X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstants.cpp;h=28b7e45bf55fa2b3db57bfd088d1ffeff7859430;hb=5c4cd0d82e22a50e95a1acffa3364e4f7658ab32;hp=8a9bfc787be67ef8fb90000df7ad55557ea261f7;hpb=1fe8f6bcef83844cf040299a0d92e497fd752806;p=oota-llvm.git diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index 8a9bfc787be..28b7e45bf55 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -12,23 +12,22 @@ //===----------------------------------------------------------------------===// #include "llvm/Constants.h" -#include "ConstantFolding.h" +#include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" -#include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/ADT/StringExtras.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/Visibility.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" #include -#include +#include using namespace llvm; -ConstantBool *ConstantBool::True = new ConstantBool(true); -ConstantBool *ConstantBool::False = new ConstantBool(false); - - //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// @@ -45,9 +44,9 @@ void Constant::destroyConstantImpl() { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) - std::cerr << "While deleting: " << *this - << "\n\nUse still stuck around after Def is destroyed: " - << *V << "\n\n"; + DOUT << "While deleting: " << *this + << "\n\nUse still stuck around after Def is destroyed: " + << *V << "\n\n"; #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CV = cast(V); @@ -61,61 +60,67 @@ void Constant::destroyConstantImpl() { delete this; } -// Static constructor to create a '0' constant of arbitrary type... -Constant *Constant::getNullValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: { - static Constant *NullBool = ConstantBool::get(false); - return NullBool; - } - case Type::SByteTyID: { - static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0); - return NullSByte; - } - case Type::UByteTyID: { - static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0); - return NullUByte; - } - case Type::ShortTyID: { - static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0); - return NullShort; - } - case Type::UShortTyID: { - static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0); - return NullUShort; - } - case Type::IntTyID: { - static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0); - return NullInt; - } - case Type::UIntTyID: { - static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0); - return NullUInt; - } - case Type::LongTyID: { - static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0); - return NullLong; - } - case Type::ULongTyID: { - static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0); - return NullULong; - } +/// canTrap - Return true if evaluation of this constant could trap. This is +/// true for things like constant expressions that could divide by zero. +bool Constant::canTrap() const { + assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); + // The only thing that could possibly trap are constant exprs. + const ConstantExpr *CE = dyn_cast(this); + if (!CE) return false; + + // ConstantExpr traps if any operands can trap. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->canTrap()) + return true; - case Type::FloatTyID: { - static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0); - return NullFloat; - } - case Type::DoubleTyID: { - static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0); - return NullDouble; + // Otherwise, only specific operations can trap. + switch (CE->getOpcode()) { + default: + return false; + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::FDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::FRem: + // Div and rem can trap if the RHS is not known to be non-zero. + if (!isa(getOperand(1)) || getOperand(1)->isNullValue()) + return true; + return false; } +} +/// ContaintsRelocations - Return true if the constant value contains +/// relocations which cannot be resolved at compile time. +bool Constant::ContainsRelocations() const { + if (isa(this)) + return true; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->ContainsRelocations()) + return true; + return false; +} + +// Static constructor to create a '0' constant of arbitrary type... +Constant *Constant::getNullValue(const Type *Ty) { + static uint64_t zero[2] = {0, 0}; + switch (Ty->getTypeID()) { + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(Ty, APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(Ty, APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(Ty, APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + case Type::PPC_FP128TyID: + return ConstantFP::get(Ty, APFloat(APInt(128, 2, zero))); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); - case Type::StructTyID: case Type::ArrayTyID: - case Type::PackedTyID: + case Type::VectorTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? @@ -124,125 +129,211 @@ Constant *Constant::getNullValue(const Type *Ty) { } } -// Static constructor to create the maximum constant of an integral type... -ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::True; - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: { - // Calculate 011111111111111... - unsigned TypeBits = Ty->getPrimitiveSize()*8; - int64_t Val = INT64_MAX; // All ones - Val >>= 64-TypeBits; // Shift out unwanted 1 bits... - return ConstantSInt::get(Ty, Val); - } +Constant *Constant::getAllOnesValue(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast(Ty)) + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); + return ConstantVector::getAllOnesValue(cast(Ty)); +} - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: return getAllOnesValue(Ty); +// Static constructor to create an integral constant with all bits set +ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast(Ty)) + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); + return 0; +} - default: return 0; - } +/// @returns the value for a vector integer constant of the given type that +/// has all its bits set to true. +/// @brief Get the all ones value +ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { + std::vector Elts; + Elts.resize(Ty->getNumElements(), + ConstantInt::getAllOnesValue(Ty->getElementType())); + assert(Elts[0] && "Not a vector integer type!"); + return cast(ConstantVector::get(Elts)); } -// Static constructor to create the minimum constant for an integral type... -ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::False; - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: { - // Calculate 1111111111000000000000 - unsigned TypeBits = Ty->getPrimitiveSize()*8; - int64_t Val = -1; // All ones - Val <<= TypeBits-1; // Shift over to the right spot - return ConstantSInt::get(Ty, Val); - } - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: return ConstantUInt::get(Ty, 0); +//===----------------------------------------------------------------------===// +// ConstantInt +//===----------------------------------------------------------------------===// - default: return 0; - } +ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) + : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { + assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } -// Static constructor to create an integral constant with all bits set -ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) { - switch (Ty->getTypeID()) { - case Type::BoolTyID: return ConstantBool::True; - case Type::SByteTyID: - case Type::ShortTyID: - case Type::IntTyID: - case Type::LongTyID: return ConstantSInt::get(Ty, -1); - - case Type::UByteTyID: - case Type::UShortTyID: - case Type::UIntTyID: - case Type::ULongTyID: { - // Calculate ~0 of the right type... - unsigned TypeBits = Ty->getPrimitiveSize()*8; - uint64_t Val = ~0ULL; // All ones - Val >>= 64-TypeBits; // Shift out unwanted 1 bits... - return ConstantUInt::get(Ty, Val); - } - default: return 0; +ConstantInt *ConstantInt::TheTrueVal = 0; +ConstantInt *ConstantInt::TheFalseVal = 0; + +namespace llvm { + void CleanupTrueFalse(void *) { + ConstantInt::ResetTrueFalse(); } } -bool ConstantUInt::isAllOnesValue() const { - unsigned TypeBits = getType()->getPrimitiveSize()*8; - uint64_t Val = ~0ULL; // All ones - Val >>= 64-TypeBits; // Shift out inappropriate bits - return getValue() == Val; +static ManagedCleanup TrueFalseCleanup; + +ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { + assert(TheTrueVal == 0 && TheFalseVal == 0); + TheTrueVal = get(Type::Int1Ty, 1); + TheFalseVal = get(Type::Int1Ty, 0); + + // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. + TrueFalseCleanup.Register(); + + return WhichOne ? TheTrueVal : TheFalseVal; } -//===----------------------------------------------------------------------===// -// ConstantXXX Classes -//===----------------------------------------------------------------------===// +namespace { + struct DenseMapAPIntKeyInfo { + struct KeyTy { + APInt val; + const Type* type; + KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} + KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} + bool operator==(const KeyTy& that) const { + return type == that.type && this->val == that.val; + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } + static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } + static unsigned getHashValue(const KeyTy &Key) { + return DenseMapInfo::getHashValue(Key.type) ^ + Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; +} + + +typedef DenseMap IntMapTy; +static ManagedStatic IntConstants; + +ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { + const IntegerType *ITy = cast(Ty); + return get(APInt(ITy->getBitWidth(), V, isSigned)); +} + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = IntegerType::get(V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = (*IntConstants)[Key]; + // if it exists, return it. + if (Slot) + return Slot; + // otherwise create a new one, insert it, and return it. + return Slot = new ConstantInt(ITy, V); +} //===----------------------------------------------------------------------===// -// Normal Constructors +// ConstantFP +//===----------------------------------------------------------------------===// -ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V) - : Constant(Ty, VT, 0, 0) { - Val.Unsigned = V; +ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + // temporary + if (Ty==Type::FloatTy) + assert(&V.getSemantics()==&APFloat::IEEEsingle); + else if (Ty==Type::DoubleTy) + assert(&V.getSemantics()==&APFloat::IEEEdouble); + else if (Ty==Type::X86_FP80Ty) + assert(&V.getSemantics()==&APFloat::x87DoubleExtended); + else if (Ty==Type::FP128Ty) + assert(&V.getSemantics()==&APFloat::IEEEquad); + else + assert(0); } -ConstantBool::ConstantBool(bool V) - : ConstantIntegral(Type::BoolTy, ConstantBoolVal, V) { +bool ConstantFP::isNullValue() const { + return Val.isZero() && !Val.isNegative(); } -ConstantInt::ConstantInt(const Type *Ty, ValueTy VT, uint64_t V) - : ConstantIntegral(Ty, VT, V) { +ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) { + APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return ConstantFP::get(Ty, apf); } -ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) - : ConstantInt(Ty, ConstantSIntVal, V) { - assert(Ty->isInteger() && Ty->isSigned() && - "Illegal type for signed integer constant!"); - assert(isValueValidForType(Ty, V) && "Value too large for type!"); +bool ConstantFP::isExactlyValue(const APFloat& V) const { + return Val.bitwiseIsEqual(V); } -ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) - : ConstantInt(Ty, ConstantUIntVal, V) { - assert(Ty->isInteger() && Ty->isUnsigned() && - "Illegal type for unsigned integer constant!"); - assert(isValueValidForType(Ty, V) && "Value too large for type!"); +namespace { + struct DenseMapAPFloatKeyInfo { + struct KeyTy { + APFloat val; + KeyTy(const APFloat& V) : val(V){} + KeyTy(const KeyTy& that) : val(that.val) {} + bool operator==(const KeyTy& that) const { + return this->val.bitwiseIsEqual(that.val); + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { + return KeyTy(APFloat(APFloat::Bogus,1)); + } + static inline KeyTy getTombstoneKey() { + return KeyTy(APFloat(APFloat::Bogus,2)); + } + static unsigned getHashValue(const KeyTy &Key) { + return Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; } -ConstantFP::ConstantFP(const Type *Ty, double V) - : Constant(Ty, ConstantFPVal, 0, 0) { - assert(isValueValidForType(Ty, V) && "Value too large for type!"); - Val = V; +//---- ConstantFP::get() implementation... +// +typedef DenseMap FPMapTy; + +static ManagedStatic FPConstants; + +ConstantFP *ConstantFP::get(const Type *Ty, const APFloat& V) { + // temporary + if (Ty==Type::FloatTy) + assert(&V.getSemantics()==&APFloat::IEEEsingle); + else if (Ty==Type::DoubleTy) + assert(&V.getSemantics()==&APFloat::IEEEdouble); + else if (Ty==Type::X86_FP80Ty) + assert(&V.getSemantics()==&APFloat::x87DoubleExtended); + else if (Ty==Type::FP128Ty) + assert(&V.getSemantics()==&APFloat::IEEEquad); + else + assert(0); + + DenseMapAPFloatKeyInfo::KeyTy Key(V); + ConstantFP *&Slot = (*FPConstants)[Key]; + if (Slot) return Slot; + return Slot = new ConstantFP(Ty, V); } +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + + ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { @@ -288,9 +379,9 @@ ConstantStruct::~ConstantStruct() { } -ConstantPacked::ConstantPacked(const PackedType *T, +ConstantVector::ConstantVector(const VectorType *T, const std::vector &V) - : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) { + : Constant(T, ConstantVectorVal, new Use[V.size()], V.size()) { Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { @@ -298,50 +389,42 @@ ConstantPacked::ConstantPacked(const PackedType *T, assert((C->getType() == T->getElementType() || (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && - "Initializer for packed element doesn't match packed element type!"); + "Initializer for vector element doesn't match vector element type!"); OL->init(C, this); } } -ConstantPacked::~ConstantPacked() { +ConstantVector::~ConstantVector() { delete [] OperandList; } +// We declare several classes private to this file, so use an anonymous +// namespace +namespace { + /// UnaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement unary constant exprs. -namespace { class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { Use Op; public: UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {} }; -} - -static bool isSetCC(unsigned Opcode) { - return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE || - Opcode == Instruction::SetLT || Opcode == Instruction::SetGT || - Opcode == Instruction::SetLE || Opcode == Instruction::SetGE; -} /// BinaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement binary constant exprs. -namespace { class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { Use Ops[2]; public: BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(), - Opcode, Ops, 2) { + : ConstantExpr(C1->getType(), Opcode, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); } }; -} /// SelectConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement select constant exprs. -namespace { class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { Use Ops[3]; public: @@ -352,28 +435,24 @@ public: Ops[2].init(C3, this); } }; -} /// ExtractElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// extractelement constant exprs. -namespace { class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { Use Ops[2]; public: ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast(C1->getType())->getElementType(), + : ConstantExpr(cast(C1->getType())->getElementType(), Instruction::ExtractElement, Ops, 2) { Ops[0].init(C1, this); Ops[1].init(C2, this); } }; -} /// InsertElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// insertelement constant exprs. -namespace { class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { Use Ops[3]; public: @@ -385,12 +464,10 @@ public: Ops[2].init(C3, this); } }; -} /// ShuffleVectorConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// shufflevector constant exprs. -namespace { class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { Use Ops[3]; public: @@ -402,11 +479,9 @@ public: Ops[2].init(C3, this); } }; -} /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is /// used behind the scenes to implement getelementpr constant exprs. -namespace { struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy) @@ -420,21 +495,47 @@ struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { delete [] OperandList; } }; + +// CompareConstantExpr - This class is private to Constants.cpp, and is used +// behind the scenes to implement ICmp and FCmp constant expressions. This is +// needed in order to store the predicate value for these instructions. +struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { + unsigned short predicate; + Use Ops[2]; + CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, + Constant* LHS, Constant* RHS) + : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) { + OperandList[0].init(LHS, this); + OperandList[1].init(RHS, this); + } +}; + +} // end anonymous namespace + + +// Utility function for determining if a ConstantExpr is a CastOp or not. This +// can't be inline because we don't want to #include Instruction.h into +// Constant.h +bool ConstantExpr::isCast() const { + return Instruction::isCast(getOpcode()); +} + +bool ConstantExpr::isCompare() const { + return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// Constant *ConstantExpr::getNeg(Constant *C) { - if (!C->getType()->isFloatingPoint()) - return get(Instruction::Sub, getNullValue(C->getType()), C); - else - return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C); + return get(Instruction::Sub, + ConstantExpr::getZeroValueForNegationExpr(C->getType()), + C); } Constant *ConstantExpr::getNot(Constant *C) { - assert(isa(C) && "Cannot NOT a nonintegral type!"); + assert(isa(C) && "Cannot NOT a nonintegral type!"); return get(Instruction::Xor, C, - ConstantIntegral::getAllOnesValue(C->getType())); + ConstantInt::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) { return get(Instruction::Add, C1, C2); @@ -445,11 +546,23 @@ Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) { Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) { return