X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FConstantsContext.h;h=2f2fac53f062e93e6c589372a61fcec649d39ed3;hb=3472766f9eb7d66f234c390ce1b3a8b76f0ee9ce;hp=f1d4b25e1bcdd4b90bea741533b40bc88fb61500;hpb=9d3627ea27195534242ec8026a9b8c888b85bbba;p=oota-llvm.git diff --git a/lib/VMCore/ConstantsContext.h b/lib/VMCore/ConstantsContext.h index f1d4b25e1bc..2f2fac53f06 100644 --- a/lib/VMCore/ConstantsContext.h +++ b/lib/VMCore/ConstantsContext.h @@ -1,4 +1,4 @@ -//===---------------- ConstantsContext.h - Implementation ------*- C++ -*--===// +//===-- ConstantsContext.h - Constants-related Context Interals -----------===// // // The LLVM Compiler Infrastructure // @@ -15,13 +15,12 @@ #ifndef LLVM_CONSTANTSCONTEXT_H #define LLVM_CONSTANTSCONTEXT_H +#include "llvm/InlineAsm.h" #include "llvm/Instructions.h" -#include "llvm/Metadata.h" #include "llvm/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" -#include "llvm/System/Mutex.h" -#include "llvm/System/RWMutex.h" +#include "llvm/Support/raw_ostream.h" #include namespace llvm { @@ -53,10 +52,12 @@ public: void *operator new(size_t s) { return User::operator new(s, 2); } - BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) + BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2, + unsigned Flags) : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) { Op<0>() = C1; Op<1>() = C2; + SubclassOptionalData = Flags; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); @@ -206,9 +207,12 @@ class GetElementPtrConstantExpr : public ConstantExpr { public: static GetElementPtrConstantExpr *Create(Constant *C, const std::vector&IdxList, - const Type *DestTy) { - return + const Type *DestTy, + unsigned Flags) { + GetElementPtrConstantExpr *Result = new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy); + Result->SubclassOptionalData = Flags; + return Result; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); @@ -235,54 +239,54 @@ struct CompareConstantExpr : public ConstantExpr { }; template <> -struct OperandTraits : FixedNumOperandTraits<1> { +struct OperandTraits : public FixedNumOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<2> { +struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<3> { +struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<2> { +struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<3> { +struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<3> { +struct OperandTraits : public FixedNumOperandTraits<3> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<1> { +struct OperandTraits : public FixedNumOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<2> { +struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value) template <> -struct OperandTraits : VariadicOperandTraits<1> { +struct OperandTraits : public VariadicOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value) template <> -struct OperandTraits : FixedNumOperandTraits<2> { +struct OperandTraits : public FixedNumOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value) @@ -291,26 +295,32 @@ struct ExprMapKeyType { ExprMapKeyType(unsigned opc, const std::vector &ops, - unsigned short pred = 0, + unsigned short flags = 0, + unsigned short optionalflags = 0, const IndexList &inds = IndexList()) - : opcode(opc), predicate(pred), operands(ops), indices(inds) {} - uint16_t opcode; - uint16_t predicate; + : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags), + operands(ops), indices(inds) {} + uint8_t opcode; + uint8_t subclassoptionaldata; + uint16_t subclassdata; std::vector operands; IndexList indices; bool operator==(const ExprMapKeyType& that) const { return this->opcode == that.opcode && - this->predicate == that.predicate && + this->subclassdata == that.subclassdata && + this->subclassoptionaldata == that.subclassoptionaldata && this->operands == that.operands && this->indices == that.indices; } bool operator<(const ExprMapKeyType & that) const { - return this->opcode < that.opcode || - (this->opcode == that.opcode && this->predicate < that.predicate) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands < that.operands) || - (this->opcode == that.opcode && this->predicate == that.predicate && - this->operands == that.operands && this->indices < that.indices); + if (this->opcode != that.opcode) return this->opcode < that.opcode; + if (this->operands != that.operands) return this->operands < that.operands; + if (this->subclassdata != that.subclassdata) + return this->subclassdata < that.subclassdata; + if (this->subclassoptionaldata != that.subclassoptionaldata) + return this->subclassoptionaldata < that.subclassoptionaldata; + if (this->indices != that.indices) return this->indices < that.indices; + return false; } bool operator!