X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstants.cpp;h=ba309d9ca0714a96a6e11a4ad13ec65e152ab0e4;hb=559c277aa9242dd5b32d2f2ccc353d938f886ee9;hp=22d43a7d581a36d3b1a5768bc84a98570784dd1a;hpb=b065b06c12dba6001b8140df2744d0c856ef6ea1;p=oota-llvm.git diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index 22d43a7d581..ba309d9ca07 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -31,6 +31,7 @@ #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; @@ -39,8 +40,45 @@ using namespace llvm; // Constant Class //===----------------------------------------------------------------------===// +bool Constant::isNegativeZeroValue() const { + // Floating point values have an explicit -0.0 value. + if (const ConstantFP *CFP = dyn_cast(this)) + return CFP->isZero() && CFP->isNegative(); + + // Otherwise, just use +0.0. + return isNullValue(); +} + +bool Constant::isNullValue() const { + // 0 is null. + if (const ConstantInt *CI = dyn_cast(this)) + return CI->isZero(); + + // +0.0 is null. + if (const ConstantFP *CFP = dyn_cast(this)) + return CFP->isZero() && !CFP->isNegative(); + + // constant zero is zero for aggregates and cpnull is null for pointers. + return isa(this) || isa(this); +} + +bool Constant::isAllOnesValue() const { + // Check for -1 integers + if (const ConstantInt *CI = dyn_cast(this)) + return CI->isMinusOne(); + + // Check for FP which are bitcasted from -1 integers + if (const ConstantFP *CFP = dyn_cast(this)) + return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); + + // Check for constant vectors + if (const ConstantVector *CV = dyn_cast(this)) + return CV->isAllOnesValue(); + + return false; +} // Constructor to create a '0' constant of arbitrary type... -Constant *Constant::getNullValue(const Type *Ty) { +Constant *Constant::getNullValue(Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return ConstantInt::get(Ty, 0); @@ -72,25 +110,25 @@ Constant *Constant::getNullValue(const Type *Ty) { } } -Constant *Constant::getIntegerValue(const Type *Ty, const APInt &V) { - const Type *ScalarTy = Ty->getScalarType(); +Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { + Type *ScalarTy = Ty->getScalarType(); // Create the base integer constant. Constant *C = ConstantInt::get(Ty->getContext(), V); // Convert an integer to a pointer, if necessary. - if (const PointerType *PTy = dyn_cast(ScalarTy)) + if (PointerType *PTy = dyn_cast(ScalarTy)) C = ConstantExpr::getIntToPtr(C, PTy); // Broadcast a scalar to a vector, if necessary. - if (const VectorType *VTy = dyn_cast(Ty)) + if (VectorType *VTy = dyn_cast(Ty)) C = ConstantVector::get(std::vector(VTy->getNumElements(), C)); return C; } -Constant *Constant::getAllOnesValue(const Type *Ty) { - if (const IntegerType *ITy = dyn_cast(Ty)) +Constant *Constant::getAllOnesValue(Type *Ty) { + if (IntegerType *ITy = dyn_cast(Ty)) return ConstantInt::get(Ty->getContext(), APInt::getAllOnesValue(ITy->getBitWidth())); @@ -101,9 +139,9 @@ Constant *Constant::getAllOnesValue(const Type *Ty) { } SmallVector Elts; - const VectorType *VTy = cast(Ty); + VectorType *VTy = cast(Ty); Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); - assert(Elts[0] && "Not a vector integer type!"); + assert(Elts[0] && "Invalid AllOnes value!"); return cast(ConstantVector::get(Elts)); } @@ -246,7 +284,7 @@ void Constant::getVectorElements(SmallVectorImpl &Elts) const { return; } - const VectorType *VT = cast(getType()); + VectorType *VT = cast(getType()); if (isa(this)) { Elts.assign(VT->getNumElements(), Constant::getNullValue(VT->getElementType())); @@ -320,7 +358,7 @@ void Constant::removeDeadConstantUsers() const { // ConstantInt //===----------------------------------------------------------------------===// -ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V) +ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } @@ -339,8 +377,8 @@ ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { return pImpl->TheFalseVal; } -Constant *ConstantInt::getTrue(const Type *Ty) { - const VectorType *VTy = dyn_cast(Ty); +Constant *ConstantInt::getTrue(Type *Ty) { + VectorType *VTy = dyn_cast(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); return ConstantInt::getTrue(Ty->getContext()); @@ -352,8 +390,8 @@ Constant *ConstantInt::getTrue(const Type *Ty) { return ConstantVector::get(Splat); } -Constant *ConstantInt::getFalse(const Type *Ty) { - const VectorType *VTy = dyn_cast(Ty); +Constant *ConstantInt::getFalse(Type *Ty) { + VectorType *VTy = dyn_cast(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); return ConstantInt::getFalse(Ty->getContext()); @@ -373,7 +411,7 @@ Constant *ConstantInt::getFalse(const Type *Ty) { // invariant which generates an assertion. ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { // Get the corresponding integer type for the bit width of the value. - const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); + IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); // get an existing value or the insertion position DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; @@ -381,44 +419,44 @@ ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { return Slot; } -Constant *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) { +Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { Constant *C = get(cast(Ty->getScalarType()), V, isSigned); // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast(Ty)) + if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get(SmallVector(VTy->getNumElements(), C)); return C; } -ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V, +ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } -ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) { +ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) { return