get(Instruction::Mul, C1, C2); } -Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) { - return get(Instruction::Div, C1, C2); +Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2) { + return get(Instruction::UDiv, C1, C2); +} +Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2) { + return get(Instruction::SDiv, C1, C2); +} +Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { + return get(Instruction::FDiv, C1, C2); } -Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) { - return get(Instruction::Rem, C1, C2); +Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { + return get(Instruction::URem, C1, C2); +} +Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { + return get(Instruction::SRem, C1, C2); +} +Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { + return get(Instruction::FRem, C1, C2); } Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { return get(Instruction::And, C1, C2); @@ -460,91 +573,127 @@ Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } -Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) { - return get(Instruction::SetEQ, C1, C2); -} -Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) { - return get(Instruction::SetNE, C1, C2); -} -Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) { - return get(Instruction::SetLT, C1, C2); -} -Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) { - return get(Instruction::SetGT, C1, C2); -} -Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) { - return get(Instruction::SetLE, C1, C2); -} -Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) { - return get(Instruction::SetGE, C1, C2); +unsigned ConstantExpr::getPredicate() const { + assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); + return dynamic_cast(this)->predicate; } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { return get(Instruction::Shl, C1, C2); } -Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) { - return get(Instruction::Shr, C1, C2); +Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2) { + return get(Instruction::LShr, C1, C2); } - -Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) { - if (C1->getType()->isUnsigned()) return getShr(C1, C2); - return getCast(getShr(getCast(C1, - C1->getType()->getUnsignedVersion()), C2), C1->getType()); -} - -Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) { - if (C1->getType()->isSigned()) return getShr(C1, C2); - return getCast(getShr(getCast(C1, - C1->getType()->getSignedVersion()), C2), C1->getType()); +Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2) { + return get(Instruction::AShr, C1, C2); } /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. -Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo, - Constant *Op) const { +Constant * +ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { assert(OpNo < getNumOperands() && "Operand num is out of range!"); assert(Op->getType() == getOperand(OpNo)->getType() && "Replacing operand with value of different type!"); - if (getOperand(OpNo) == Op) return const_cast(this); + if (getOperand(OpNo) == Op) + return const_cast(this); + Constant *Op0, *Op1, *Op2; switch (getOpcode()) { - case Instruction::Cast: - return ConstantExpr::getCast(Op, getType()); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return ConstantExpr::getCast(getOpcode(), Op, getType()); + case Instruction::Select: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getSelect(Op0, Op1, Op2); + case Instruction::InsertElement: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getInsertElement(Op0, Op1, Op2); + case Instruction::ExtractElement: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + return ConstantExpr::getExtractElement(Op0, Op1); + case Instruction::ShuffleVector: + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + Op2 = (OpNo == 2) ? Op : getOperand(2); + return ConstantExpr::getShuffleVector(Op0, Op1, Op2); case Instruction::GetElementPtr: { - std::vector Ops; + SmallVector Ops; + Ops.resize(getNumOperands()); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) - Ops.push_back(getOperand(i)); + Ops[i] = getOperand(i); if (OpNo == 0) - return ConstantExpr::getGetElementPtr(Op, Ops); + return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; - return ConstantExpr::getGetElementPtr(getOperand(0), Ops); + return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } + default: + assert(getNumOperands() == 2 && "Must be binary operator?"); + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + return ConstantExpr::get(getOpcode(), Op0, Op1); + } +} + +/// getWithOperands - This returns the current constant expression with the +/// operands replaced with the specified values. The specified operands must +/// match count and type with the existing ones. +Constant *ConstantExpr:: +getWithOperands(const std::vector &Ops) const { + assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); + bool AnyChange = false; + for (unsigned i = 0, e = Ops.size(); i != e; ++i) { + assert(Ops[i]->getType() == getOperand(i)->getType() && + "Operand type mismatch!"); + AnyChange |= Ops[i] != getOperand(i); + } + if (!AnyChange) // No operands changed, return self. + return const_cast(this); + + switch (getOpcode()) { + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); case Instruction::Select: - if (OpNo == 0) - return ConstantExpr::getSelect(Op, getOperand(1), getOperand(2)); - if (OpNo == 1) - return ConstantExpr::getSelect(getOperand(0), Op, getOperand(2)); - return ConstantExpr::getSelect(getOperand(0), getOperand(1), Op); + return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: - if (OpNo == 0) - return ConstantExpr::getInsertElement(Op, getOperand(1), getOperand(2)); - if (OpNo == 1) - return ConstantExpr::getInsertElement(getOperand(0), Op, getOperand(2)); - return ConstantExpr::getInsertElement(getOperand(0), getOperand(1), Op); + return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: - if (OpNo == 0) - return ConstantExpr::getExtractElement(Op, getOperand(1)); - return ConstantExpr::getExtractElement(getOperand(0), Op); + return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ShuffleVector: - if (OpNo == 0) - return ConstantExpr::getShuffleVector(Op, getOperand(1), getOperand(2)); - if (OpNo == 1) - return ConstantExpr::getShuffleVector(getOperand(0), Op, getOperand(2)); - return ConstantExpr::getShuffleVector(getOperand(0), getOperand(1), Op); + return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); + case Instruction::GetElementPtr: + return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); + case Instruction::ICmp: + case Instruction::FCmp: + return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); - if (OpNo == 0) - return ConstantExpr::get(getOpcode(), Op, getOperand(1)); - return ConstantExpr::get(getOpcode(), getOperand(0), Op); + return ConstantExpr::get(getOpcode(), Ops[0], Ops[1]); } } @@ -552,48 +701,52 @@ Constant *ConstantExpr::getWithOperandReplaced(unsigned OpNo, //===----------------------------------------------------------------------===// // isValueValidForType implementations -bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { - switch (Ty->getTypeID()) { - default: - return false; // These can't be represented as integers!!! - // Signed types... - case Type::SByteTyID: - return (Val <= INT8_MAX && Val >= INT8_MIN); - case Type::ShortTyID: - return (Val <= INT16_MAX && Val >= INT16_MIN); - case Type::IntTyID: - return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN)); - case Type::LongTyID: - return true; // This is the largest type... - } -} - -bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { - switch (Ty->getTypeID()) { - default: - return false; // These can't be represented as integers!!! - - // Unsigned types... - case Type::UByteTyID: - return (Val <= UINT8_MAX); - case Type::UShortTyID: - return (Val <= UINT16_MAX); - case Type::UIntTyID: - return (Val <= UINT32_MAX); - case Type::ULongTyID: - return true; // This is the largest type... - } -} - -bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { +bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { + unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay + if (Ty == Type::Int1Ty) + return Val == 0 || Val == 1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + uint64_t Max = (1ll << NumBits) - 1; + return Val <= Max; +} + +bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { + unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay + if (Ty == Type::Int1Ty) + return Val == 0 || Val == 1 || Val == -1; + if (NumBits >= 64) + return true; // always true, has to fit in largest type + int64_t Min = -(1ll << (NumBits-1)); + int64_t Max = (1ll << (NumBits-1)) - 1; + return (Val >= Min && Val <= Max); +} + +bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! - // TODO: Figure out how to test if a double can be cast to a float! + // FIXME rounding mode needs to be more flexible case Type::FloatTyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == + APFloat::opOK; case Type::DoubleTyID: - return true; // This is the largest type... + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == + APFloat::opOK; + case