X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstants.cpp;h=530f7ba61aa5a4ac568584c366aa9a6540d75c65;hb=629c1a3f78494d0dd769fe82bd2bd17df0555843;hp=c15ababf32bc9f39f3da33744bdafe675e62d9c8;hpb=3d10b0b2d35be0c99fe95c6d0c4931916c8a59cf;p=oota-llvm.git diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index c15ababf32b..530f7ba61aa 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by the LLVM research group and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -12,18 +12,20 @@ //===----------------------------------------------------------------------===// #include "llvm/Constants.h" -#include "ConstantFolding.h" +#include "ConstantFold.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Instructions.h" -#include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" #include +#include using namespace llvm; //===----------------------------------------------------------------------===// @@ -88,50 +90,38 @@ bool Constant::canTrap() const { } } +/// ContaintsRelocations - Return true if the constant value contains +/// relocations which cannot be resolved at compile time. +bool Constant::ContainsRelocations() const { + if (isa(this)) + return true; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i)->ContainsRelocations()) + return true; + return false; +} // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { + static uint64_t zero[2] = {0, 0}; switch (Ty->getTypeID()) { - case Type::IntegerTyID: { - const IntegerType *ITy = dyn_cast(Ty); - switch (ITy->getBitWidth()) { - case 1: { - static Constant *NullBool = ConstantInt::get(Ty, false); - return NullBool; - } - case 8: { - static Constant *NullInt8 = ConstantInt::get(Ty, 0); - return NullInt8; - } - case 16: { - static Constant *NullInt16 = ConstantInt::get(Ty, 0); - return NullInt16; - } - case 32: { - static Constant *NullInt32 = ConstantInt::get(Ty, 0); - return NullInt32; - } - case 64: { - static Constant *NullInt64 = ConstantInt::get(Ty, 0); - return NullInt64; - } - default: - return ConstantInt::get(Ty, 0); - } - } - case Type::FloatTyID: { - static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0); - return NullFloat; - } - case Type::DoubleTyID: { - static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0); - return NullDouble; - } + case Type::IntegerTyID: + return ConstantInt::get(Ty, 0); + case Type::FloatTyID: + return ConstantFP::get(APFloat(APInt(32, 0))); + case Type::DoubleTyID: + return ConstantFP::get(APFloat(APInt(64, 0))); + case Type::X86_FP80TyID: + return ConstantFP::get(APFloat(APInt(80, 2, zero))); + case Type::FP128TyID: + return ConstantFP::get(APFloat(APInt(128, 2, zero), true)); + case Type::PPC_FP128TyID: + return ConstantFP::get(APFloat(APInt(128, 2, zero))); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); case Type::StructTyID: case Type::ArrayTyID: - case Type::PackedTyID: + case Type::VectorTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? @@ -140,53 +130,233 @@ Constant *Constant::getNullValue(const Type *Ty) { } } +Constant *Constant::getAllOnesValue(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast(Ty)) + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); + return ConstantVector::getAllOnesValue(cast(Ty)); +} // Static constructor to create an integral constant with all bits set ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) { if (const IntegerType* ITy = dyn_cast(Ty)) - if (ITy->getBitWidth() == 1) - return ConstantInt::getTrue(); - else - return ConstantInt::get(Ty, int64_t(-1)); + return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth())); return 0; } -/// @returns the value for an packed integer constant of the given type that +/// @returns the value for a vector integer constant of the given type that /// has all its bits set to true. /// @brief Get the all ones value -ConstantPacked *ConstantPacked::getAllOnesValue(const PackedType *Ty) { +ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) { std::vector Elts; Elts.resize(Ty->getNumElements(), ConstantInt::getAllOnesValue(Ty->getElementType())); - assert(Elts[0] && "Not a packed integer type!"); - return cast(ConstantPacked::get(Elts)); + assert(Elts[0] && "Not a vector integer type!"); + return cast(ConstantVector::get(Elts)); } //===----------------------------------------------------------------------===// -// ConstantXXX Classes +// ConstantInt //===----------------------------------------------------------------------===// +ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) + : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { + assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); +} + +ConstantInt *ConstantInt::TheTrueVal = 0; +ConstantInt *ConstantInt::TheFalseVal = 0; + +namespace llvm { + void CleanupTrueFalse(void *) { + ConstantInt::ResetTrueFalse(); + } +} + +static ManagedCleanup TrueFalseCleanup; + +ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) { + assert(TheTrueVal == 0 && TheFalseVal == 0); + TheTrueVal = get(Type::Int1Ty, 1); + TheFalseVal = get(Type::Int1Ty, 0); + + // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal. + TrueFalseCleanup.Register(); + + return WhichOne ? TheTrueVal : TheFalseVal; +} + + +namespace { + struct DenseMapAPIntKeyInfo { + struct KeyTy { + APInt val; + const Type* type; + KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {} + KeyTy(const KeyTy& that) : val(that.val), type(that.type) {} + bool operator==(const KeyTy& that) const { + return type == that.type && this->val == that.val; + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); } + static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); } + static unsigned getHashValue(const KeyTy &Key) { + return DenseMapInfo::getHashValue(Key.type) ^ + Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; +} + + +typedef DenseMap IntMapTy; +static ManagedStatic IntConstants; + +ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { + const IntegerType *ITy = cast(Ty); + return get(APInt(ITy->getBitWidth(), V, isSigned)); +} + +// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap +// as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the +// operator== and operator!