=(const ExprMapKeyType& that) const { @@ -318,10 +328,43 @@ struct ExprMapKeyType { } }; +struct InlineAsmKeyType { + InlineAsmKeyType(StringRef AsmString, + StringRef Constraints, bool hasSideEffects, + bool isAlignStack) + : asm_string(AsmString), constraints(Constraints), + has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {} + std::string asm_string; + std::string constraints; + bool has_side_effects; + bool is_align_stack; + bool operator==(const InlineAsmKeyType& that) const { + return this->asm_string == that.asm_string && + this->constraints == that.constraints && + this->has_side_effects == that.has_side_effects && + this->is_align_stack == that.is_align_stack; + } + bool operator<(const InlineAsmKeyType& that) const { + if (this->asm_string != that.asm_string) + return this->asm_string < that.asm_string; + if (this->constraints != that.constraints) + return this->constraints < that.constraints; + if (this->has_side_effects != that.has_side_effects) + return this->has_side_effects < that.has_side_effects; + if (this->is_align_stack != that.is_align_stack) + return this->is_align_stack < that.is_align_stack; + return false; + } + + bool operator!=(const InlineAsmKeyType& that) const { + return !(*this == that); + } +}; + // The number of operands for each ConstantCreator::create method is // determined by the ConstantTraits template. // ConstantCreator - A class that is used to create constants by -// ValueMap*. This class should be partially specialized if there is +// ConstantUniqueMap*. This class should be partially specialized if there is // something strange that needs to be done to interface to the ctor for the // constant. // @@ -332,6 +375,13 @@ struct ConstantTraits< std::vector > { } }; +template<> +struct ConstantTraits { + static unsigned uses(Constant * const & v) { + return 1; + } +}; + template struct ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { @@ -339,10 +389,11 @@ struct ConstantCreator { } }; -template -struct ConvertConstant { - static void convert(ConstantClass *OldC, const TypeClass *NewTy) { - llvm_unreachable("This type cannot be converted!"); +template +struct ConstantKeyData { + typedef void ValType; + static ValType getValType(ConstantClass *C) { + llvm_unreachable("Unknown Constant type!"); } }; @@ -354,7 +405,8 @@ struct ConstantCreator { return new UnaryConstantExpr(V.opcode, V.operands[0], Ty); if ((V.opcode >= Instruction::BinaryOpsBegin && V.opcode < Instruction::BinaryOpsEnd)) - return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1]); + return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1], + V.subclassoptionaldata); if (V.opcode == Instruction::Select) return new SelectConstantExpr(V.operands[0], V.operands[1], V.operands[2]); @@ -373,17 +425,18 @@ struct ConstantCreator { return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty); if (V.opcode == Instruction::GetElementPtr) { std::vector IdxList(V.operands.begin()+1, V.operands.end()); - return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty); + return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty, + V.subclassoptionaldata); } // The compare instructions are weird. We have to encode the predicate // value and it is combined with the instruction opcode by multiplying // the opcode by one hundred. We must decode this to get the predicate. if (V.opcode == Instruction::ICmp) - return new CompareConstantExpr(Ty, Instruction::ICmp, V.predicate, + return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata, V.operands[0], V.operands[1]); if (V.opcode == Instruction::FCmp) - return new CompareConstantExpr(Ty, Instruction::FCmp, V.predicate, + return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata, V.operands[0], V.operands[1]); llvm_unreachable("Invalid ConstantExpr!"); return 0; @@ -391,47 +444,18 @@ struct ConstantCreator { }; template<> -struct ConvertConstant { - static void convert(ConstantExpr *OldC, const Type *NewTy) { - Constant *New; - switch (OldC->getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - New = ConstantExpr::getCast(OldC->getOpcode(), OldC->getOperand(0), - NewTy); - break; - case Instruction::Select: - New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0), - OldC->getOperand(1), - OldC->getOperand(2)); - break; - default: - assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin && - OldC->getOpcode() < Instruction::BinaryOpsEnd); - New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0), - OldC->getOperand(1)); - break; - case Instruction::GetElementPtr: - // Make everyone now use a constant of the new type... - std::vector Idx(OldC->op_begin()+1, OldC->op_end()); - New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), - &Idx[0], Idx.size()); - break; - } - - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef ExprMapKeyType ValType; + static ValType getValType(ConstantExpr *CE) { + std::vector Operands; + Operands.reserve(CE->getNumOperands()); + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) + Operands.push_back(cast(CE->getOperand(i))); + return ExprMapKeyType(CE->getOpcode(), Operands, + CE->isCompare() ? CE->getPredicate() : 0, + CE->getRawSubclassOptionalData(), + CE->hasIndices() ? + CE->getIndices() : SmallVector()); } }; @@ -444,63 +468,54 @@ struct ConstantCreator { }; template<> -struct ConstantCreator > { - static MDNode *create(const Type* Ty, const std::vector &V) { - return new MDNode(&V[0], V.size()); +struct ConstantKeyData { + typedef std::vector ValType; + static ValType getValType(ConstantVector *CP) { + std::vector Elements; + Elements.reserve(CP->getNumOperands()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + Elements.push_back(CP->getOperand(i)); + return Elements; } }; template<> -struct ConvertConstant { - static void convert(ConstantVector *OldC, const VectorType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantVector::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef char ValType; + static ValType getValType(ConstantAggregateZero *C) { + return 0; } }; template<> -struct ConvertConstant { - static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantAggregateZero::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef std::vector ValType; + static ValType getValType(ConstantArray *CA) { + std::vector Elements; + Elements.reserve(CA->getNumOperands()); + for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) + Elements.push_back(cast(CA->getOperand(i))); + return Elements; } }; template<> -struct ConvertConstant { - static void convert(ConstantArray *OldC, const ArrayType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantArray::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef std::vector ValType; + static ValType getValType(ConstantStruct *CS) { + std::vector Elements; + Elements.reserve(CS->getNumOperands()); + for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) + Elements.push_back(cast(CS->getOperand(i))); + return Elements; } }; template<> -struct ConvertConstant { - static void convert(ConstantStruct *OldC, const StructType *NewTy) { - // Make everyone now use a constant of the new type... - std::vector C; - for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) - C.push_back(cast(OldC->getOperand(i))); - Constant *New = ConstantStruct::get(NewTy, C); - assert(New != OldC && "Didn't replace constant??"); - - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef Constant* ValType; + static ValType getValType(ConstantUnion *CU) { + return cast(CU->getOperand(0)); } }; @@ -513,13 +528,10 @@ struct ConstantCreator { }; template<> -struct ConvertConstant { - static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) { - // Make everyone now use a constant of the new type... - Constant *New = ConstantPointerNull::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef char ValType; + static ValType getValType(ConstantPointerNull *C) { + return 0; } }; @@ -532,24 +544,39 @@ struct ConstantCreator { }; template<> -struct ConvertConstant { - static void convert(UndefValue *OldC, const Type *NewTy) { - // Make everyone now use a constant of the new type. - Constant *New = UndefValue::get(NewTy); - assert(New != OldC && "Didn't replace constant??"); - OldC->uncheckedReplaceAllUsesWith(New); - OldC->destroyConstant(); // This constant is now dead, destroy it. +struct ConstantKeyData { + typedef char