get(Ty, V, true); } -Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) { +Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { return get(Ty, V, true); } -Constant *ConstantInt::get(const Type* Ty, const APInt& V) { +Constant *ConstantInt::get(Type* Ty, const APInt& V) { ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast(Ty)) + if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); return C; } -ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str, +ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } @@ -427,7 +465,7 @@ ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str, // ConstantFP //===----------------------------------------------------------------------===// -static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { +static const fltSemantics *TypeToFloatSemantics(Type *Ty) { if (Ty->isFloatTy()) return &APFloat::IEEEsingle; if (Ty->isDoubleTy()) @@ -444,7 +482,7 @@ static const fltSemantics *TypeToFloatSemantics(const Type *Ty) { /// get() - This returns a constant fp for the specified value in the /// specified type. This should only be used for simple constant values like /// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(const Type* Ty, double V) { +Constant *ConstantFP::get(Type* Ty, double V) { LLVMContext &Context = Ty->getContext(); APFloat FV(V); @@ -454,7 +492,7 @@ Constant *ConstantFP::get(const Type* Ty, double V) { Constant *C = get(Context, FV); // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast(Ty)) + if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); @@ -462,14 +500,14 @@ Constant *ConstantFP::get(const Type* Ty, double V) { } -Constant *ConstantFP::get(const Type* Ty, StringRef Str) { +Constant *ConstantFP::get(Type* Ty, StringRef Str) { LLVMContext &Context = Ty->getContext(); APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); Constant *C = get(Context, FV); // For vectors, broadcast the value. - if (const VectorType *VTy = dyn_cast(Ty)) + if (VectorType *VTy = dyn_cast(Ty)) return ConstantVector::get( SmallVector(VTy->getNumElements(), C)); @@ -477,7 +515,7 @@ Constant *ConstantFP::get(const Type* Ty, StringRef Str) { } -ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { +ConstantFP* ConstantFP::getNegativeZero(Type* Ty) { LLVMContext &Context = Ty->getContext(); APFloat apf = cast (Constant::getNullValue(Ty))->getValueAPF(); apf.changeSign(); @@ -485,8 +523,8 @@ ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) { } -Constant *ConstantFP::getZeroValueForNegation(const Type* Ty) { - if (const VectorType *PTy = dyn_cast(Ty)) +Constant *ConstantFP::getZeroValueForNegation(Type* Ty) { + if (VectorType *PTy = dyn_cast(Ty)) if (PTy->getElementType()->isFloatingPointTy()) { SmallVector zeros(PTy->getNumElements(), getNegativeZero(PTy->getElementType())); @@ -509,7 +547,7 @@ ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { ConstantFP *&Slot = pImpl->FPConstants[Key]; if (!Slot) { - const Type *Ty; + Type *Ty; if (&V.getSemantics() == &APFloat::IEEEsingle) Ty = Type::getFloatTy(Context); else if (&V.getSemantics() == &APFloat::IEEEdouble) @@ -529,23 +567,19 @@ ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { return Slot; } -ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) { +ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); return ConstantFP::get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); } -ConstantFP::ConstantFP(const Type *Ty, const APFloat& V) +ConstantFP::ConstantFP(Type *Ty, const APFloat& V) : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && "FP type Mismatch"); } -bool ConstantFP::isNullValue() const { - return Val.isZero() && !Val.isNegative(); -} - -bool ConstantFP::isExactlyValue(const APFloat& V) const { +bool ConstantFP::isExactlyValue(const APFloat &V) const { return Val.bitwiseIsEqual(V); } @@ -554,25 +588,19 @@ bool ConstantFP::isExactlyValue(const APFloat& V) const { //===----------------------------------------------------------------------===// -ConstantArray::ConstantArray(const ArrayType *T, - const std::vector &V) +ConstantArray::ConstantArray(ArrayType *T, ArrayRef V) : Constant(T, ConstantArrayVal, OperandTraits::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant array"); - Use *OL = OperandList; - for (std::vector::const_iterator I = V.begin(), E = V.end(); - I != E; ++I, ++OL) { - Constant *C = *I; - assert(C->getType() == T->getElementType() && + for (unsigned i = 0, e = V.size(); i != e; ++i) + assert(V[i]->getType() == T->getElementType() && "Initializer for array element doesn't match array element type!"); - *OL = C; - } + std::copy(V.begin(), V.end(), op_begin()); } -Constant *ConstantArray::get(const ArrayType *Ty, - const std::vector &V) { +Constant *ConstantArray::get(ArrayType *Ty, ArrayRef V) { for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == Ty->getElementType() && "Wrong type in array element initializer"); @@ -592,13 +620,6 @@ Constant *ConstantArray::get(const ArrayType *Ty, return ConstantAggregateZero::get(Ty); } - -Constant *ConstantArray::get(const ArrayType* T, Constant *const* Vals, - unsigned NumVals) { - // FIXME: make this the primary ctor method. - return get(T, std::vector(Vals, Vals+NumVals)); -} - /// ConstantArray::get(const string&) - Return an array that is initialized to /// contain the specified string. If length is zero then a null terminator is /// added to the specified string so that it may be used in a natural way. @@ -626,7 +647,7 @@ Constant *ConstantArray::get(LLVMContext &Context, StringRef Str, StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, ArrayRef V, bool Packed) { - SmallVector EltTypes; + SmallVector EltTypes; for (unsigned i = 0, e = V.size(); i != e; ++i) EltTypes.push_back(V[i]->getType()); @@ -642,39 +663,31 @@ StructType *ConstantStruct::getTypeForElements(ArrayRef V, } -ConstantStruct::ConstantStruct(const StructType *T, - const std::vector &V) +ConstantStruct::ConstantStruct(StructType *T, ArrayRef V) : Constant(T, ConstantStructVal, OperandTraits::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant structure"); - Use *OL = OperandList; - for (std::vector::const_iterator I = V.begin(), E = V.end(); - I != E; ++I, ++OL) { - Constant *C = *I; - assert(C->getType() == T->getElementType(I-V.begin()) && + for (unsigned i = 0, e = V.size(); i != e; ++i) + assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && "Initializer for struct element doesn't match struct element type!"); - *OL = C; - } + std::copy(V.begin(), V.end(), op_begin()); } // ConstantStruct accessors. -Constant *ConstantStruct::get(const StructType *ST, ArrayRef V) { - assert(ST->getNumElements() == V.size() && - "Incorrect # elements specified to ConstantStruct::get"); - +Constant *ConstantStruct::get(StructType *ST, ArrayRef V) { // Create a ConstantAggregateZero value if all elements are zeros. for (unsigned i = 0, e = V.size(); i != e; ++i) - if (!V[i]->isNullValue()) { - // FIXME: Eliminate temporary std::vector here! - return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V.vec()); - } + if (!V[i]->isNullValue()) + return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); + assert((ST->isOpaque() || ST->getNumElements() == V.size()) && + "Incorrect # elements specified to ConstantStruct::get"); return ConstantAggregateZero::get(ST); } -Constant* ConstantStruct::get(const StructType *T, ...) { +Constant *ConstantStruct::get(StructType *T, ...) { va_list ap; SmallVector Values; va_start(ap, T); @@ -684,25 +697,20 @@ Constant* ConstantStruct::get(const StructType *T, ...) { return get(T, Values); } -ConstantVector::ConstantVector(const VectorType *T, - const std::vector &V) +ConstantVector::ConstantVector(VectorType *T, ArrayRef V) : Constant(T, ConstantVectorVal, OperandTraits::op_end(this) - V.size(), V.size()) { - Use *OL = OperandList; - for (std::vector::const_iterator I = V.begin(), E = V.end(); - I != E; ++I, ++OL) { - Constant *C = *I; - assert(C->getType() == T->getElementType() && + for (size_t i = 0, e = V.size(); i != e; i++) + assert(V[i]->getType() == T->getElementType() && "Initializer for vector element doesn't match vector element type!"); - *OL = C; - } + std::copy(V.begin(), V.end(), op_begin()); } // ConstantVector accessors. -Constant *ConstantVector::get(const VectorType *T, - const std::vector &V) { +Constant *ConstantVector::get(ArrayRef V) { assert(!V.empty() && "Vectors can't be empty"); + VectorType *T = VectorType::get(V.front()->getType(), V.size()); LLVMContextImpl *pImpl = T->getContext().pImpl; // If this is an all-undef or all-zero vector, return a @@ -727,12 +735,6 @@ Constant *ConstantVector::get(const VectorType *T, return pImpl->VectorConstants.getOrCreate(T, V); } -Constant *ConstantVector::get(ArrayRef V) { - // FIXME: make this the primary ctor method. - assert(!V.empty() && "Vectors cannot be empty"); - return get(VectorType::get(V.front()->getType(), V.size()), V.vec()); -} - // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into // Constant.h @@ -759,7 +761,7 @@ bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { for (; GEPI != E; ++GEPI, ++OI) { ConstantInt *CI = dyn_cast(*OI); if (!CI) return false; - if (const ArrayType *ATy = dyn_cast(*GEPI)) + if (ArrayType *ATy = dyn_cast(*GEPI)) if (CI->getValue().getActiveBits() > 64 || CI->getZExtValue() >= ATy->getNumElements()) return false; @@ -783,8 +785,7 @@ ArrayRef ConstantExpr::getIndices() const { } unsigned ConstantExpr::getPredicate() const { - assert(getOpcode() == Instruction::FCmp || - getOpcode() == Instruction::ICmp); + assert(isCompare()); return ((const CompareConstantExpr*)this)->predicate; } @@ -838,13 +839,13 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) Ops[i-1] = getOperand(i); if (OpNo == 0) - return cast(this)->isInBounds() ? - ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) : - ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size()); + return + ConstantExpr::getGetElementPtr(Op, Ops, + cast(this)->isInBounds()); Ops[OpNo-1] = Op; - return cast(this)->isInBounds() ? - ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()): - ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size()); + return + ConstantExpr::getGetElementPtr(getOperand(0), Ops, + cast(this)->isInBounds()); } default: assert(getNumOperands() == 2 && "Must be binary operator?"); @@ -855,17 +856,15 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { } /// getWithOperands - This returns the current constant expression with the -/// operands replaced with the specified values. The specified operands must -/// match count and type with the existing ones. +/// operands replaced with the specified values. The specified array must +/// have the same number of operands as our current one. Constant *ConstantExpr:: -getWithOperands(ArrayRef Ops) const { +getWithOperands(ArrayRef Ops, Type *Ty) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); - bool AnyChange = false; - for (unsigned i = 0; i != Ops.size(); ++i) { - assert(Ops[i]->getType() == getOperand(i)->getType() && - "Operand type mismatch!"); + bool AnyChange = Ty != getType(); + for (unsigned i = 0; i != Ops.size(); ++i) AnyChange |= Ops[i] != getOperand(i); - } + if (!AnyChange) // No operands changed, return self. return const_cast(this); @@ -882,7 +881,7 @@ getWithOperands(ArrayRef Ops) const { case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: - return ConstantExpr::getCast(getOpcode(), Ops[0], getType()); + return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); case Instruction::Select: return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: @@ -892,9 +891,9 @@ getWithOperands(ArrayRef Ops) const { case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: - return cast(this)->isInBounds() ? - ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], Ops.size()-1) : - ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1); + return + ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), + cast(this)->isInBounds()); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); @@ -908,7 +907,7 @@ getWithOperands(ArrayRef Ops) const { //===----------------------------------------------------------------------===// // isValueValidForType implementations -bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { +bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1; @@ -918,7 +917,7 @@ bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) { return Val <= Max; } -bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { +bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { unsigned NumBits = cast(Ty)->getBitWidth(); // assert okay if (Ty == Type::getInt1Ty(Ty->getContext())) return Val == 0 || Val == 1 || Val == -1; @@ -929,7 +928,7 @@ bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) { return (Val >= Min && Val <= Max); } -bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { +bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); bool losesInfo; @@ -969,7 +968,7 @@ bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) { //===----------------------------------------------------------------------===// // Factory Function Implementation -ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { +ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) { assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); @@ -980,14 +979,14 @@ ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) { /// destroyConstant - Remove the constant from the constant table... /// void ConstantAggregateZero::destroyConstant() { - getRawType()->getContext().pImpl->AggZeroConstants.remove(this); + getType()->getContext().pImpl->AggZeroConstants.remove(this); destroyConstantImpl(); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantArray::destroyConstant() { - getRawType()->getContext().pImpl->ArrayConstants.remove(this); + getType()->getContext().pImpl->ArrayConstants.remove(this); destroyConstantImpl(); } @@ -1027,55 +1026,69 @@ bool ConstantArray::isCString() const { } -/// getAsString - If the sub-element type of this array is i8 -/// then this method converts the array to an std::string and returns it. -/// Otherwise, it asserts out. +/// convertToString - Helper function for getAsString() and getAsCString(). +static std::string convertToString(const User *U, unsigned len) { + std::string Result; + Result.reserve(len); + for (unsigned i = 0; i != len; ++i) + Result.push_back((char)cast(U->getOperand(i))->getZExtValue()); + return Result; +} + +/// getAsString - If this array is isString(), then this method converts the +/// array to an std::string and returns it. Otherwise, it asserts out. /// std::string ConstantArray::getAsString() const { assert(isString() && "Not a string!"); - std::string Result; - Result.reserve(getNumOperands()); - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - Result.push_back((char)cast(getOperand(i))->getZExtValue()); - return Result; + return convertToString(this, getNumOperands()); } -//---- ConstantStruct::get() implementation... -// +/// getAsCString - If this array is isCString(), then this method converts the +/// array (without the trailing null byte) to an std::string and returns it. +/// Otherwise, it asserts out. +/// +std::string ConstantArray::getAsCString() const { + assert(isCString() && "Not a string!"); + return convertToString(this, getNumOperands() - 1); +} -namespace llvm { -} +//---- ConstantStruct::get() implementation... +// // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { - getRawType()->getContext().pImpl->StructConstants.remove(this); + getType()->getContext().pImpl->StructConstants.remove(this); destroyConstantImpl(); } // destroyConstant - Remove the constant from the constant table... // void ConstantVector::destroyConstant() { - getRawType()->getContext().pImpl->VectorConstants.remove(this); + getType()->getContext().pImpl->VectorConstants.remove(this); destroyConstantImpl(); } /// This function will return true iff every element in this vector constant /// is set to all ones. -/// @returns true iff this constant's emements are all set to all ones. +/// @returns true iff this constant's elements are all set to all ones. /// @brief Determine if the value is all ones. bool ConstantVector::isAllOnesValue() const { // Check out first element. const Constant *Elt = getOperand(0); const ConstantInt *CI = dyn_cast(Elt); - if (!CI || !CI->isAllOnesValue()) return false; + const ConstantFP *CF = dyn_cast(Elt); + // Then make sure all remaining elements point to the same value. - for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { - if (getOperand(I) != Elt) return false; - } - return true; + for (unsigned I = 1, E = getNumOperands(); I < E; ++I) + if (getOperand(I) != Elt) + return false; + + // First value is all-ones. + return (CI && CI->isAllOnesValue()) || + (CF && CF->isAllOnesValue()); } /// getSplatValue - If this is a splat constant, where all of the @@ -1085,21 +1098,22 @@ Constant *ConstantVector::getSplatValue() const { Constant *Elt = getOperand(0); // Then make sure all remaining elements point to the same value. for (unsigned I = 1, E = getNumOperands(); I < E; ++I) - if (getOperand(I) != Elt) return 0; + if (getOperand(I) != Elt) + return 0; return Elt; } //---- ConstantPointerNull::get() implementation. // -ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { +ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { - getRawType()->getContext().pImpl->NullPtrConstants.remove(this); + getType()->getContext().pImpl->NullPtrConstants.remove(this); destroyConstantImpl(); } @@ -1107,14 +1121,14 @@ void ConstantPointerNull::destroyConstant() { //---- UndefValue::get() implementation. // -UndefValue *UndefValue::get(const Type *Ty) { +UndefValue *UndefValue::get(Type *Ty) { return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { - getRawType()->getContext().pImpl->UndefValueConstants.remove(this); + getType()->getContext().pImpl->UndefValueConstants.remove(this); destroyConstantImpl(); } @@ -1148,7 +1162,7 @@ BlockAddress::BlockAddress(Function *F, BasicBlock *BB) // destroyConstant - Remove the constant from the constant table. // void BlockAddress::destroyConstant() { - getFunction()->getRawType()->getContext().pImpl + getFunction()->getType()->getContext().pImpl ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); getBasicBlock()->AdjustBlockAddressRefCount(-1); destroyConstantImpl(); @@ -1187,7 +1201,7 @@ void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(NewBA != this && "I didn't contain From!"); // Everyone using this now uses the replacement. - uncheckedReplaceAllUsesWith(NewBA); + replaceAllUsesWith(NewBA); destroyConstant(); } @@ -1198,7 +1212,7 @@ void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. static inline Constant *getFoldedCast( - Instruction::CastOps opc, Constant *C, const Type *Ty) { + Instruction::CastOps opc, Constant *C, Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) @@ -1213,7 +1227,7 @@ static inline Constant *getFoldedCast( return pImpl->ExprConstants.getOrCreate(Ty, Key); } -Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { +Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); assert(C && Ty && "Null arguments to getCast"); @@ -1239,25 +1253,25 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) { return 0; } -Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getZExt(C, Ty); } -Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getSExt(C, Ty); } -Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getTrunc(C, Ty); } -Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { +Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { assert(S->getType()->isPointerTy() && "Invalid cast"); assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); @@ -1266,7 +1280,7 @@ Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) { return getBitCast(S, Ty); } -Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, +Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); @@ -1279,7 +1293,7 @@ Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty, return getCast(opcode, C, Ty); } -Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); @@ -1291,7 +1305,7 @@ Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) { return getCast(opcode, C, Ty); } -Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1305,7 +1319,7 @@ Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::Trunc, C, Ty); } -Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1319,7 +1333,7 @@ Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::SExt, C, Ty); } -Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1333,7 +1347,7 @@ Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::ZExt, C, Ty); } -Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1345,7 +1359,7 @@ Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::FPTrunc, C, Ty); } -Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1357,7 +1371,7 @@ Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::FPExt, C, Ty); } -Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1368,7 +1382,7 @@ Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::UIToFP, C, Ty); } -Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1379,7 +1393,7 @@ Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::SIToFP, C, Ty); } -Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1390,7 +1404,7 @@ Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::FPToUI, C, Ty); } -Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { +Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; @@ -1401,19 +1415,19 @@ Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) { return getFoldedCast(Instruction::FPToSI, C, Ty); } -Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) { +Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } -Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) { +Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } -Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { +Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"); @@ -1424,49 +1438,15 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) { return getFoldedCast(Instruction::BitCast, C, DstTy); } -Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode, - Constant *C1, Constant *C2, - unsigned Flags) { - // Check the operands for consistency first +Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) { + // Check the operands for consistency first. assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); - - if (ReqTy == C1->getType() || ReqTy == Type::getInt1Ty(ReqTy->getContext())) - if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) - return FC; // Fold a few common cases... - - std::vector argVec(1, C1); argVec.push_back(C2); - ExprMapKeyType Key(Opcode, argVec, 0, Flags); - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - -Constant *ConstantExpr::getCompareTy(unsigned short predicate, - Constant *C1, Constant *C2) { - switch (predicate) { - default: llvm_unreachable("Invalid CmpInst predicate"); - case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: - case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: - case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: - case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: - case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: - case CmpInst::FCMP_TRUE: - return getFCmp(predicate, C1, C2); - - case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: - case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: - case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: - case CmpInst::ICMP_SLE: - return getICmp(predicate, C1, C2); - } -} - -Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, - unsigned Flags) { #ifndef NDEBUG switch (Opcode) { case Instruction::Add: @@ -1525,39 +1505,47 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, } #endif - return getTy(C1->getType(), Opcode, C1, C2, Flags); + if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) + return FC; // Fold a few common cases. + + std::vector argVec(1, C1); + argVec.push_back(C2); + ExprMapKeyType Key(Opcode, argVec, 0, Flags); + + LLVMContextImpl *pImpl = C1->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); } -Constant *ConstantExpr::getSizeOf(const Type* Ty) { +Constant *ConstantExpr::getSizeOf(Type* Ty) { // sizeof is implemented as: (i64) gep (Ty*)null, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *GEP = getGetElementPtr( - Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1); + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } -Constant *ConstantExpr::getAlignOf(const Type* Ty) { +Constant *ConstantExpr::getAlignOf(Type* Ty) { // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 // Note that a non-inbounds gep is used, as null isn't within any object. - const Type *AligningTy = + Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *Indices[2] = { Zero, One }; - Constant *GEP = getGetElementPtr(NullPtr, Indices, 2); + Constant *GEP = getGetElementPtr(NullPtr, Indices); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } -Constant *ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) { +Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)); } -Constant *ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) { +Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx[] = { @@ -1565,82 +1553,74 @@ Constant *ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) { FieldNo }; Constant *GEP = getGetElementPtr( - Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2); + Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } -Constant *ConstantExpr::getCompare(unsigned short pred, - Constant *C1, Constant *C2) { +Constant *ConstantExpr::getCompare(unsigned short Predicate, + Constant *C1, Constant *C2) { assert(C1->getType() == C2->getType() && "Op types should be identical!"); - return getCompareTy(pred, C1, C2); + + switch (Predicate) { + default: llvm_unreachable("Invalid CmpInst predicate"); + case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: + case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: + case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: + case CmpInst::FCMP_TRUE: + return getFCmp(Predicate, C1, C2); + + case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: + case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: + case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + return getICmp(Predicate, C1, C2); + } } -Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C, - Constant *V1, Constant *V2) { +Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); - if (ReqTy == V1->getType()) - if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) - return SC; // Fold common cases + if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) + return SC; // Fold common cases std::vector argVec(3, C); argVec[1] = V1; argVec[2] = V2; ExprMapKeyType Key(Instruction::Select, argVec); - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = C->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); } -template -Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C, - IndexTy const *Idxs, - unsigned NumIdx, bool InBounds) { - assert(GetElementPtrInst::getIndexedType(C->getType(), Idxs, - Idxs+NumIdx) == - cast(ReqTy)->getElementType() && - "GEP indices invalid!"); - - if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs, NumIdx)) +Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef Idxs, + bool InBounds) { + if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) return FC; // Fold a few common cases. + // Get the result type of the getelementptr! + Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); + assert(Ty && "GEP indices invalid!"); + unsigned AS = cast(C->getType())->getAddressSpace(); + Type *ReqTy = Ty->getPointerTo(AS); + assert(C->getType()->isPointerTy() && "Non-pointer type for constant GetElementPtr expression"); // Look up the constant in the table first to ensure uniqueness std::vector ArgVec; - ArgVec.reserve(NumIdx+1); + ArgVec.reserve(1 + Idxs.size()); ArgVec.push_back(C); - for (unsigned i = 0; i != NumIdx; ++i) + for (unsigned i = 0, e = Idxs.size(); i != e; ++i) ArgVec.push_back(cast(Idxs[i])); const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, InBounds ? GEPOperator::IsInBounds : 0); - - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + + LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } -template -Constant *ConstantExpr::getGetElementPtrImpl(Constant *C, IndexTy const *Idxs, - unsigned NumIdx, bool InBounds) { - // Get the result type of the getelementptr! - const