= to ensure that the DenseMap doesn't attempt to +// compare APInt's of different widths, which would violate an APInt class +// invariant which generates an assertion. +ConstantInt *ConstantInt::get(const APInt& V) { + // Get the corresponding integer type for the bit width of the value. + const IntegerType *ITy = IntegerType::get(V.getBitWidth()); + // get an existing value or the insertion position + DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); + ConstantInt *&Slot = (*IntConstants)[Key]; + // if it exists, return it. + if (Slot) + return Slot; + // otherwise create a new one, insert it, and return it. + return Slot = new ConstantInt(ITy, V); +} + //===----------------------------------------------------------------------===// -// Normal Constructors +// ConstantFP +//===----------------------------------------------------------------------===// + +static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { + if (Ty == Type::FloatTy) + return &APFloat::IEEEsingle; + if (Ty == Type::DoubleTy) + return &APFloat::IEEEdouble; + if (Ty == Type::X86_FP80Ty) + return &APFloat::x87DoubleExtended; + else if (Ty == Type::FP128Ty) + return &APFloat::IEEEquad; + + assert(Ty == Type::PPC_FP128Ty && "Unknown FP format"); + return &APFloat::PPCDoubleDouble; +} + +ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) + : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { + assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && + "FP type Mismatch"); +} + +bool ConstantFP::isNullValue() const { + return Val.isZero() && !Val.isNegative(); +} + +ConstantFP *ConstantFP::getNegativeZero(const Type *Ty) { + APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); + apf.changeSign(); + return ConstantFP::get(apf); +} -ConstantInt::ConstantInt(bool V) - : Constant(Type::Int1Ty, ConstantIntVal, 0, 0), Val(uint64_t(V)) { +bool ConstantFP::isExactlyValue(const APFloat& V) const { + return Val.bitwiseIsEqual(V); } -ConstantInt::ConstantInt(const Type *Ty, uint64_t V) - : Constant(Ty, ConstantIntVal, 0, 0), Val(Ty == Type::Int1Ty ? bool(V) : V) { +namespace { + struct DenseMapAPFloatKeyInfo { + struct KeyTy { + APFloat val; + KeyTy(const APFloat& V) : val(V){} + KeyTy(const KeyTy& that) : val(that.val) {} + bool operator==(const KeyTy& that) const { + return this->val.bitwiseIsEqual(that.val); + } + bool operator!=(const KeyTy& that) const { + return !this->operator==(that); + } + }; + static inline KeyTy getEmptyKey() { + return KeyTy(APFloat(APFloat::Bogus,1)); + } + static inline KeyTy getTombstoneKey() { + return KeyTy(APFloat(APFloat::Bogus,2)); + } + static unsigned getHashValue(const KeyTy &Key) { + return Key.val.getHashValue(); + } + static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { + return LHS == RHS; + } + static bool isPod() { return false; } + }; +} + +//---- ConstantFP::get() implementation... +// +typedef DenseMap FPMapTy; + +static ManagedStatic FPConstants; + +ConstantFP *ConstantFP::get(const APFloat &V) { + DenseMapAPFloatKeyInfo::KeyTy Key(V); + ConstantFP *&Slot = (*FPConstants)[Key]; + if (Slot) return Slot; + + const Type *Ty; + if (&V.getSemantics() == &APFloat::IEEEsingle) + Ty = Type::FloatTy; + else if (&V.getSemantics() == &APFloat::IEEEdouble) + Ty = Type::DoubleTy; + else if (&V.getSemantics() == &APFloat::x87DoubleExtended) + Ty = Type::X86_FP80Ty; + else if (&V.getSemantics() == &APFloat::IEEEquad) + Ty = Type::FP128Ty; + else { + assert(&V.getSemantics() == &APFloat::PPCDoubleDouble&&"Unknown FP format"); + Ty = Type::PPC_FP128Ty; + } + + return Slot = new ConstantFP(Ty, V); } -ConstantFP::ConstantFP(const Type *Ty, double V) - : Constant(Ty, ConstantFPVal, 0, 0) { - assert(isValueValidForType(Ty, V) && "Value too large for type!"); - Val = V; +/// get() - This returns a constant fp for the specified value in the +/// specified type. This should only be used for simple constant values like +/// 2.0/1.0 etc, that are known-valid both as double and as the target format. +ConstantFP *ConstantFP::get(const Type *Ty, double V) { + APFloat FV(V); + FV.convert(*TypeToFloatSemantics(Ty), APFloat::rmNearestTiesToEven); + return get(FV); } +//===----------------------------------------------------------------------===// +// ConstantXXX Classes +//===----------------------------------------------------------------------===// + + ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) - : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) { + : Constant(T, ConstantArrayVal, + OperandTraits::op_end(this) - V.size(), + V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant array"); Use *OL = OperandList; @@ -197,17 +367,16 @@ ConstantArray::ConstantArray(const ArrayType *T, (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && "Initializer for array element doesn't match array element type!"); - OL->init(C, this); + *OL = C; } } -ConstantArray::~ConstantArray() { - delete [] OperandList; -} ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) - : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) { + : Constant(T, ConstantStructVal, + OperandTraits::op_end(this) - V.size(), + V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant structure"); Use *OL = OperandList; @@ -220,18 +389,16 @@ ConstantStruct::ConstantStruct(const StructType *T, T->getElementType(I-V.begin())->getTypeID() == C->getType()->getTypeID())) && "Initializer for struct element doesn't match struct element type!"); - OL->init(C, this); + *OL = C; } } -ConstantStruct::~ConstantStruct() { - delete [] OperandList; -} - -ConstantPacked::ConstantPacked(const PackedType *T, +ConstantVector::ConstantVector(const VectorType *T, const std::vector &V) - : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) { + : Constant(T, ConstantVectorVal, + OperandTraits::op_end(this) - V.size(), + V.size()) { Use *OL = OperandList; for (std::vector::const_iterator I = V.begin(), E = V.end(); I != E; ++I, ++OL) { @@ -239,15 +406,13 @@ ConstantPacked::ConstantPacked(const PackedType *T, assert((C->getType() == T->getElementType() || (T->isAbstract() && C->getType()->getTypeID() == T->getElementType()->getTypeID())) && - "Initializer for packed element doesn't match packed element type!"); - OL->init(C, this); + "Initializer for vector element doesn't match vector element type!"); + *OL = C; } } -ConstantPacked::~ConstantPacked() { - delete [] OperandList; -} +namespace llvm { // We declare several classes private to this file, so use an anonymous // namespace namespace { @@ -255,113 +420,277 @@ namespace { /// UnaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement unary constant exprs. class VISIBILITY_HIDDEN UnaryConstantExpr : public ConstantExpr { - Use Op; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 1); + } UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) - : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {} + : ConstantExpr(Ty, Opcode, &Op<0>(), 1) { + Op<0>() = C; + } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// BinaryConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement binary constant exprs. class VISIBILITY_HIDDEN BinaryConstantExpr : public ConstantExpr { - Use Ops[2]; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) - : ConstantExpr(C1->getType(), Opcode, Ops, 2) { - Ops[0].init(C1, this); - Ops[1].init(C2, this); + : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { + Op<0>() = C1; + Op<1>() = C2; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// SelectConstantExpr - This class is private to Constants.cpp, and is used /// behind the scenes to implement select constant exprs. class VISIBILITY_HIDDEN SelectConstantExpr : public