Type::X86_FP80TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::x87DoubleExtended; + case Type::FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::IEEEquad; } } @@ -620,16 +773,15 @@ namespace llvm { abort(); } }; -} -namespace { template class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { public: - typedef std::pair MapKey; - typedef std::map MapTy; - typedef typename MapTy::iterator MapIterator; + typedef std::pair MapKey; + typedef std::map MapTy; + typedef std::map InverseMapTy; + typedef std::map AbstractTypeMapTy; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape @@ -640,48 +792,39 @@ namespace { /// from the constants to their element in Map. This is important for /// removal of constants from the array, which would otherwise have to scan /// through the map with very large keys. - std::map InverseMap; + InverseMapTy InverseMap; - typedef std::map AbstractTypeMapTy; + /// AbstractTypeMap - Map for abstract type constants. + /// AbstractTypeMapTy AbstractTypeMap; - friend void Constant::clearAllValueMaps(); - private: - void clear(std::vector &Constants) { - for(MapIterator I = Map.begin(); I != Map.end(); ++I) - Constants.push_back(I->second); - Map.clear(); - AbstractTypeMap.clear(); - InverseMap.clear(); - } - public: - MapIterator map_end() { return Map.end(); } + typename MapTy::iterator map_end() { return Map.end(); } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. - MapIterator InsertOrGetItem(std::pair &InsertVal, + typename MapTy::iterator InsertOrGetItem(std::pair + &InsertVal, bool &Exists) { - std::pair IP = Map.insert(InsertVal); + std::pair IP = Map.insert(InsertVal); Exists = !IP.second; return IP.first; } private: - MapIterator FindExistingElement(ConstantClass *CP) { + typename MapTy::iterator FindExistingElement(ConstantClass *CP) { if (HasLargeKey) { - typename std::map::iterator - IMI = InverseMap.find(CP); + typename InverseMapTy::iterator IMI = InverseMap.find(CP); assert(IMI != InverseMap.end() && IMI->second != Map.end() && IMI->second->second == CP && "InverseMap corrupt!"); return IMI->second; } - MapIterator I = + typename MapTy::iterator I = Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a @@ -697,9 +840,10 @@ public: /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { MapKey Lookup(Ty, V); - MapIterator I = Map.lower_bound(Lookup); + typename MapTy::iterator I = Map.lower_bound(Lookup); + // Is it in the map? if (I != Map.end() && I->first == Lookup) - return I->second; // Is it in the map? + return static_cast(I->second); // If no preexisting value, create one now... ConstantClass *Result = @@ -729,7 +873,7 @@ public: } void remove(ConstantClass *CP) { - MapIterator I = FindExistingElement(CP); + typename MapTy::iterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); @@ -738,15 +882,15 @@ public: // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. - const TypeClass *Ty = I->first.first; + const TypeClass *Ty = static_cast(I->first.first); if (Ty->isAbstract()) { assert(AbstractTypeMap.count(Ty) && "Abstract type not in AbstractTypeMap?"); - MapIterator &ATMEntryIt = AbstractTypeMap[Ty]; + typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; if (ATMEntryIt == I) { // Yes, we are removing the representative entry for this type. // See if there are any other entries of the same type. - MapIterator TmpIt = ATMEntryIt; + typename MapTy::iterator TmpIt = ATMEntryIt; // First check the entry before this one... if (TmpIt != Map.begin()) { @@ -782,9 +926,9 @@ public: /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. - void MoveConstantToNewSlot(ConstantClass *C, MapIterator I) { + void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { // First, remove the old location of the specified constant in the map. - MapIterator OldI = FindExistingElement(C); + typename MapTy::iterator OldI = FindExistingElement(C); assert(OldI != Map.end() && "Constant not found in constant table!"); assert(OldI->second == C && "Didn't find correct element?"); @@ -812,7 +956,7 @@ public: void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast(OldTy)); + AbstractTypeMap.find(cast(OldTy)); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); @@ -822,10 +966,11 @@ public: // eliminated eventually. do { ConvertConstantType::convert(I->second->second, + TypeClass>::convert( + static_cast(I->second->second), cast(NewTy)); - I = AbstractTypeMap.find(cast(OldTy)); + I = AbstractTypeMap.find(cast(OldTy)); } while (I != AbstractTypeMap.end()); } @@ -836,70 +981,12 @@ public: } void dump() const { - std::cerr << "Constant.cpp: ValueMap\n"; - } - }; -} - -//---- ConstantUInt::get() and ConstantSInt::get() implementations... -// -static ValueMap< int64_t, Type, ConstantSInt> SIntConstants; -static ValueMap UIntConstants; - -ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { - return SIntConstants.getOrCreate(Ty, V); -} - -ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { - return UIntConstants.getOrCreate(Ty, V); -} - -ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { - assert(V <= 127 && "Can only be used with very small positive constants!"); - if (Ty->isSigned()) return ConstantSInt::get(Ty, V); - return ConstantUInt::get(Ty, V); -} - -//---- ConstantFP::get() implementation... -// -namespace llvm { - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint64_t V) { - assert(Ty == Type::DoubleTy); - return new ConstantFP(Ty, BitsToDouble(V)); - } - }; - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint32_t V) { - assert(Ty == Type::FloatTy); - return new ConstantFP(Ty, BitsToFloat(V)); + DOUT << "Constant.cpp: ValueMap\n"; } }; } -static ValueMap DoubleConstants; -static ValueMap FloatConstants; -bool ConstantFP::isNullValue() const { - return DoubleToBits(Val) == 0; -} - -bool ConstantFP::isExactlyValue(double V) const { - return DoubleToBits(V) == DoubleToBits(Val); -} - - -ConstantFP *ConstantFP::get(const Type *Ty, double V) { - if (Ty == Type::FloatTy) { - // Force the value through memory to normalize it. - return FloatConstants.getOrCreate(Ty, FloatToBits(V)); - } else { - assert(Ty == Type::DoubleTy); - return DoubleConstants.getOrCreate(Ty, DoubleToBits(V)); - } -} //---- ConstantAggregateZero::get() implementation... // @@ -924,20 +1011,21 @@ namespace llvm { }; } -static ValueMap AggZeroConstants; +static ManagedStatic > AggZeroConstants; static char getValType(ConstantAggregateZero *CPZ) { return 0; } Constant *ConstantAggregateZero::get(const Type *Ty) { - assert((isa(Ty) || isa(Ty) || isa(Ty)) && + assert((isa(Ty) || isa(Ty) || isa(Ty)) && "Cannot create an aggregate zero of non-aggregate type!"); - return AggZeroConstants.getOrCreate(Ty, 0); + return AggZeroConstants->getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantAggregateZero::destroyConstant() { - AggZeroConstants.remove(this); + AggZeroConstants->remove(this); destroyConstantImpl(); } @@ -969,7 +1057,7 @@ static std::vector getValType(ConstantArray *CA) { typedef ValueMap, ArrayType, ConstantArray, true /*largekey*/> ArrayConstantsTy; -static ArrayConstantsTy ArrayConstants; +static ManagedStatic ArrayConstants; Constant *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { @@ -977,10 +1065,10 @@ Constant *ConstantArray::get(const ArrayType *Ty, if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) - return ArrayConstants.getOrCreate(Ty, V); + return ArrayConstants->getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) - return ArrayConstants.getOrCreate(Ty, V); + return ArrayConstants->getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } @@ -988,7 +1076,7 @@ Constant *ConstantArray::get(const ArrayType *Ty, // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { - ArrayConstants.remove(this); + ArrayConstants->remove(this); destroyConstantImpl(); } @@ -1001,23 +1089,22 @@ void ConstantArray::destroyConstant() { Constant *ConstantArray::get(const std::string &Str, bool AddNull) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) - ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); + ElementVals.push_back(ConstantInt::get(Type::Int8Ty, Str[i])); // Add a null terminator to the string... if (AddNull) { - ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); + ElementVals.push_back(ConstantInt::get(Type::Int8Ty, 0)); } - ArrayType *ATy = ArrayType::get(Type::SByteTy, ElementVals.size()); + ArrayType *ATy = ArrayType::get(Type::Int8Ty, ElementVals.size()); return ConstantArray::get(ATy, ElementVals); } -/// isString - This method returns true if the array is an array of sbyte or -/// ubyte, and if the elements of the array are all ConstantInt's. +/// isString - This method returns true if the array is an array of i8, and +/// if the elements of the array are all ConstantInt's. bool ConstantArray::isString() const { - // Check the element type for sbyte or ubyte... - if (getType()->getElementType() != Type::UByteTy && - getType()->getElementType() != Type::SByteTy) + // Check the element type for i8... + if (getType()->getElementType() != Type::Int8Ty) return false; // Check the elements to make sure they are all integers, not constant // expressions. @@ -1027,7 +1114,29 @@ bool ConstantArray::isString() const { return true; } -// getAsString - If the sub-element type of this array is either sbyte or ubyte, +/// isCString - This method returns true if the array is a string (see +/// isString) and it ends in a null byte \0 and does not contains any other +/// null bytes except its terminator. +bool ConstantArray::isCString() const { + // Check the element type for i8... + if (getType()->getElementType() != Type::Int8Ty) + return false; + Constant *Zero = Constant::getNullValue(getOperand(0)->getType()); + // Last element must be a null. + if (getOperand(getNumOperands()-1) != Zero) + return false; + // Other elements must be non-null integers. + for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { + if (!isa(getOperand(i))) + return false; + if (getOperand(i) == Zero) + return false; + } + return true; +} + + +// getAsString - If the sub-element type of this array is i8 // then this method converts the array to an std::string and returns it. // Otherwise, it asserts out. // @@ -1035,7 +1144,7 @@ std::string ConstantArray::getAsString() const { assert(isString() && "Not a string!"); std::string Result; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - Result += (char)cast(getOperand(i))->getRawValue(); + Result += (char)cast(getOperand(i))->getZExtValue(); return Result; } @@ -1062,7 +1171,7 @@ namespace llvm { typedef ValueMap, StructType, ConstantStruct, true /*largekey*/> StructConstantsTy; -static StructConstantsTy StructConstants; +static ManagedStatic StructConstants; static std::vector getValType(ConstantStruct *CS) { std::vector Elements; @@ -1077,37 +1186,37 @@ Constant *ConstantStruct::get(const StructType *Ty, // Create a ConstantAggregateZero value if all elements are zeros... for (unsigned i = 0, e = V.size(); i != e; ++i) if (!V[i]->isNullValue()) - return StructConstants.getOrCreate(Ty, V); + return StructConstants->getOrCreate(Ty, V); return ConstantAggregateZero::get(Ty); } -Constant *ConstantStruct::get(const std::vector &V) { +Constant *ConstantStruct::get(const std::vector &V, bool packed) { std::vector StructEls; StructEls.reserve(V.size()); for (unsigned i = 0, e = V.size(); i != e; ++i) StructEls.push_back(V[i]->getType()); - return get(StructType::get(StructEls), V); + return get(StructType::get(StructEls, packed), V); } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { - StructConstants.remove(this); + StructConstants->remove(this); destroyConstantImpl(); } -//---- ConstantPacked::get() implementation... +//---- ConstantVector::get() implementation... // namespace llvm { template<> - struct ConvertConstantType { - static void convert(ConstantPacked *OldC, const PackedType *NewTy) { + struct ConvertConstantType { + static void convert(ConstantVector *OldC, const VectorType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantPacked::get(NewTy, C); + Constant *New = ConstantVector::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. @@ -1115,7 +1224,7 @@ namespace llvm { }; } -static std::vector getValType(ConstantPacked *CP) { +static std::vector getValType(ConstantVector *CP) { std::vector Elements; Elements.reserve(CP->getNumOperands()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) @@ -1123,35 +1232,51 @@ static std::vector getValType(ConstantPacked *CP) { return Elements; } -static ValueMap, PackedType, - ConstantPacked> PackedConstants; +static ManagedStatic, VectorType, + ConstantVector> > VectorConstants; -Constant *ConstantPacked::get(const PackedType *Ty, +Constant *ConstantVector::get(const VectorType *Ty, const std::vector &V) { - // If this is an all-zero packed, return a ConstantAggregateZero object + // If this is an all-zero vector, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) - return PackedConstants.getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) - return PackedConstants.getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } -Constant *ConstantPacked::get(const std::vector &V) { +Constant *ConstantVector::get(const std::vector &V) { assert(!V.empty() && "Cannot infer type if V is empty"); - return get(PackedType::get(V.front()->getType(),V.size()), V); + return get(VectorType::get(V.front()->getType(),V.size()), V); } // destroyConstant - Remove the constant from the constant table... // -void ConstantPacked::destroyConstant() { - PackedConstants.remove(this); +void ConstantVector::destroyConstant() { + VectorConstants->remove(this); destroyConstantImpl(); } +/// This function will return true iff every element in this vector constant +/// is set to all ones. +/// @returns true iff this constant's emements are all set to all ones. +/// @brief Determine if the value is all ones. +bool ConstantVector::isAllOnesValue() const { + // Check out first element. + const Constant *Elt = getOperand(0); + const ConstantInt *CI = dyn_cast(Elt); + if (!CI || !CI->isAllOnesValue()) return false; + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { + if (getOperand(I) != Elt) return false; + } + return true; +} + //---- ConstantPointerNull::get() implementation... // @@ -1176,7 +1301,8 @@ namespace llvm { }; } -static ValueMap NullPtrConstants; +static ManagedStatic > NullPtrConstants; static char getValType(ConstantPointerNull *) { return 0; @@ -1184,13 +1310,13 @@ static char getValType(ConstantPointerNull *) { ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { - return NullPtrConstants.getOrCreate(Ty, 0); + return NullPtrConstants->getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { - NullPtrConstants.remove(this); + NullPtrConstants->remove(this); destroyConstantImpl(); } @@ -1219,7 +1345,7 @@ namespace llvm { }; } -static ValueMap UndefValueConstants; +static ManagedStatic > UndefValueConstants; static char getValType(UndefValue *) { return 0; @@ -1227,48 +1353,80 @@ static char getValType(UndefValue *) { UndefValue *UndefValue::get(const Type *Ty) { - return UndefValueConstants.getOrCreate(Ty, 0); + return UndefValueConstants->getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { - UndefValueConstants.remove(this); + UndefValueConstants->remove(this); destroyConstantImpl(); } - - //---- ConstantExpr::get() implementations... // -typedef std::pair > ExprMapKeyType; + +struct ExprMapKeyType { + explicit ExprMapKeyType(unsigned opc, std::vector ops, + unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { } + uint16_t opcode; + uint16_t predicate; + std::vector operands; + bool operator==(const ExprMapKeyType& that) const { + return this->opcode == that.opcode && + this->predicate == that.predicate && + this->operands == that.operands; + } + bool operator<(const ExprMapKeyType & that) const { + return this->opcode < that.opcode || + (this->opcode == that.opcode && this->predicate < that.predicate) || + (this->opcode == that.opcode && this->predicate == that.predicate && + this->operands < that.operands); + } + + bool operator!=(const ExprMapKeyType& that) const { + return !(*this == that); + } +}; namespace llvm { template<> struct ConstantCreator { - static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) { - if (V.first == Instruction::Cast) - return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty); - if ((V.first >= Instruction::BinaryOpsBegin && - V.first < Instruction::BinaryOpsEnd) || - V.first == Instruction::Shl || V.first == Instruction::Shr) - return new BinaryConstantExpr(V.first, V.second[0], V.second[1]); - if (V.first == Instruction::Select) - return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]); - if (V.first == Instruction::ExtractElement) - return new ExtractElementConstantExpr(V.second[0], V.second[1]); - if (V.first == Instruction::InsertElement) - return new InsertElementConstantExpr(V.second[0], V.second[1], - V.second[2]); - if (V.first == Instruction::ShuffleVector) - return new ShuffleVectorConstantExpr(V.second[0], V.second[1], - V.second[2]); - - assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!"); + static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V, + unsigned short pred = 0) { + if (Instruction::isCast(V.opcode)) + return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); + if ((V.opcode >= Instruction::BinaryOpsBegin && + V.opcode < Instruction::BinaryOpsEnd)) + return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); + if (V.opcode == Instruction::Select) + return new SelectConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ExtractElement) + return new ExtractElementConstantExpr(V.operands[0], V.operands[1]); + if (V.opcode == Instruction::InsertElement) + return new InsertElementConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::ShuffleVector) + return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], + V.operands[2]); + if (V.opcode == Instruction::GetElementPtr) { + std::vector IdxList(V.operands.begin()+1, V.operands.end()); + return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty); + } - std::vector IdxList(V.second.begin()+1, V.second.end()); - return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty); + // The compare instructions are weird. We have to encode the predicate + // value and it is combined with the instruction opcode by multiplying + // the opcode by one hundred. We must decode this to get the predicate. + if (V.opcode == Instruction::ICmp) + return new CompareConstantExpr(Instruction::ICmp, V.predicate, + V.operands[0], V.operands[1]); + if (V.opcode == Instruction::FCmp) + return new CompareConstantExpr(Instruction::FCmp, V.predicate, + V.operands[0], V.operands[1]); + assert(0 && "Invalid ConstantExpr!"); + return 0; } }; @@ -1277,29 +1435,37 @@ namespace llvm { static void convert(ConstantExpr *OldC, const Type *NewTy) { Constant *New; switch (OldC->getOpcode()) { - case Instruction::Cast: - New = ConstantExpr::getCast(OldC->getOperand(0), NewTy); + case Instruction::Trunc: + case Instruction::ZExt: + case Instruction::SExt: + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::UIToFP: + case Instruction::SIToFP: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::PtrToInt: + case Instruction::IntToPtr: + case Instruction::BitCast: + New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), + NewTy); break; case Instruction::Select: New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), OldC->getOperand(1), OldC->getOperand(2)); break; - case Instruction::Shl: - case Instruction::Shr: - New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(), - OldC->getOperand(0), OldC->getOperand(1)); - break; default: assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && - OldC->getOpcode() < Instruction::BinaryOpsEnd); + OldC->getOpcode() < Instruction::BinaryOpsEnd); New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), OldC->getOperand(1)); break; case Instruction::GetElementPtr: // Make everyone now use a constant of the new type... std::vector Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx); + New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), + &Idx[0], Idx.size()); break; } @@ -1316,109 +1482,292 @@ static ExprMapKeyType getValType(ConstantExpr *CE) { Operands.reserve(CE->getNumOperands()); for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) Operands.push_back(cast(CE->getOperand(i))); - return ExprMapKeyType(CE->getOpcode(), Operands); + return ExprMapKeyType(CE->getOpcode(), Operands, + CE->isCompare() ? CE->getPredicate() : 0); } -static ValueMap ExprConstants; +static ManagedStatic > ExprConstants; -Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) { +/// This is a utility function to handle folding of casts and lookup of the +/// cast in the ExprConstants map. It is usedby the various get* methods below. +static inline Constant *getFoldedCast( + Instruction::CastOps opc, Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); - - if (Constant *FC = ConstantFoldCastInstruction(C, Ty)) - return FC; // Fold a few common cases... + // Fold a few common cases + if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) + return FC; // Look up the constant in the table first to ensure uniqueness std::vector argVec(1, C); - ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec); - return ExprConstants.getOrCreate(Ty, Key); + ExprMapKeyType Key(opc, argVec); + return ExprConstants->getOrCreate(Ty, Key); } + +Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { + Instruction::CastOps opc = Instruction::CastOps(oc); + assert(Instruction::isCast(opc) && "opcode out of range"); + assert(C && Ty && "Null arguments to getCast"); + assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); -Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && Ty->isIntegral() && - C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() && - "This is an illegal sign extension!"); - if (C->getType() != Type::BoolTy) { - C = ConstantExpr::getCast(C, C->getType()->getSignedVersion()); - return ConstantExpr::getCast(C, Ty); - } else { - if (C == ConstantBool::True) - return ConstantIntegral::getAllOnesValue(Ty); - else - return ConstantIntegral::getNullValue(Ty); + switch (opc) { + default: + assert(0 && "Invalid cast opcode"); + break; + case Instruction::Trunc: return getTrunc(C, Ty); + case Instruction::ZExt: return getZExt(C, Ty); + case Instruction::SExt: return getSExt(C, Ty); + case Instruction::FPTrunc: return getFPTrunc(C, Ty); + case Instruction::FPExt: return getFPExtend(C, Ty); + case Instruction::UIToFP: return getUIToFP(C, Ty); + case Instruction::SIToFP: return getSIToFP(C, Ty); + case Instruction::FPToUI: return getFPToUI(C, Ty); + case Instruction::FPToSI: return getFPToSI(C, Ty); + case Instruction::PtrToInt: return getPtrToInt(C, Ty); + case Instruction::IntToPtr: return getIntToPtr(C, Ty); + case Instruction::BitCast: return getBitCast(C, Ty); } + return 0; +} + +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::ZExt, C, Ty); } -Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) { - assert(C->getType()->isIntegral() && Ty->isIntegral() && - C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() && - "This is an illegal zero extension!"); - if (C->getType() != Type::BoolTy) - C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion()); - return ConstantExpr::getCast(C, Ty); +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::SExt, C, Ty); } -Constant *ConstantExpr::getSizeOf(const Type *Ty) { - // sizeof is implemented as: (ulong) gep (Ty*)null, 1 - return getCast( - getGetElementPtr(getNullValue(PointerType::get(Ty)), - std::vector(1, ConstantInt::get(Type::UIntTy, 1))), - Type::ULongTy); +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { + if (C->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) + return getCast(Instruction::BitCast, C, Ty); + return getCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { + assert(isa(S->getType()) && "Invalid cast"); + assert((Ty->isInteger() || isa(Ty)) && "Invalid cast"); + + if (Ty->isInteger()) + return getCast(Instruction::PtrToInt, S, Ty); + return getCast(Instruction::BitCast, S, Ty); +} + +Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, + bool isSigned) { + assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); + unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); + unsigned DstBits = Ty->getPrimitiveSizeInBits(); + Instruction::CastOps opcode = + (SrcBits == DstBits ? Instruction::BitCast : + (SrcBits > DstBits ? Instruction::Trunc : + (isSigned ? Instruction::SExt : Instruction::ZExt))); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && + "Invalid cast"); + unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); + unsigned DstBits = Ty->getPrimitiveSizeInBits(); + if (SrcBits == DstBits) + return C; // Avoid a useless cast + Instruction::CastOps opcode = + (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); + return getCast(opcode, C, Ty); +} + +Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && "Trunc operand must be integer"); + assert(Ty->isInteger() && "Trunc produces only integral"); + assert(C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& + "SrcTy must be larger than DestTy for Trunc!"); + + return getFoldedCast(Instruction::Trunc, C, Ty); +} + +Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && "SEXt operand must be integral"); + assert(Ty->isInteger() && "SExt produces only integer"); + assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& + "SrcTy must be smaller than DestTy for SExt!"); + + return getFoldedCast(Instruction::SExt, C, Ty); +} + +Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && "ZEXt operand must be integral"); + assert(Ty->isInteger() && "ZExt produces only integer"); + assert(C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& + "SrcTy must be smaller than DestTy for ZExt!"); + + return getFoldedCast(Instruction::ZExt, C, Ty); +} + +Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && + C->getType()->getPrimitiveSizeInBits() > Ty->getPrimitiveSizeInBits()&& + "This is an illegal floating point truncation!"); + return getFoldedCast(Instruction::FPTrunc, C, Ty); +} + +Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && + C->getType()->getPrimitiveSizeInBits() < Ty->getPrimitiveSizeInBits()&& + "This is an illegal floating point extension!"); + return getFoldedCast(Instruction::FPExt, C, Ty); +} + +Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && Ty->isFloatingPoint() && + "This is an illegal i32 to floating point cast!"); + return getFoldedCast(Instruction::UIToFP, C, Ty); +} + +Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { + assert(C->getType()->isInteger() && Ty->isFloatingPoint() && + "This is an illegal sint to floating point cast!"); + return getFoldedCast(Instruction::SIToFP, C, Ty); +} + +Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isInteger() && + "This is an illegal floating point to i32 cast!"); + return getFoldedCast(Instruction::FPToUI, C, Ty); +} + +Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { + assert(C->getType()->isFloatingPoint() && Ty->isInteger() && + "This is an illegal floating point to i32 cast!"); + return getFoldedCast(Instruction::FPToSI, C, Ty); +} + +Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { + assert(isa(C->getType()) && "PtrToInt source must be pointer"); + assert(DstTy->isInteger() && "PtrToInt destination must be integral"); + return getFoldedCast(Instruction::PtrToInt, C, DstTy); +} + +Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { + assert(C->getType()->isInteger() && "IntToPtr source must be integral"); + assert(isa(DstTy) && "IntToPtr destination must be a pointer"); + return getFoldedCast(Instruction::IntToPtr, C, DstTy); } -Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) { - // pointer from array is implemented as: getelementptr arr ptr, 0, 0 - static std::vector Indices(2, ConstantUInt::get(Type::UIntTy, 0)); +Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { + // BitCast implies a no-op cast of type only. No bits change. However, you + // can't cast pointers to anything but pointers. + const Type *SrcTy = C->getType(); + assert((isa(SrcTy) == isa(DstTy)) && + "BitCast cannot cast pointer to non-pointer and vice versa"); - return ConstantExpr::getGetElementPtr(C, Indices); + // Now we know we're not dealing with mismatched pointer casts (ptr->nonptr + // or nonptr->ptr). For all the other types, the cast is okay if source and + // destination bit widths are identical. + unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); + unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); + assert(SrcBitSize == DstBitSize && "BitCast requies types of same width"); + return getFoldedCast(Instruction::BitCast, C, DstTy); +} + +Constant *ConstantExpr::getSizeOf(const Type *Ty) { + // sizeof is implemented as: (ulong) gep (Ty*)null, 1 + Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1); + Constant *GEP = + getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1); + return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty); } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2) { - if (Opcode == Instruction::Shl || Opcode == Instruction::Shr) - return getShiftTy(ReqTy, Opcode, C1, C2); // Check the operands for consistency first - assert((Opcode >= Instruction::BinaryOpsBegin && - Opcode < Instruction::BinaryOpsEnd) && + assert(Opcode >= Instruction::BinaryOpsBegin && + Opcode < Instruction::BinaryOpsEnd && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); - if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) && - ReqTy == Type::BoolTy)) + if (ReqTy == C1->getType() || ReqTy == Type::Int1Ty) if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases... std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key = std::make_pair(Opcode, argVec); - return ExprConstants.getOrCreate(ReqTy, Key); + ExprMapKeyType Key(Opcode, argVec); + return ExprConstants->getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getCompareTy(unsigned short predicate, + Constant *C1, Constant *C2) { + switch (predicate) { + default: assert(0 && "Invalid CmpInst predicate"); + case FCmpInst::FCMP_FALSE: case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OLE: + case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_ORD: case FCmpInst::FCMP_UNO: + case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNE: + case FCmpInst::FCMP_TRUE: + return getFCmp(predicate, C1, C2); + case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: + case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: + return getICmp(predicate, C1, C2); + } } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { #ifndef NDEBUG switch (Opcode) { - case Instruction::Add: case Instruction::Sub: - case Instruction::Mul: case Instruction::Div: - case Instruction::Rem: + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || - isa(C1->getType())) && + isa(C1->getType())) && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::UDiv: + case Instruction::SDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; + case Instruction::FDiv: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) + && "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::URem: + case Instruction::SRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && + "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; + case Instruction::FRem: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) + && "Tried to create an arithmetic operation on a non-arithmetic type!"); + break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isIntegral() || isa(C1->getType())) && + assert((C1->getType()->isInteger() || isa(C1->getType())) && "Tried to create a logical operation on a non-integral type!"); break; - case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE: - case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE: - assert(C1->getType() == C2->getType() && "Op types should be identical!"); - break; case Instruction::Shl: - case Instruction::Shr: - assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!"); - assert((C1->getType()->isInteger() || isa(C1->getType())) && + case Instruction::LShr: + case Instruction::AShr: + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + assert(C1->getType()->isInteger() && "Tried to create a shift operation on a non-integer type!"); break; default: @@ -1426,15 +1775,18 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { } #endif - if (Instruction::isRelational(Opcode)) - return getTy(Type::BoolTy, Opcode, C1, C2); - else - return getTy(C1->getType(), Opcode, C1, C2); + return getTy(C1->getType(), Opcode, C1, C2); +} + +Constant *ConstantExpr::getCompare(unsigned short pred, + Constant *C1, Constant *C2) { + assert(C1->getType() == C2->getType() && "Op types should be identical!"); + return getCompareTy(pred, C1, C2); } Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, Constant *V1, Constant *V2) { - assert(C->getType() == Type::BoolTy && "Select condition must be bool!"); + assert(C->getType() == Type::Int1Ty && "Select condition must be i1!"); assert(V1->getType() == V2->getType() && "Select value types must match!"); assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!"); @@ -1445,68 +1797,79 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, std::vector argVec(3, C); argVec[1] = V1; argVec[2] = V2; - ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec); - return ExprConstants.getOrCreate(ReqTy, Key); + ExprMapKeyType Key(Instruction::Select, argVec); + return ExprConstants->getOrCreate(ReqTy, Key); } -/// getShiftTy - Return a shift left or shift right constant expr -Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2) { - // Check the operands for consistency first - assert((Opcode == Instruction::Shl || - Opcode == Instruction::Shr) && - "Invalid opcode in binary constant expression"); - assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy && - "Invalid operand types for Shift constant expr!"); - - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) - return FC; // Fold a few common cases... - - // Look up the constant in the table first to ensure uniqueness - std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key = std::make_pair(Opcode, argVec); - return ExprConstants.getOrCreate(ReqTy, Key); -} - - Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, - const std::vector &IdxList) { - assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) && + Value* const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true) && "GEP indices invalid!"); - if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList)) + if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) return FC; // Fold a few common cases... assert(isa(C->getType()) && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; - ArgVec.reserve(IdxList.size()+1); + ArgVec.reserve(NumIdx+1); ArgVec.push_back(C); - for (unsigned i = 0, e = IdxList.size(); i != e; ++i) - ArgVec.push_back(cast(IdxList[i])); - const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec); - return ExprConstants.getOrCreate(ReqTy, Key); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); + return ExprConstants->getOrCreate(ReqTy, Key); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList){ +Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, + unsigned NumIdx) { // Get the result type of the getelementptr! - std::vector VIdxList(IdxList.begin(), IdxList.end()); - - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList, - true); + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx, true); assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList); + return getGetElementPtrTy(PointerType::get(Ty), C, Idxs, NumIdx); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList) { - // Get the result type of the getelementptr! - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, - true); - assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, IdxList); +Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, + unsigned NumIdx) { + return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); +} + + +Constant * +ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && + pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); + return ExprConstants->getOrCreate(Type::Int1Ty, Key); +} + +Constant * +ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(LHS->getType() == RHS->getType()); + assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + + if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) + return FC; // Fold a few common cases... + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); + return ExprConstants->getOrCreate(Type::Int1Ty, Key); } Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, @@ -1516,16 +1879,16 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); ArgVec.push_back(Idx); - const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec); - return ExprConstants.getOrCreate(ReqTy, Key); + const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); + return ExprConstants->getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create extractelement operation on non-packed type!"); - assert(Idx->getType() == Type::UIntTy && - "Extractelement index must be uint type!"); - return getExtractElementTy(cast(Val->getType())->getElementType(), + assert(isa(Val->getType()) && + "Tried to create extractelement operation on non-vector type!"); + assert(Idx->getType() == Type::Int32Ty && + "Extractelement index must be i32 type!"); + return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); } @@ -1537,19 +1900,19 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, std::vector ArgVec(1, Val); ArgVec.push_back(Elt); ArgVec.push_back(Idx); - const ExprMapKeyType &Key = std::make_pair(Instruction::InsertElement,ArgVec); - return ExprConstants.getOrCreate(ReqTy, Key); + const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); + return ExprConstants->getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create insertelement operation on non-packed type!"); - assert(Elt->getType() == cast(Val->getType())->getElementType() + assert(isa(Val->getType()) && + "Tried to create insertelement operation on non-vector type!"); + assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); - assert(Idx->getType() == Type::UIntTy && - "Insertelement index must be uint type!"); - return getInsertElementTy(cast(Val->getType())->getElementType(), + assert(Idx->getType() == Type::Int32Ty && + "Insertelement index must be i32 type!"); + return getInsertElementTy(cast(Val->getType())->getElementType(), Val, Elt, Idx); } @@ -1561,8 +1924,8 @@ Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, std::vector ArgVec(1, V1); ArgVec.push_back(V2); ArgVec.push_back(Mask); - const ExprMapKeyType &Key = std::make_pair(Instruction::ShuffleVector,ArgVec); - return ExprConstants.getOrCreate(ReqTy, Key); + const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + return ExprConstants->getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, @@ -1572,11 +1935,24 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, return getShuffleVectorTy(V1->getType(), V1, V2, Mask); } +Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { + if (const VectorType *PTy = dyn_cast(Ty)) + if (PTy->getElementType()->isFloatingPoint()) { + std::vector zeros(PTy->getNumElements(), + ConstantFP::getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); + } + + if (Ty->isFloatingPoint()) + return ConstantFP::getNegativeZero(Ty); + + return Constant::getNullValue(Ty); +} // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { - ExprConstants.remove(this); + ExprConstants->remove(this); destroyConstantImpl(); } @@ -1587,15 +1963,22 @@ const char *ConstantExpr::getOpcodeName() const { //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'. This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here. Consider +/// a large array that uses 'From' 1000 times. By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses. Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); - unsigned OperandToUpdate = U-OperandList; - assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - - std::pair Lookup; + std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; @@ -1605,18 +1988,28 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; + unsigned NumUpdated = 0; if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) - Values.push_back(cast(O->get())); + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + } } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } - Values[OperandToUpdate] = ToC; Constant *Replacement = 0; if (isAllZeros) { @@ -1624,8 +2017,8 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, } else { // Check to see if we have this array type already. bool Exists; - ArrayConstantsTy::MapIterator I = - ArrayConstants.InsertOrGetItem(Lookup, Exists); + ArrayConstantsTy::MapTy::iterator I = + ArrayConstants->InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -1634,10 +2027,20 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - ArrayConstants.MoveConstantToNewSlot(this, I); + ArrayConstants->MoveConstantToNewSlot(this, I); - // Update to the new value. - setOperand(OperandToUpdate, ToC); + // Update to the new value. Optimize for the case when we have a single + // operand that we're changing, but handle bulk updates efficiently. + if (NumUpdated == 1) { + unsigned OperandToUpdate = U-OperandList; + assert(getOperand(OperandToUpdate) == From && + "ReplaceAllUsesWith broken!"); + setOperand(OperandToUpdate, ToC); + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) == From) + setOperand(i, ToC); + } return; } } @@ -1660,7 +2063,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair Lookup; + std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; std::vector &Values = Lookup.first.second; @@ -1689,8 +2092,8 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, } else { // Check to see if we have this array type already. bool Exists; - StructConstantsTy::MapIterator I = - StructConstants.InsertOrGetItem(Lookup, Exists); + StructConstantsTy::MapTy::iterator I = + StructConstants->InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; @@ -1699,7 +2102,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - StructConstants.MoveConstantToNewSlot(this, I); + StructConstants->MoveConstantToNewSlot(this, I); // Update to the new value. setOperand(OperandToUpdate, ToC); @@ -1716,7 +2119,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, destroyConstant(); } -void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); @@ -1728,7 +2131,7 @@ void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = ConstantPacked::get(getType(), Values); + Constant *Replacement = ConstantVector::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. @@ -1745,7 +2148,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { - std::vector Indices; + SmallVector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; @@ -1755,10 +2158,11 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (Val == From) Val = To; Indices.push_back(Val); } - Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); - } else if (getOpcode() == Instruction::Cast) { + Replacement = ConstantExpr::getGetElementPtr(Pointer, + &Indices[0], Indices.size()); + } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); - Replacement = ConstantExpr::getCast(To, getType()); + Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); } else if (getOpcode() == Instruction::Select) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); @@ -1789,6 +2193,15 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (C2 == From) C2 = To; if (C3 == From) C3 = To; Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); + } else if (isCompare()) { + Constant *C1 = getOperand(0); + Constant *C2 = getOperand(1); + if (C1 == From) C1 = To; + if (C2 == From) C2 = To; + if (getOpcode() == Instruction::ICmp) + Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); + else + Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); } else if (getNumOperands() == 2) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); @@ -1810,34 +2223,6 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, } - -/// clearAllValueMaps - This method frees all internal memory used by the -/// constant subsystem, which can be used in environments where this memory -/// is otherwise reported as a leak. -void Constant::clearAllValueMaps() { - std::vector Constants; - - DoubleConstants.clear(Constants); - FloatConstants.clear(Constants); - SIntConstants.clear(Constants); - UIntConstants.clear(Constants); - AggZeroConstants.clear(Constants); - ArrayConstants.clear(Constants); - StructConstants.clear(Constants); - PackedConstants.clear(Constants); - NullPtrConstants.clear(Constants); - UndefValueConstants.clear(Constants); - ExprConstants.clear(Constants); - - for (std::vector::iterator I = Constants.begin(), - E = Constants.end(); I != E; ++I) - (*I)->dropAllReferences(); - for (std::vector::iterator I = Constants.begin(), - E = Constants.end(); I != E; ++I) - (*I)->destroyConstantImpl(); - Constants.clear(); -} - /// getStringValue - Turn an LLVM constant pointer that eventually points to a /// global into a string value. Return an empty string if we can't do it. /// Parameter Chop determines if the result is chopped at the first null @@ -1872,7 +2257,7 @@ std::string Constant::getStringValue(bool Chop, unsigned Offset) { if (CE->getNumOperands() == 3 && cast(CE->getOperand(1))->isNullValue() && isa(CE->getOperand(2))) { - Offset += cast(CE->getOperand(2))->getRawValue(); + Offset += cast(CE->getOperand(2))->getZExtValue(); return CE->getOperand(0)->getStringValue(Chop, Offset); } } @@ -1880,4 +2265,3 @@ std::string Constant::getStringValue(bool Chop, unsigned Offset) { } return ""; } -