Type *Ty = - GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx); - assert(Ty && "GEP indices invalid!"); - unsigned As = cast(C->getType())->getAddressSpace(); - return getGetElementPtrTy(PointerType::get(Ty, As), C, Idxs, NumIdx,InBounds); -} - -Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs, - unsigned NumIdx, bool InBounds) { - return getGetElementPtrImpl(C, Idxs, NumIdx, InBounds); -} - -Constant *ConstantExpr::getGetElementPtr(Constant *C, Constant *const *Idxs, - unsigned NumIdx, bool InBounds) { - return getGetElementPtrImpl(C, Idxs, NumIdx, InBounds); -} - Constant * ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); @@ -1657,8 +1637,8 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); - const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); - if (const VectorType *VT = dyn_cast(LHS->getType())) + Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; @@ -1680,47 +1660,30 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); - const Type *ResultTy = Type::getInt1Ty(LHS->getContext()); - if (const VectorType *VT = dyn_cast(LHS->getType())) + Type *ResultTy = Type::getInt1Ty(LHS->getContext()); + if (VectorType *VT = dyn_cast(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } -Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val, - Constant *Idx) { - if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) - return FC; // Fold a few common cases. - // Look up the constant in the table first to ensure uniqueness - std::vector ArgVec(1, Val); - ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); - - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); -} - Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create extractelement operation on non-vector type!"); assert(Idx->getType()->isIntegerTy(32) && "Extractelement index must be i32 type!"); - return getExtractElementTy(cast(Val->getType())->getElementType(), - Val, Idx); -} - -Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val, - Constant *Elt, Constant *Idx) { - if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + + if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) return FC; // Fold a few common cases. + // Look up the constant in the table first to ensure uniqueness std::vector ArgVec(1, Val); - ArgVec.push_back(Elt); ArgVec.push_back(Idx); - const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); + const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; + LLVMContextImpl *pImpl = Val->getContext().pImpl; + Type *ReqTy = cast(Val->getType())->getElementType(); return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } @@ -1732,21 +1695,17 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, && "Insertelement types must match!"); assert(Idx->getType()->isIntegerTy(32) && "Insertelement index must be i32 type!"); - return getInsertElementTy(Val->getType(), Val, Elt, Idx); -} -Constant *ConstantExpr::getShuffleVectorTy(const Type *ReqTy, Constant *V1, - Constant *V2, Constant *Mask) { - if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) - return FC; // Fold a few common cases... + if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) + return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness - std::vector ArgVec(1, V1); - ArgVec.push_back(V2); - ArgVec.push_back(Mask); - const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + std::vector ArgVec(1, Val); + ArgVec.push_back(Elt); + ArgVec.push_back(Idx); + const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); - LLVMContextImpl *pImpl = ReqTy->getContext().pImpl; - return pImpl->ExprConstants.getOrCreate(ReqTy, Key); + LLVMContextImpl *pImpl = Val->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, @@ -1754,62 +1713,49 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && "Invalid shuffle vector constant expr operands!"); + if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) + return FC; // Fold a few common cases. + unsigned NElts = cast(Mask->getType())->getNumElements(); - const Type *EltTy = cast(V1->getType())->getElementType(); - const Type *ShufTy = VectorType::get(EltTy, NElts); - return getShuffleVectorTy(ShufTy, V1, V2, Mask); -} + Type *EltTy = cast(V1->getType())->getElementType(); + Type *ShufTy = VectorType::get(EltTy, NElts); -Constant *ConstantExpr::getInsertValueTy(const Type *ReqTy, Constant *Agg, - Constant *Val, - const unsigned *Idxs, unsigned NumIdx) { - assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, - Idxs+NumIdx) == Val->getType() && - "insertvalue indices invalid!"); - assert(Agg->getType() == ReqTy && - "insertvalue type invalid!"); - assert(Agg->getType()->isFirstClassType() && - "Non-first-class type for constant InsertValue expression"); - Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx); - assert(FC && "InsertValue constant expr couldn't be folded!"); - return FC; + // Look up the constant in the table first to ensure uniqueness + std::vector ArgVec(1, V1); + ArgVec.push_back(V2); + ArgVec.push_back(Mask); + const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); + + LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; + return pImpl->ExprConstants.getOrCreate(ShufTy, Key); } Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, - const unsigned *IdxList, unsigned NumIdx) { - assert(Agg->getType()->isFirstClassType() && - "Tried to create insertelement operation on non-first-class type!"); - - const Type *ReqTy = Agg->getType(); -#ifndef NDEBUG - const Type *ValTy = - ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); -#endif - assert(ValTy == Val->getType() && "insertvalue indices invalid!"); - return getInsertValueTy(ReqTy, Agg, Val, IdxList, NumIdx); -} - -Constant *ConstantExpr::getExtractValueTy(const