ValType; + static ValType getValType(UndefValue *C) { + return 0; + } +}; + +template<> +struct ConstantCreator { + static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) { + return new InlineAsm(Ty, Key.asm_string, Key.constraints, + Key.has_side_effects, Key.is_align_stack); + } +}; + +template<> +struct ConstantKeyData { + typedef InlineAsmKeyType ValType; + static ValType getValType(InlineAsm *Asm) { + return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(), + Asm->hasSideEffects(), Asm->isAlignStack()); } }; template -class ValueMap : public AbstractTypeUser { +class ConstantUniqueMap : public AbstractTypeUser { public: - typedef std::pair MapKey; - typedef std::map MapTy; - typedef std::map InverseMapTy; - typedef std::map AbstractTypeMapTy; + typedef std::pair MapKey; + typedef std::map MapTy; + typedef std::map InverseMapTy; + typedef std::map + AbstractTypeMapTy; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape @@ -566,23 +593,24 @@ private: /// AbstractTypeMapTy AbstractTypeMap; - /// ValueMapLock - Mutex for this map. - sys::SmartMutex ValueMapLock; - public: - // NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. typename MapTy::iterator map_begin() { return Map.begin(); } typename MapTy::iterator map_end() { return Map.end(); } + + void freeConstants() { + for (typename MapTy::iterator I=Map.begin(), E=Map.end(); + I != E; ++I) { + // Asserts that use_empty(). + delete I->second; + } + } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. - /// NOTE: This function is not locked. It is the caller's responsibility - // to enforce proper synchronization. - typename MapTy::iterator InsertOrGetItem(std::pair + typename MapTy::iterator InsertOrGetItem(std::pair &InsertVal, bool &Exists) { std::pair IP = Map.insert(InsertVal); @@ -602,7 +630,7 @@ private: typename MapTy::iterator I = Map.find(MapKey(static_cast(CP->getRawType()), - getValType(CP))); + ConstantKeyData::getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a // performance problem, someone should look at this. @@ -612,6 +640,22 @@ private: return I; } + void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) { + // If the type of the constant is abstract, make sure that an entry + // exists for it in the AbstractTypeMap. + if (Ty->isAbstract()) { + const DerivedType *DTy = static_cast(Ty); + typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy); + + if (TI == AbstractTypeMap.end()) { + // Add ourselves to the ATU list of the type. + cast(DTy)->addAbstractTypeUser(this); + + AbstractTypeMap.insert(TI, std::make_pair(DTy, I)); + } + } + } + ConstantClass* Create(const TypeClass *Ty, const ValType &V, typename MapTy::iterator I) { ConstantClass* Result = @@ -623,19 +667,7 @@ private: if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.insert(std::make_pair(Result, I)); - // If the type of the constant is abstract, make sure that an entry - // exists for it in the AbstractTypeMap. - if (Ty->isAbstract()) { - typename AbstractTypeMapTy::iterator TI = - AbstractTypeMap.find(Ty); - - if (TI == AbstractTypeMap.end()) { - // Add ourselves to the ATU list of the type. - cast(Ty)->addAbstractTypeUser(this); - - AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); - } - } + AddAbstractTypeUser(Ty, I); return Result; } @@ -644,14 +676,13 @@ public: /// getOrCreate - Return the specified constant from the map, creating it if /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { - sys::SmartScopedLock Lock(ValueMapLock); MapKey Lookup(Ty, V); ConstantClass* Result = 0; typename MapTy::iterator I = Map.find(Lookup); // Is it in the map? if (I != Map.end()) - Result = static_cast(I->second); + Result = I->second; if (!Result) { // If no preexisting value, create one now... @@ -661,8 +692,44 @@ public: return Result; } + void UpdateAbstractTypeMap(const DerivedType *Ty, + typename MapTy::iterator I) { + assert(AbstractTypeMap.count(Ty) && + "Abstract type not in AbstractTypeMap?"); + typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; + if (ATMEntryIt == I) { + // Yes, we are removing the representative entry for this type. + // See if there are any other entries of the same type. + typename MapTy::iterator TmpIt = ATMEntryIt; + + // First check the entry before this one... + if (TmpIt != Map.begin()) { + --TmpIt; + if (TmpIt->first.first != Ty) // Not the same type, move back... + ++TmpIt; + } + + // If we didn't find the same type, try to move forward... + if (TmpIt == ATMEntryIt) { + ++TmpIt; + if (TmpIt == Map.end() || TmpIt->first.first != Ty) + --TmpIt; // No entry afterwards with the same type + } + + // If there is another entry in the map of the same abstract type, + // update the AbstractTypeMap entry now. + if (TmpIt != ATMEntryIt) { + ATMEntryIt = TmpIt; + } else { + // Otherwise, we are removing the last instance of this type + // from the table. Remove from the ATM, and from user list. + cast(Ty)->removeAbstractTypeUser(this); + AbstractTypeMap.erase(Ty); + } + } + } + void remove(ConstantClass *CP) { - sys::SmartScopedLock Lock(ValueMapLock); typename MapTy::iterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); @@ -672,52 +739,16 @@ public: // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. - const TypeClass *Ty = static_cast(I->first.first); - if (Ty->isAbstract()) { - assert(AbstractTypeMap.count(Ty) && - "Abstract type not in AbstractTypeMap?"); - typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; - if (ATMEntryIt == I) { - // Yes, we are removing the representative entry for this type. - // See if there are any other entries of the same type. - typename MapTy::iterator TmpIt = ATMEntryIt; - - // First check the entry before this one... - if (TmpIt != Map.begin()) { - --TmpIt; - if (TmpIt->first.first != Ty) // Not the same type, move back... - ++TmpIt; - } - - // If we didn't find the same type, try to move forward... - if (TmpIt == ATMEntryIt) { - ++TmpIt; - if (TmpIt == Map.end() || TmpIt->first.first != Ty) - --TmpIt; // No entry afterwards with the same type - } - - // If there is another entry in the map of the same abstract type, - // update the AbstractTypeMap entry now. - if (TmpIt != ATMEntryIt) { - ATMEntryIt = TmpIt; - } else { - // Otherwise, we are removing the last instance of this type - // from the table. Remove from the ATM, and from user list. - cast(Ty)->removeAbstractTypeUser(this); - AbstractTypeMap.erase(Ty); - } - } - } + const TypeClass *Ty = I->first.first; + if (Ty->isAbstract()) + UpdateAbstractTypeMap(static_cast(Ty), I); Map.erase(I); } - /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. - /// NOTE: This function is not locked. It is the responsibility of the - /// caller to enforce proper synchronization if using this method. void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { // First, remove the old location of the specified constant in the map. typename MapTy::iterator OldI = FindExistingElement(C); @@ -747,9 +778,7 @@ public: } void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { - sys::SmartScopedLock Lock(ValueMapLock); - typename AbstractTypeMapTy::iterator I = - AbstractTypeMap.find(cast(OldTy)); + typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); @@ -758,11 +787,39 @@ public: // leaving will remove() itself, causing the AbstractTypeMapEntry to be // eliminated eventually. do { - ConvertConstant::convert( - static_cast(I->second->second), - cast(NewTy)); - - I = AbstractTypeMap.find(cast(OldTy)); + ConstantClass *C = I->second->second; + MapKey Key(cast(NewTy), + ConstantKeyData::getValType(C)); + + std::pair IP = + Map.insert(std::make_pair(Key, C)); + if (IP.second) { + // The map didn't previously have an appropriate constant in the + // new type. + + // Remove the old entry. + typename MapTy::iterator OldI = + Map.find(MapKey(cast(OldTy), IP.first->first.second)); + assert(OldI != Map.end() && "Constant not in map!"); + UpdateAbstractTypeMap(OldTy, OldI); + Map.erase(OldI); + + // Set the constant's type. This is done in place! + setType(C, NewTy); + + // Update the inverse map so that we know that this constant is now + // located at descriptor I. + if (HasLargeKey) + InverseMap[C] = IP.first; + + AddAbstractTypeUser(NewTy, IP.first); + } else { + // The map already had an appropriate constant in the new type, so + // there's no longer a need for the old constant. + C->uncheckedReplaceAllUsesWith(IP.first->second); + C->destroyConstant(); // This constant is now dead, destroy it. + } + I = AbstractTypeMap.find(OldTy); } while (I != AbstractTypeMap.end()); } @@ -773,7 +830,7 @@ public: } void dump() const { - DOUT << "Constant.cpp: ValueMap\n"; + DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); } };