ConstantExpr { - Use Ops[3]; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3) - : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) { - Ops[0].init(C1, this); - Ops[1].init(C2, this); - Ops[2].init(C3, this); + : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// ExtractElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// extractelement constant exprs. class VISIBILITY_HIDDEN ExtractElementConstantExpr : public ConstantExpr { - Use Ops[2]; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } ExtractElementConstantExpr(Constant *C1, Constant *C2) - : ConstantExpr(cast(C1->getType())->getElementType(), - Instruction::ExtractElement, Ops, 2) { - Ops[0].init(C1, this); - Ops[1].init(C2, this); + : ConstantExpr(cast(C1->getType())->getElementType(), + Instruction::ExtractElement, &Op<0>(), 2) { + Op<0>() = C1; + Op<1>() = C2; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// InsertElementConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// insertelement constant exprs. class VISIBILITY_HIDDEN InsertElementConstantExpr : public ConstantExpr { - Use Ops[3]; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(C1->getType(), Instruction::InsertElement, - Ops, 3) { - Ops[0].init(C1, this); - Ops[1].init(C2, this); - Ops[2].init(C3, this); + &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; /// ShuffleVectorConstantExpr - This class is private to /// Constants.cpp, and is used behind the scenes to implement /// shufflevector constant exprs. class VISIBILITY_HIDDEN ShuffleVectorConstantExpr : public ConstantExpr { - Use Ops[3]; + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT public: + // allocate space for exactly three operands + void *operator new(size_t s) { + return User::operator new(s, 3); + } ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3) : ConstantExpr(C1->getType(), Instruction::ShuffleVector, - Ops, 3) { - Ops[0].init(C1, this); - Ops[1].init(C2, this); - Ops[2].init(C3, this); + &Op<0>(), 3) { + Op<0>() = C1; + Op<1>() = C2; + Op<2>() = C3; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// ExtractValueConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// extractvalue constant exprs. +class VISIBILITY_HIDDEN ExtractValueConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 1); + } + ExtractValueConstantExpr(Constant *Agg, + const SmallVector &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1), + Indices(IdxList) { + Op<0>() = Agg; + } + + /// Indices - These identify which value to extract. + const SmallVector Indices; + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); +}; + +/// InsertValueConstantExpr - This class is private to +/// Constants.cpp, and is used behind the scenes to implement +/// insertvalue constant exprs. +class VISIBILITY_HIDDEN InsertValueConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT +public: + // allocate space for exactly one operand + void *operator new(size_t s) { + return User::operator new(s, 2); + } + InsertValueConstantExpr(Constant *Agg, Constant *Val, + const SmallVector &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2), + Indices(IdxList) { + Op<0>() = Agg; + Op<1>() = Val; + } + + /// Indices - These identify the position for the insertion. + const SmallVector Indices; + + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; + /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is /// used behind the scenes to implement getelementpr constant exprs. -struct VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { +class VISIBILITY_HIDDEN GetElementPtrConstantExpr : public ConstantExpr { GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, - const Type *DestTy) - : ConstantExpr(DestTy, Instruction::GetElementPtr, - new Use[IdxList.size()+1], IdxList.size()+1) { - OperandList[0].init(C, this); - for (unsigned i = 0, E = IdxList.size(); i != E; ++i) - OperandList[i+1].init(IdxList[i], this); - } - ~GetElementPtrConstantExpr() { - delete [] OperandList; + const Type *DestTy); +public: + static GetElementPtrConstantExpr *Create(Constant *C, + const std::vector&IdxList, + const Type *DestTy) { + return new(IdxList.size() + 1) + GetElementPtrConstantExpr(C, IdxList, DestTy); } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; // CompareConstantExpr - This class is private to Constants.cpp, and is used // behind the scenes to implement ICmp and FCmp constant expressions. This is // needed in order to store the predicate value for these instructions. struct VISIBILITY_HIDDEN CompareConstantExpr : public ConstantExpr { + void *operator new(size_t, unsigned); // DO NOT IMPLEMENT + // allocate space for exactly two operands + void *operator new(size_t s) { + return User::operator new(s, 2); + } unsigned short predicate; - Use Ops[2]; - CompareConstantExpr(Instruction::OtherOps opc, unsigned short pred, - Constant* LHS, Constant* RHS) - : ConstantExpr(Type::Int1Ty, opc, Ops, 2), predicate(pred) { - OperandList[0].init(LHS, this); - OperandList[1].init(RHS, this); + CompareConstantExpr(const Type *ty, Instruction::OtherOps opc, + unsigned short pred, Constant* LHS, Constant* RHS) + : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) { + Op<0>() = LHS; + Op<1>() = RHS; } + /// Transparently provide more efficient getOperand methods. + DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); }; } // end anonymous namespace +template <> +struct OperandTraits : FixedNumOperandTraits<1> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<3> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<1> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) + +template <> +struct OperandTraits : FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) + +template <> +struct OperandTraits : VariadicOperandTraits<1> { +}; + +GetElementPtrConstantExpr::GetElementPtrConstantExpr + (Constant *C, + const std::vector &IdxList, + const Type *DestTy) + : ConstantExpr(DestTy, Instruction::GetElementPtr, + OperandTraits::op_end(this) + - (IdxList.size()+1), + IdxList.size()+1) { + OperandList[0] = C; + for (unsigned i = 0, E = IdxList.size(); i != E; ++i) + OperandList[i+1] = IdxList[i]; +} + +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) + + +template <> +struct OperandTraits : FixedNumOperandTraits<2> { +}; +DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) + + +} // End llvm namespace + // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into @@ -374,6 +703,21 @@ bool ConstantExpr::isCompare() const { return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } +bool ConstantExpr::hasIndices() const { + return getOpcode() == Instruction::ExtractValue || + getOpcode() == Instruction::InsertValue; +} + +const SmallVector &ConstantExpr::getIndices() const { + if (const ExtractValueConstantExpr *EVCE = + dyn_cast(this)) + return EVCE->Indices; + if (const InsertValueConstantExpr *IVCE = + dyn_cast(this)) + return IVCE->Indices; + assert(0 && "ConstantExpr does not have indices!"); +} + /// ConstantExpr::get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// @@ -383,7 +727,7 @@ Constant *ConstantExpr::getNeg(Constant *C) { C); } Constant *ConstantExpr::getNot(Constant *C) { - assert(isa(C) && "Cannot NOT a nonintegral type!"); + assert(isa(C->getType()) && "Cannot NOT a nonintegral value!"); return get(Instruction::Xor, C, ConstantInt::getAllOnesValue(C->getType())); } @@ -424,8 +768,11 @@ Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } unsigned ConstantExpr::getPredicate() const { - assert(getOpcode() == Instruction::FCmp || getOpcode() == Instruction::ICmp); - return dynamic_cast(this)->predicate; + assert(getOpcode() == Instruction::FCmp || + getOpcode() == Instruction::ICmp || + getOpcode() == Instruction::VFCmp || + getOpcode() == Instruction::VICmp); + return ((const CompareConstantExpr*)this)->predicate; } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) { return get(Instruction::Shl, C1, C2); @@ -481,14 +828,28 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { Op1 = (OpNo == 1) ? Op : getOperand(1); Op2 = (OpNo == 2) ? Op : getOperand(2); return ConstantExpr::getShuffleVector(Op0, Op1, Op2); + case Instruction::InsertValue: { + const SmallVector Indices = getIndices(); + Op0 = (OpNo == 0) ? Op : getOperand(0); + Op1 = (OpNo == 1) ? Op : getOperand(1); + return ConstantExpr::getInsertValue(Op0, Op1, + &Indices[0], Indices.size()); + } + case Instruction::ExtractValue: { + assert(OpNo == 0 && "ExtractaValue has only one operand!"); + const SmallVector Indices = getIndices(); + return + ConstantExpr::getExtractValue(Op, &Indices[0], Indices.size()); + } case Instruction::GetElementPtr: { - std::vector Ops; + SmallVector Ops; + Ops.resize(getNumOperands()-1); for (unsigned i = 1, e = getNumOperands(); i != e; ++i) - Ops.push_back(getOperand(i)); + Ops[i-1] = getOperand(i); if (OpNo == 0) - return ConstantExpr::getGetElementPtr(Op, Ops); + return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); Ops[OpNo-1] = Op; - return ConstantExpr::getGetElementPtr(getOperand(0), Ops); + return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); @@ -535,10 +896,18 @@ getWithOperands(const std::vector &Ops) const { return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); - case Instruction::GetElementPtr: { - std::vector ActualOps(Ops.begin()+1, Ops.end()); - return ConstantExpr::getGetElementPtr(Ops[0], ActualOps); + case Instruction::InsertValue: { + const SmallVector Indices = getIndices(); + return ConstantExpr::getInsertValue(Ops[0], Ops[1], + &Indices[0], Indices.size()); } + case Instruction::ExtractValue: { + const SmallVector Indices = getIndices(); + return ConstantExpr::getExtractValue(Ops[0], + &Indices[0], Indices.size()); + } + case Instruction::GetElementPtr: + return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); @@ -554,10 +923,9 @@ getWithOperands(const std::vector &Ops) const { bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay - assert(NumBits <= 64 && "Not implemented: integers > 64-bits"); if (Ty == Type::Int1Ty) return Val == 0 || Val == 1; - if (NumBits == 64) + if (NumBits >= 64) return true; // always true, has to fit in largest type uint64_t Max = (1ll << NumBits) - 1; return Val <= Max; @@ -565,41 +933,73 @@ bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay - assert(NumBits <= 64 && "Not implemented: integers > 64-bits"); if (Ty == Type::Int1Ty) return Val == 0 || Val == 1 || Val == -1; - if (NumBits == 64) + if (NumBits >= 64) return true; // always true, has to fit in largest type int64_t Min = -(1ll << (NumBits-1)); int64_t Max = (1ll << (NumBits-1)) - 1; return (Val >= Min && Val <= Max); } -bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { +bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! - // TODO: Figure out how to test if a double can be cast to a float! + // FIXME rounding mode needs to be more flexible case Type::FloatTyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) == + APFloat::opOK; case Type::DoubleTyID: - return true; // This is the largest type... + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) == + APFloat::opOK; + case Type::X86_FP80TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::x87DoubleExtended; + case Type::FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::IEEEquad; + case Type::PPC_FP128TyID: + return &Val2.getSemantics() == &APFloat::IEEEsingle || + &Val2.getSemantics() == &APFloat::IEEEdouble || + &Val2.getSemantics() == &APFloat::PPCDoubleDouble; } } //===----------------------------------------------------------------------===// // Factory Function Implementation + +// The number of operands for each ConstantCreator::create method is +// determined by the ConstantTraits template. // ConstantCreator - A class that is used to create constants by // ValueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // namespace llvm { + template + struct ConstantTraits; + + template + struct VISIBILITY_HIDDEN ConstantTraits< std::vector > { + static unsigned uses(const std::vector& v) { + return v.size(); + } + }; + template struct VISIBILITY_HIDDEN ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { - return new ConstantClass(Ty, V); + return new(ConstantTraits::uses(V)) ConstantClass(Ty, V); } }; @@ -635,15 +1035,6 @@ namespace llvm { /// AbstractTypeMapTy AbstractTypeMap; - private: - void clear(std::vector &Constants) { - for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I) - Constants.push_back(I->second); - Map.clear(); - AbstractTypeMap.clear(); - InverseMap.clear(); - } - public: typename MapTy::iterator map_end() { return Map.end(); } @@ -833,64 +1224,6 @@ public: } -//---- ConstantInt::get() implementations... -// -static ManagedStatic > IntConstants; - -// Get a ConstantInt from an int64_t. Note here that we canoncialize the value -// to a uint64_t value that has been zero extended down to the size of the -// integer type of the ConstantInt. This allows the getZExtValue method to -// just return the stored value while getSExtValue has to convert back to sign -// extended. getZExtValue is more common in LLVM than getSExtValue(). -ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) { - if (Ty == Type::Int1Ty) - if (V & 1) - return getTrue(); - else - return getFalse(); - return IntConstants->getOrCreate(Ty, V & cast(Ty)->getBitMask()); -} - -//---- ConstantFP::get() implementation... -// -namespace llvm { - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint64_t V) { - assert(Ty == Type::DoubleTy); - return new ConstantFP(Ty, BitsToDouble(V)); - } - }; - template<> - struct ConstantCreator { - static ConstantFP *create(const Type *Ty, uint32_t V) { - assert(Ty == Type::FloatTy); - return new ConstantFP(Ty, BitsToFloat(V)); - } - }; -} - -static ManagedStatic > DoubleConstants; -static ManagedStatic > FloatConstants; - -bool ConstantFP::isNullValue() const { - return DoubleToBits(Val) == 0; -} - -bool ConstantFP::isExactlyValue(double V) const { - return DoubleToBits(V) == DoubleToBits(Val); -} - - -ConstantFP *ConstantFP::get(const Type *Ty, double V) { - if (Ty == Type::FloatTy) { - // Force the value through memory to normalize it. - return FloatConstants->getOrCreate(Ty, FloatToBits(V)); - } else { - assert(Ty == Type::DoubleTy); - return DoubleConstants->getOrCreate(Ty, DoubleToBits(V)); - } -} //---- ConstantAggregateZero::get() implementation... // @@ -921,7 +1254,7 @@ static ManagedStatic(Ty) || isa(Ty) || isa(Ty)) && + assert((isa(Ty) || isa(Ty) || isa(Ty)) && "Cannot create an aggregate zero of non-aggregate type!"); return AggZeroConstants->getOrCreate(Ty, 0); } @@ -1110,17 +1443,17 @@ void ConstantStruct::destroyConstant() { destroyConstantImpl(); } -//---- ConstantPacked::get() implementation... +//---- ConstantVector::get() implementation... // namespace llvm { template<> - struct ConvertConstantType { - static void convert(ConstantPacked *OldC, const PackedType *NewTy) { + struct ConvertConstantType { + static void convert(ConstantVector *OldC, const VectorType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantPacked::get(NewTy, C); + Constant *New = ConstantVector::get(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. @@ -1128,7 +1461,7 @@ namespace llvm { }; } -static std::vector getValType(ConstantPacked *CP) { +static std::vector getValType(ConstantVector *CP) { std::vector Elements; Elements.reserve(CP->getNumOperands()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) @@ -1136,40 +1469,40 @@ static std::vector getValType(ConstantPacked *CP) { return Elements; } -static ManagedStatic, PackedType, - ConstantPacked> > PackedConstants; +static ManagedStatic, VectorType, + ConstantVector> > VectorConstants; -Constant *ConstantPacked::get(const PackedType *Ty, +Constant *ConstantVector::get(const VectorType *Ty, const std::vector &V) { - // If this is an all-zero packed, return a ConstantAggregateZero object + // If this is an all-zero vector, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) - return PackedConstants->getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) - return PackedConstants->getOrCreate(Ty, V); + return VectorConstants->getOrCreate(Ty, V); } return ConstantAggregateZero::get(Ty); } -Constant *ConstantPacked::get(const std::vector &V) { +Constant *ConstantVector::get(const std::vector &V) { assert(!V.empty() && "Cannot infer type if V is empty"); - return get(PackedType::get(V.front()->getType(),V.size()), V); + return get(VectorType::get(V.front()->getType(),V.size()), V); } // destroyConstant - Remove the constant from the constant table... // -void ConstantPacked::destroyConstant() { - PackedConstants->remove(this); +void ConstantVector::destroyConstant() { + VectorConstants->remove(this); destroyConstantImpl(); } -/// This function will return true iff every element in this packed constant +/// This function will return true iff every element in this vector constant /// is set to all ones. /// @returns true iff this constant's emements are all set to all ones. /// @brief Determine if the value is all ones. -bool ConstantPacked::isAllOnesValue() const { +bool ConstantVector::isAllOnesValue() const { // Check out first element. const Constant *Elt = getOperand(0); const ConstantInt *CI = dyn_cast(Elt); @@ -1181,6 +1514,17 @@ bool ConstantPacked::isAllOnesValue() const { return true; } +/// getSplatValue - If this is a splat constant, where all of the +/// elements have the same value, return that value. Otherwise return null. +Constant *ConstantVector::getSplatValue() { + // Check out first element. + Constant *Elt = getOperand(0); + // Then make sure all remaining elements point to the same value. + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) + if (getOperand(I) != Elt) return 0; + return Elt; +} + //---- ConstantPointerNull::get() implementation... // @@ -1271,22 +1615,33 @@ void UndefValue::destroyConstant() { //---- ConstantExpr::get() implementations... // +namespace { + struct ExprMapKeyType { - explicit ExprMapKeyType(unsigned opc, std::vector ops, - unsigned short pred = 0) : opcode(opc), predicate(pred), operands(ops) { } + typedef SmallVector IndexList; + + ExprMapKeyType(unsigned opc, + const std::vector &ops, + unsigned short pred = 0, + const IndexList &inds = IndexList()) + : opcode(opc), predicate(pred), operands(ops), indices(inds) {} uint16_t opcode; uint16_t predicate; std::vector operands; + IndexList indices; bool operator==(const ExprMapKeyType& that) const { return this->opcode == that.opcode && this->predicate == that.predicate && this->operands == that.operands; + this->indices == that.indices; } bool operator<(const ExprMapKeyType & that) const { return this->opcode < that.opcode || (this->opcode == that.opcode && this->predicate < that.predicate) || (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands < that.operands); + this->operands < that.operands) || + (this->opcode == that.opcode && this->predicate == that.predicate && + this->operands == that.operands && this->indices < that.indices); } bool operator!=(const ExprMapKeyType& that) const { @@ -1294,6 +1649,8 @@ struct ExprMapKeyType { } }; +} + namespace llvm { template<> struct ConstantCreator { @@ -1302,10 +1659,7 @@ namespace llvm { if (Instruction::isCast(V.opcode)) return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); if ((V.opcode >= Instruction::BinaryOpsBegin && - V.opcode < Instruction::BinaryOpsEnd) || - V.opcode == Instruction::Shl || - V.opcode == Instruction::LShr || - V.opcode == Instruction::AShr) + V.opcode < Instruction::BinaryOpsEnd)) return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); if (V.opcode == Instruction::Select) return new SelectConstantExpr(V.operands[0], V.operands[1], @@ -1318,19 +1672,30 @@ namespace llvm { if (V.opcode == Instruction::ShuffleVector) return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1], V.operands[2]); + if (V.opcode == Instruction::InsertValue) + return new InsertValueConstantExpr(V.operands[0], V.operands[1], + V.indices, Ty); + if (V.opcode == Instruction::ExtractValue) + return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); if (V.opcode == Instruction::GetElementPtr) { std::vector IdxList(V.operands.begin()+1, V.operands.end()); - return new GetElementPtrConstantExpr(V.operands[0], IdxList, Ty); + return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); } // The compare instructions are weird. We have to encode the predicate // value and it is combined with the instruction opcode by multiplying // the opcode by one hundred. We must decode this to get the predicate. if (V.opcode == Instruction::ICmp) - return new CompareConstantExpr(Instruction::ICmp, V.predicate, + return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, V.operands[0], V.operands[1]); if (V.opcode == Instruction::FCmp) - return new CompareConstantExpr(Instruction::FCmp, V.predicate, + return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, + V.operands[0], V.operands[1]); + if (V.opcode == Instruction::VICmp) + return new CompareConstantExpr(Ty, Instruction::VICmp, V.predicate, + V.operands[0], V.operands[1]); + if (V.opcode == Instruction::VFCmp) + return new CompareConstantExpr(Ty, Instruction::VFCmp, V.predicate, V.operands[0], V.operands[1]); assert(0 && "Invalid ConstantExpr!"); return 0; @@ -1362,12 +1727,6 @@ namespace llvm { OldC->getOperand(1), OldC->getOperand(2)); break; - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(), - OldC->getOperand(0), OldC->getOperand(1)); - break; default: assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && OldC->getOpcode() < Instruction::BinaryOpsEnd); @@ -1377,7 +1736,8 @@ namespace llvm { case Instruction::GetElementPtr: // Make everyone now use a constant of the new type... std::vector Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx); + New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), + &Idx[0], Idx.size()); break; } @@ -1395,14 +1755,16 @@ static ExprMapKeyType getValType(ConstantExpr *CE) { for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) Operands.push_back(cast(CE->getOperand(i))); return ExprMapKeyType(CE->getOpcode(), Operands, - CE->isCompare() ? CE->getPredicate() : 0); + CE->isCompare() ? CE->getPredicate() : 0, + CE->hasIndices() ? + CE->getIndices() : SmallVector()); } static ManagedStatic > ExprConstants; /// This is a utility function to handle folding of casts and lookup of the -/// cast in the ExprConstants map. It is usedby the various get* methods below. +/// cast in the ExprConstants map. It is used by the various get* methods below. static inline Constant *getFoldedCast( Instruction::CastOps opc, Constant *C, const Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); @@ -1535,26 +1897,38 @@ Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { } Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { - assert(C->getType()->isInteger() && Ty->isFloatingPoint() && - "This is an illegal i32 to floating point cast!"); + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && + "This is an illegal uint to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty); } Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { - assert(C->getType()->isInteger() && Ty->isFloatingPoint() && + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isIntOrIntVector() && Ty->isFPOrFPVector() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty); } Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { - assert(C->getType()->isFloatingPoint() && Ty->isInteger() && - "This is an illegal floating point to i32 cast!"); + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && + "This is an illegal floating point to uint cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty); } Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { - assert(C->getType()->isFloatingPoint() && Ty->isInteger() && - "This is an illegal floating point to i32 cast!"); + bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; + bool toVec = Ty->getTypeID() == Type::VectorTyID; + assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); + assert(C->getType()->isFPOrFPVector() && Ty->isIntOrIntVector() && + "This is an illegal floating point to sint cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty); } @@ -1587,25 +1961,15 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { } Constant *ConstantExpr::getSizeOf(const Type *Ty) { - // sizeof is implemented as: (ulong) gep (Ty*)null, 1 - return getCast(Instruction::PtrToInt, getGetElementPtr(getNullValue( - PointerType::get(Ty)), std::vector(1, - ConstantInt::get(Type::Int32Ty, 1))), Type::Int64Ty); -} - -Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) { - // pointer from array is implemented as: getelementptr arr ptr, 0, 0 - static std::vector Indices(2, ConstantInt::get(Type::Int32Ty, 0)); - - return ConstantExpr::getGetElementPtr(C, Indices); + // sizeof is implemented as: (i64) gep (Ty*)null, 1 + Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1); + Constant *GEP = + getGetElementPtr(getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); + return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty); } Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, Constant *C1, Constant *C2) { - if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || - Opcode == Instruction::AShr) - return getShiftTy(ReqTy, Opcode, C1, C2); - // Check the operands for consistency first assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && @@ -1649,46 +2013,46 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() || - isa(C1->getType())) && + isa(C1->getType())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::UDiv: case Instruction::SDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isInteger() || (isa(C1->getType()) && - cast(C1->getType())->getElementType()->isInteger())) && + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) - && cast(C1->getType())->getElementType()->isFloatingPoint())) + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::URem: case Instruction::SRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isInteger() || (isa(C1->getType()) && - cast(C1->getType())->getElementType()->isInteger())) && + assert((C1->getType()->isInteger() || (isa(C1->getType()) && + cast(C1->getType())->getElementType()->isInteger())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) - && cast(C1->getType())->getElementType()->isFloatingPoint())) + assert((C1->getType()->isFloatingPoint() || (isa(C1->getType()) + && cast(C1->getType())->getElementType()->isFloatingPoint())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); - assert((C1->getType()->isInteger() || isa(C1->getType())) && + assert((C1->getType()->isInteger() || isa(C1->getType())) && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - assert(C2->getType() == Type::Int8Ty && "Shift should be by i8!"); + assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isInteger() && "Tried to create a shift operation on a non-integer type!"); break; @@ -1723,66 +2087,45 @@ Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, return ExprConstants->getOrCreate(ReqTy, Key); } -/// getShiftTy - Return a shift left or shift right constant expr -Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2) { - // Check the operands for consistency first - assert((Opcode == Instruction::Shl || - Opcode == Instruction::LShr || - Opcode == Instruction::AShr) && - "Invalid opcode in binary constant expression"); - assert(C1->getType()->isInteger() && C2->getType() == Type::Int8Ty && - "Invalid operand types for Shift constant expr!"); - - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) - return FC; // Fold a few common cases... - - // Look