Type *ReqTy, Constant *Agg, - const unsigned *Idxs, unsigned NumIdx) { - assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs, - Idxs+NumIdx) == ReqTy && - "extractvalue indices invalid!"); + ArrayRef Idxs) { + assert(ExtractValueInst::getIndexedType(Agg->getType(), + Idxs) == Val->getType() && + "insertvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && - "Non-first-class type for constant extractvalue expression"); - Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx); - assert(FC && "ExtractValue constant expr couldn't be folded!"); + "Non-first-class type for constant insertvalue expression"); + Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); + assert(FC && "insertvalue constant expr couldn't be folded!"); return FC; } Constant *ConstantExpr::getExtractValue(Constant *Agg, - const unsigned *IdxList, unsigned NumIdx) { + ArrayRef Idxs) { assert(Agg->getType()->isFirstClassType() && "Tried to create extractelement operation on non-first-class type!"); - const Type *ReqTy = - ExtractValueInst::getIndexedType(Agg->getType(), IdxList, IdxList+NumIdx); + Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); + (void)ReqTy; assert(ReqTy && "extractvalue indices invalid!"); - return getExtractValueTy(ReqTy, Agg, IdxList, NumIdx); + + assert(Agg->getType()->isFirstClassType() && + "Non-first-class type for constant extractvalue expression"); + Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); + assert(FC && "ExtractValue constant expr couldn't be folded!"); + return FC; } Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { @@ -1922,7 +1868,7 @@ Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { - getRawType()->getContext().pImpl->ExprConstants.remove(this); + getType()->getContext().pImpl->ExprConstants.remove(this); destroyConstantImpl(); } @@ -1934,7 +1880,7 @@ const char *ConstantExpr::getOpcodeName() const { GetElementPtrConstantExpr:: GetElementPtrConstantExpr(Constant *C, const std::vector &IdxList, - const Type *DestTy) + Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, OperandTraits::op_end(this) - (IdxList.size()+1), IdxList.size()+1) { @@ -1963,10 +1909,10 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); - LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + LLVMContextImpl *pImpl = getType()->getContext().pImpl; std::pair Lookup; - Lookup.first.first = cast(getRawType()); + Lookup.first.first = cast(getType()); Lookup.second = this; std::vector &Values = Lookup.first.second; @@ -2000,7 +1946,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Constant *Replacement = 0; if (isAllZeros) { - Replacement = ConstantAggregateZero::get(getRawType()); + Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this array type already. bool Exists; @@ -2036,7 +1982,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. - uncheckedReplaceAllUsesWith(Replacement); + replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); @@ -2051,7 +1997,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); std::pair Lookup; - Lookup.first.first = cast(getRawType()); + Lookup.first.first = cast(getType()); Lookup.second = this; std::vector &Values = Lookup.first.second; Values.reserve(getNumOperands()); // Build replacement struct. @@ -2073,11 +2019,11 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, } Values[OperandToUpdate] = ToC; - LLVMContextImpl *pImpl = getRawType()->getContext().pImpl; + LLVMContextImpl *pImpl = getContext().pImpl; Constant *Replacement = 0; if (isAllZeros) { - Replacement = ConstantAggregateZero::get(getRawType()); + Replacement = ConstantAggregateZero::get(getType()); } else { // Check to see if we have this struct type already. bool Exists; @@ -2102,7 +2048,7 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. - uncheckedReplaceAllUsesWith(Replacement); + replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); @@ -2120,11 +2066,11 @@ void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Values.push_back(Val); } - Constant *Replacement = get(cast(getRawType()), Values); + Constant *Replacement = get(Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. - uncheckedReplaceAllUsesWith(Replacement); + replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); @@ -2147,16 +2093,14 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (Val == From) Val = To; Indices.push_back(Val); } - Replacement = ConstantExpr::getGetElementPtr(Pointer, - &Indices[0], Indices.size(), + Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices, cast(this)->isInBounds()); } else if (getOpcode() == Instruction::ExtractValue) { Constant *Agg = getOperand(0); if (Agg == From) Agg = To; ArrayRef Indices = getIndices(); - Replacement = ConstantExpr::getExtractValue(Agg, - &Indices[0], Indices.size()); + Replacement = ConstantExpr::getExtractValue(Agg, Indices); } else if (getOpcode() == Instruction::InsertValue) { Constant *Agg = getOperand(0); Constant *Val = getOperand(1); @@ -2164,11 +2108,10 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, if (Val == From) Val = To; ArrayRef Indices = getIndices(); - Replacement = ConstantExpr::getInsertValue(Agg, Val, - &Indices[0], Indices.size()); + Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices); } else if (isCast()) { assert(getOperand(0) == From && "Cast only has one use!"); - Replacement = ConstantExpr::getCast(getOpcode(), To, getRawType()); + Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); } else if (getOpcode() == Instruction::Select) { Constant *C1 = getOperand(0); Constant *C2 = getOperand(1); @@ -2224,7 +2167,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. - uncheckedReplaceAllUsesWith(Replacement); + replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant();