*)", + // which happens a lot in compilers with tagged integers. + if (ConstantExpr *CE2 = dyn_cast(V2)) + if (isa(CE1->getType()) && + CE2->getOpcode() == Instruction::Cast && + CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() && + CE1->getOperand(0)->getType()->isIntegral()) { + return evaluateRelation(CE1->getOperand(0), CE2->getOperand(0)); + } + break; + case Instruction::GetElementPtr: // Ok, since this is a getelementptr, we know that the constant has a // pointer type. Check the various cases. if (isa(V2)) { // If we are comparing a GEP to a null pointer, check to see if the base // of the GEP equals the null pointer. - if (isa(CE1Op0)) { + if (isa(CE1Op0)) { // FIXME: this is not true when we have external weak references! // No offset can go from a global to a null pointer. return Instruction::SetGT; @@ -707,13 +1137,11 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1, return Instruction::SetEQ; } // Otherwise, we can't really say if the first operand is null or not. - } else if (const ConstantPointerRef *CPR2 = - dyn_cast(V2)) { + } else if (const GlobalValue *CPR2 = dyn_cast(V2)) { if (isa(CE1Op0)) { // FIXME: This is not true with external weak references. return Instruction::SetLT; - } else if (const ConstantPointerRef *CPR1 = - dyn_cast(CE1Op0)) { + } else if (const GlobalValue *CPR1 = dyn_cast(CE1Op0)) { if (CPR1 == CPR2) { // If this is a getelementptr of the same global, then it must be // different. Because the types must match, the getelementptr could @@ -740,18 +1168,20 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1, case Instruction::GetElementPtr: // By far the most common case to handle is when the base pointers are // obviously to the same or different globals. - if (isa(CE1Op0) && - isa(CE2Op0)) { + if (isa(CE1Op0) && isa(CE2Op0)) { if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal return Instruction::SetNE; // Ok, we know that both getelementptr instructions are based on the // same global. From this, we can precisely determine the relative // ordering of the resultant pointers. unsigned i = 1; - + // Compare all of the operands the GEP's have in common. - for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); ++i) - switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i))) { + gep_type_iterator GTI = gep_type_begin(CE1); + for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); + ++i, ++GTI) + switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i), + GTI.getIndexedType())) { case -1: return Instruction::SetLT; case 1: return Instruction::SetGT; case -2: return Instruction::BinaryOpsEnd; @@ -761,15 +1191,22 @@ static Instruction::BinaryOps evaluateRelation(const Constant *V1, // are non-zero then we have a difference, otherwise we are equal. for (; i < CE1->getNumOperands(); ++i) if (!CE1->getOperand(i)->isNullValue()) - return Instruction::SetGT; + if (isa(CE1->getOperand(i))) + return Instruction::SetGT; + else + return Instruction::BinaryOpsEnd; // Might be equal. + for (; i < CE2->getNumOperands(); ++i) if (!CE2->getOperand(i)->isNullValue()) - return Instruction::SetLT; + if (isa(CE2->getOperand(i))) + return Instruction::SetLT; + else + return Instruction::BinaryOpsEnd; // Might be equal. return Instruction::SetEQ; } } } - + default: break; } @@ -799,23 +1236,26 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, case Instruction::SetGT: C = ConstRules::get(V1, V2).lessthan(V2, V1);break; case Instruction::SetNE: // V1 != V2 === !(V1 == V2) C = ConstRules::get(V1, V2).equalto(V1, V2); - if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True); + if (C) return ConstantExpr::getNot(C); break; case Instruction::SetLE: // V1 <= V2 === !(V2 < V1) C = ConstRules::get(V1, V2).lessthan(V2, V1); - if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True); + if (C) return ConstantExpr::getNot(C); break; case Instruction::SetGE: // V1 >= V2 === !(V1 < V2) C = ConstRules::get(V1, V2).lessthan(V1, V2); - if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True); + if (C) return ConstantExpr::getNot(C); break; } // If we successfully folded the expression, return it now. if (C) return C; - if (SetCondInst::isRelational(Opcode)) - switch (evaluateRelation(V1, V2)) { + if (SetCondInst::isComparison(Opcode)) { + if (isa(V1) || isa(V2)) + return UndefValue::get(Type::BoolTy); + switch (evaluateRelation(const_cast(V1), + const_cast(V2))) { default: assert(0 && "Unknown relational!"); case Instruction::BinaryOpsEnd: break; // Couldn't determine anything about these constants. @@ -839,22 +1279,60 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Opcode == Instruction::SetGE); case Instruction::SetLE: // If we know that V1 <= V2, we can only partially decide this relation. - if (Opcode == Instruction::SetGT) return ConstantBool::False; - if (Opcode == Instruction::SetLT) return ConstantBool::True; + if (Opcode == Instruction::SetGT) return ConstantBool::getFalse(); + if (Opcode == Instruction::SetLT) return ConstantBool::getTrue(); break; case Instruction::SetGE: // If we know that V1 >= V2, we can only partially decide this relation. - if (Opcode == Instruction::SetLT) return ConstantBool::False; - if (Opcode == Instruction::SetGT) return ConstantBool::True; + if (Opcode == Instruction::SetLT) return ConstantBool::getFalse(); + if (Opcode == Instruction::SetGT) return ConstantBool::getTrue(); break; - + case Instruction::SetNE: // If we know that V1 != V2, we can only partially decide this relation. - if (Opcode == Instruction::SetEQ) return ConstantBool::False; - if (Opcode == Instruction::SetNE) return ConstantBool::True; + if (Opcode == Instruction::SetEQ) return ConstantBool::getFalse(); + if (Opcode == Instruction::SetNE) return ConstantBool::getTrue(); break; } + } + + if (isa(V1) || isa(V2)) { + switch (Opcode) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: + return UndefValue::get(V1->getType()); + + case Instruction::Mul: + case Instruction::And: + return Constant::getNullValue(V1->getType()); + case Instruction::Div: + case Instruction::Rem: + if (!isa(V2)) // undef/X -> 0 + return Constant::getNullValue(V1->getType()); + return const_cast(V2); // X/undef -> undef + case Instruction::Or: // X|undef -> -1 + return ConstantInt::getAllOnesValue(V1->getType()); + case Instruction::Shr: + if (!isa(V2)) { + if (V1->getType()->isSigned()) + return const_cast(V1); // undef >>s X -> undef + // undef >>u X -> 0 + } else if (isa(V1)) { + return const_cast(V1); // undef >> undef -> undef + } else { + if (V1->getType()->isSigned()) + return const_cast(V1); // X >>s undef -> X + // X >>u undef -> 0 + } + return Constant::getNullValue(V1->getType()); + + case Instruction::Shl: + // undef << X -> 0 X << undef -> 0 + return Constant::getNullValue(V1->getType()); + } + } if (const ConstantExpr *CE1 = dyn_cast(V1)) { if (const ConstantExpr *CE2 = dyn_cast(V2)) { @@ -877,17 +1355,17 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, case Instruction::Mul: if (V2->isNullValue()) return const_cast(V2); // X * 0 == 0 if (const ConstantInt *CI = dyn_cast(V2)) - if (CI->getRawValue() == 1) + if (CI->getZExtValue() == 1) return const_cast(V1); // X * 1 == X break; case Instruction::Div: if (const ConstantInt *CI = dyn_cast(V2)) - if (CI->getRawValue() == 1) + if (CI->getZExtValue() == 1) return const_cast(V1); // X / 1 == X break; case Instruction::Rem: if (const ConstantInt *CI = dyn_cast(V2)) - if (CI->getRawValue() == 1) + if (CI->getZExtValue() == 1) return Constant::getNullValue(CI->getType()); // X % 1 == 0 break; case Instruction::And: @@ -895,13 +1373,13 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, return const_cast(V1); // X & -1 == X if (V2->isNullValue()) return const_cast(V2); // X & 0 == 0 if (CE1->getOpcode() == Instruction::Cast && - isa(CE1->getOperand(0))) { - ConstantPointerRef *CPR =cast(CE1->getOperand(0)); + isa(CE1->getOperand(0))) { + GlobalValue *CPR = cast(CE1->getOperand(0)); // Functions are at least 4-byte aligned. If and'ing the address of a // function with a constant < 4, fold it to zero. if (const ConstantInt *CI = dyn_cast(V2)) - if (CI->getRawValue() < 4 && isa(CPR->getValue())) + if (CI->getZExtValue() < 4 && isa(CPR)) return Constant::getNullValue(CI->getType()); } break; @@ -951,25 +1429,44 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, } Constant *llvm::ConstantFoldGetElementPtr(const Constant *C, - const std::vector &IdxList) { + const std::vector &IdxList) { if (IdxList.size() == 0 || - (IdxList.size() == 1 && IdxList[0]->isNullValue())) + (IdxList.size() == 1 && cast(IdxList[0])->isNullValue())) return const_cast(C); + if (isa(C)) { + const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, + true); + assert(Ty != 0 && "Invalid indices for GEP!"); + return UndefValue::get(PointerType::get(Ty)); + } + + Constant *Idx0 = cast(IdxList[0]); if (C->isNullValue()) { bool isNull = true; for (unsigned i = 0, e = IdxList.size(); i != e; ++i) - if (!IdxList[i]->isNullValue()) { + if (!cast(IdxList[i])->isNullValue()) { isNull = false; break; } if (isNull) { - std::vector VIdxList(IdxList.begin(), IdxList.end()); - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList, + const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, true); assert(Ty != 0 && "Invalid indices for GEP!"); return ConstantPointerNull::get(PointerType::get(Ty)); } + + if (IdxList.size() == 1) { + const Type *ElTy = cast(C->getType())->getElementType(); + if (uint32_t ElSize = ElTy->getPrimitiveSize()) { + // gep null, C is equal to C*sizeof(nullty). If nullty is a known llvm + // type, we can statically fold this. + Constant *R = ConstantInt::get(Type::UIntTy, ElSize); + R = ConstantExpr::getCast(R, Idx0->getType()); + R = ConstantExpr::getMul(R, Idx0); + return ConstantExpr::getCast(R, C->getType()); + } + } } if (ConstantExpr *CE = dyn_cast(const_cast(C))) { @@ -983,21 +1480,25 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C, I != E; ++I) LastTy = *I; - if ((LastTy && isa(LastTy)) || IdxList[0]->isNullValue()) { - std::vector NewIndices; + if ((LastTy && isa(LastTy)) || Idx0->isNullValue()) { + std::vector NewIndices; NewIndices.reserve(IdxList.size() + CE->getNumOperands()); for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i) - NewIndices.push_back(cast(CE->getOperand(i))); + NewIndices.push_back(CE->getOperand(i)); // Add the last index of the source with the first index of the new GEP. // Make sure to handle the case when they are actually different types. Constant *Combined = CE->getOperand(CE->getNumOperands()-1); - if (!IdxList[0]->isNullValue()) // Otherwise it must be an array - Combined = + // Otherwise it must be an array. + if (!Idx0->isNullValue()) { + const Type *IdxTy = Combined->getType(); + if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy; + Combined = ConstantExpr::get(Instruction::Add, - ConstantExpr::getCast(IdxList[0], Type::LongTy), - ConstantExpr::getCast(Combined, Type::LongTy)); - + ConstantExpr::getCast(Idx0, IdxTy), + ConstantExpr::getCast(Combined, IdxTy)); + } + NewIndices.push_back(Combined); NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end()); return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices); @@ -1010,12 +1511,12 @@ Constant *llvm::ConstantFoldGetElementPtr(const Constant *C, // To: int* getelementptr ([3 x int]* %X, long 0, long 0) // if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 && - IdxList[0]->isNullValue()) - if (const PointerType *SPT = + Idx0->isNullValue()) + if (const PointerType *SPT = dyn_cast(CE->getOperand(0)->getType())) if (const ArrayType *SAT = dyn_cast(SPT->getElementType())) if (const ArrayType *CAT = - dyn_cast(cast(C->getType())->getElementType())) + dyn_cast(cast(C->getType())->getElementType())) if (CAT->getElementType() == SAT->getElementType()) return ConstantExpr::getGetElementPtr( (Constant*)CE->getOperand(0), IdxList);