up the constant in the table first to ensure uniqueness - std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec); - return ExprConstants->getOrCreate(ReqTy, Key); -} - Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, - const std::vector &IdxList) { - assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) && + Value* const *Idxs, + unsigned NumIdx) { + assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, + Idxs+NumIdx) == + cast(ReqTy)->getElementType() && "GEP indices invalid!"); - if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList)) + if (Constant *FC = ConstantFoldGetElementPtr(C, (Constant**)Idxs, NumIdx)) return FC; // Fold a few common cases... assert(isa(C->getType()) && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; - ArgVec.reserve(IdxList.size()+1); + ArgVec.reserve(NumIdx+1); ArgVec.push_back(C); - for (unsigned i = 0, e = IdxList.size(); i != e; ++i) - ArgVec.push_back(cast(IdxList[i])); - const ExprMapKeyType Key(Instruction::GetElementPtr,ArgVec); + for (unsigned i = 0; i != NumIdx; ++i) + ArgVec.push_back(cast(Idxs[i])); + const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec); return ExprConstants->getOrCreate(ReqTy, Key); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList){ +Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, + unsigned NumIdx) { // Get the result type of the getelementptr! - std::vector VIdxList(IdxList.begin(), IdxList.end()); - - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList, - true); + const Type *Ty = + GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList); + unsigned As = cast(C->getType())->getAddressSpace(); + return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx); } -Constant *ConstantExpr::getGetElementPtr(Constant *C, - const std::vector &IdxList) { - // Get the result type of the getelementptr! - const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList, - true); - assert(Ty && "GEP indices invalid!"); - return getGetElementPtrTy(PointerType::get(Ty), C, IdxList); +Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant* const *Idxs, + unsigned NumIdx) { + return getGetElementPtr(C, (Value* const *)Idxs, NumIdx); } + Constant * ConstantExpr::getICmp(unsigned short pred, Constant* LHS, Constant* RHS) { assert(LHS->getType() == RHS->getType()); @@ -1818,6 +2161,79 @@ ConstantExpr::getFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { return ExprConstants->getOrCreate(Type::Int1Ty, Key); } +Constant * +ConstantExpr::getVICmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(isa(LHS->getType()) && + "Tried to create vicmp operation on non-vector type!"); + assert(LHS->getType() == RHS->getType()); + assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && + pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid VICmp Predicate"); + + const VectorType *VTy = cast(LHS->getType()); + const Type *EltTy = VTy->getElementType(); + unsigned NumElts = VTy->getNumElements(); + + SmallVector Elts; + for (unsigned i = 0; i != NumElts; ++i) { + Constant *FC = ConstantFoldCompareInstruction(pred, LHS->getOperand(i), + RHS->getOperand(i)); + if (FC) { + uint64_t Val = cast(FC)->getZExtValue(); + if (Val != 0ULL) + Elts.push_back(ConstantInt::getAllOnesValue(EltTy)); + else + Elts.push_back(ConstantInt::get(EltTy, 0ULL)); + } + } + if (Elts.size() == NumElts) + return ConstantVector::get(&Elts[0], Elts.size()); + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::VICmp, ArgVec, pred); + return ExprConstants->getOrCreate(LHS->getType(), Key); +} + +Constant * +ConstantExpr::getVFCmp(unsigned short pred, Constant* LHS, Constant* RHS) { + assert(isa(LHS->getType()) && + "Tried to create vfcmp operation on non-vector type!"); + assert(LHS->getType() == RHS->getType()); + assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid VFCmp Predicate"); + + const VectorType *VTy = cast(LHS->getType()); + unsigned NumElts = VTy->getNumElements(); + const Type *EltTy = VTy->getElementType(); + const Type *REltTy = IntegerType::get(EltTy->getPrimitiveSizeInBits()); + const Type *ResultTy = VectorType::get(REltTy, NumElts); + + SmallVector Elts; + for (unsigned i = 0; i != NumElts; ++i) { + Constant *FC = ConstantFoldCompareInstruction(pred, LHS->getOperand(i), + RHS->getOperand(i)); + if (FC) { + uint64_t Val = cast(FC)->getZExtValue(); + if (Val != 0ULL) + Elts.push_back(ConstantInt::getAllOnesValue(REltTy)); + else + Elts.push_back(ConstantInt::get(REltTy, 0ULL)); + } + } + if (Elts.size() == NumElts) + return ConstantVector::get(&Elts[0], Elts.size()); + + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(LHS); + ArgVec.push_back(RHS); + // Get the key type with both the opcode and predicate + const ExprMapKeyType Key(Instruction::VFCmp, ArgVec, pred); + return ExprConstants->getOrCreate(ResultTy, Key); +} + Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, Constant *Idx) { if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) @@ -1830,11 +2246,11 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create extractelement operation on non-packed type!"); + assert(isa(Val->getType()) && + "Tried to create extractelement operation on non-vector type!"); assert(Idx->getType() == Type::Int32Ty && "Extractelement index must be i32 type!"); - return getExtractElementTy(cast(Val->getType())->getElementType(), + return getExtractElementTy(cast(Val->getType())->getElementType(), Val, Idx); } @@ -1852,13 +2268,13 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { - assert(isa(Val->getType()) && - "Tried to create insertelement operation on non-packed type!"); - assert(Elt->getType() == cast(Val->getType())->getElementType() + assert(isa(Val->getType()) && + "Tried to create insertelement operation on non-vector type!"); + assert(Elt->getType() == cast(Val->getType())->getElementType() && "Insertelement types must match!"); assert(Idx->getType() == Type::Int32Ty && "Insertelement index must be i32 type!"); - return getInsertElementTy(cast(Val->getType())->getElementType(), + return getInsertElementTy(cast(Val->getType())->getElementType(), Val, Elt, Idx); } @@ -1881,16 +2297,77 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, return getShuffleVectorTy(V1->getType(), V1, V2, Mask); } +Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, + Constant *Val, + const unsigned *Idxs, unsigned NumIdx) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, + Idxs+NumIdx) == Val->getType() && + "insertvalue indices invalid!"); + assert(Agg->getType() == ReqTy && + "insertvalue type invalid!"); + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant InsertValue expression"); + if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx)) + return FC; // Fold a few common cases... + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(Agg); + ArgVec.push_back(Val); + SmallVector Indices(Idxs, Idxs + NumIdx); + const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, Indices); + return ExprConstants->getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, + const unsigned *IdxList, unsigned NumIdx) { + assert(Agg->getType()->isFirstClassType() && + "Tried to create insertelement operation on non-first-class type!"); + + const Type *ReqTy = Agg->getType(); + const Type *ValTy = + ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); + assert(ValTy == Val->getType() && "insertvalue indices invalid!"); + return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx); +} + +Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, + const unsigned *Idxs, unsigned NumIdx) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, + Idxs+NumIdx) == ReqTy && + "extractvalue indices invalid!"); + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant extractvalue expression"); + if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx)) + return FC; // Fold a few common cases... + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec; + ArgVec.push_back(Agg); + SmallVector Indices(Idxs, Idxs + NumIdx); + const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, Indices); + return ExprConstants->getOrCreate(ReqTy, Key); +} + +Constant *ConstantExpr::getExtractValue(Constant *Agg, + const unsigned *IdxList, unsigned NumIdx) { + assert(Agg->getType()->isFirstClassType() && + "Tried to create extractelement operation on non-first-class type!"); + + const Type *ReqTy = + ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); + assert(ReqTy && "extractvalue indices invalid!"); + return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); +} + Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) { - if (const PackedType *PTy = dyn_cast(Ty)) + if (const VectorType *PTy = dyn_cast(Ty)) if (PTy->getElementType()->isFloatingPoint()) { std::vector zeros(PTy->getNumElements(), - ConstantFP::get(PTy->getElementType(),-0.0)); - return ConstantPacked::get(PTy, zeros); + ConstantFP::getNegativeZero(PTy->getElementType())); + return ConstantVector::get(PTy, zeros); } - if (Ty->isFloatingPoint()) - return ConstantFP::get(Ty, -0.0); + if (Ty->isFloatingPoint()) + return ConstantFP::getNegativeZero(Ty); return Constant::getNullValue(Ty); } @@ -1909,14 +2386,21 @@ const char *ConstantExpr::getOpcodeName() const { //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations +/// replaceUsesOfWithOnConstant - Update this constant array to change uses of +/// 'From' to be uses of 'To'. This must update the uniquing data structures +/// etc. +/// +/// Note that we intentionally replace all uses of From with To here. Consider +/// a large array that uses 'From' 1000 times. By handling this case all here, +/// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that +/// single invocation handles all 1000 uses. Handling them one at a time would +/// work, but would be really slow because it would have to unique each updated +/// array instance. void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); - unsigned OperandToUpdate = U-OperandList; - assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair Lookup; Lookup.first.first = getType(); Lookup.second = this; @@ -1927,18 +2411,28 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; + unsigned NumUpdated = 0; if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) - Values.push_back(cast(O->get())); + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } + Values.push_back(Val); + } } else { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; + } Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } - Values[OperandToUpdate] = ToC; Constant *Replacement = 0; if (isAllZeros) { @@ -1958,8 +2452,18 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, // in place! ArrayConstants->MoveConstantToNewSlot(this, I); - // Update to the new value. - setOperand(OperandToUpdate, ToC); + // Update to the new value. Optimize for the case when we have a single + // operand that we're changing, but handle bulk updates efficiently. + if (NumUpdated == 1) { + unsigned OperandToUpdate = U-OperandList; + assert(getOperand(OperandToUpdate) == From && + "ReplaceAllUsesWith broken!"); + setOperand(OperandToUpdate, ToC); + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (getOperand(i) == From) + setOperand(i, ToC); + } return; } } @@ -2038,7 +2542,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, destroyConstant(); } -void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, +void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); @@ -2050,7 +2554,7 @@ void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = ConstantPacked::get(getType(), Values); + Constant *Replacement = ConstantVector::get(getType(), Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. @@ -2067,7 +2571,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Constant *Replacement = 0; if (getOpcode() == Instruction::GetElementPtr) { - std::vector Indices; + SmallVector Indices; Constant *Pointer = getOperand(0); Indices.reserve(getNumOperands()-1); if (Pointer == From) Pointer = To; @@ -2077,7 +2581,24 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (Val == From) Val = To; Indices.push_back(Val); } - Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices); + Replacement = ConstantExpr::getGetElementPtr(Pointer, + &Indices[0], Indices.size()); + } else if (getOpcode() == Instruction::ExtractValue) { + Constant *Agg = getOperand(0); + if (Agg == From) Agg = To; + + const SmallVector &Indices = getIndices(); + Replacement = ConstantExpr::getExtractValue(Agg, + &Indices[0], Indices.size()); + } else if (getOpcode() == Instruction::InsertValue) { + Constant *Agg = getOperand(0); + Constant *Val = getOperand(1); + if (Agg == From) Agg = To; + if (Val == From) Val = To; + + const SmallVector &Indices = getIndices(); + Replacement = ConstantExpr::getInsertValue(Agg, Val, + &Indices[0], Indices.size()); } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); @@ -2166,18 +2687,14 @@ std::string Constant::getStringValue(bool Chop, unsigned Offset) { } } } - } else if (Constant *C = dyn_cast(this)) { - if (GlobalValue *GV = dyn_cast(C)) - return GV->getStringValue(Chop, Offset); - else if (ConstantExpr *CE = dyn_cast(C)) { - if (CE->getOpcode() == Instruction::GetElementPtr) { - // Turn a gep into the specified offset. - if (CE->getNumOperands() == 3 && - cast(CE->getOperand(1))->isNullValue() && - isa(CE->getOperand(2))) { - Offset += cast(CE->getOperand(2))->getZExtValue(); - return CE->getOperand(0)->getStringValue(Chop, Offset); - } + } else if (ConstantExpr *CE = dyn_cast(this)) { + if (CE->getOpcode() == Instruction::GetElementPtr) { + // Turn a gep into the specified offset. + if (CE->getNumOperands() == 3 && + cast(CE->getOperand(1))->isNullValue() && + isa(CE->getOperand(2))) { + Offset += cast(CE->getOperand(2))->getZExtValue(); + return CE->getOperand(0)->getStringValue(Chop, Offset); } } }