X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FLinker.cpp;h=81d46ca3f44f28f8f1695a5a3d89fba66a4a71da;hb=11e405061bc81daacffb7da7235d4ae8519d338f;hp=8fe9113d8215907b9f90610069e3cd9e388974ef;hpb=69da5cf26143e4542d4bf8c78ffac6d079efe5c9;p=oota-llvm.git diff --git a/lib/VMCore/Linker.cpp b/lib/VMCore/Linker.cpp index 8fe9113d821..81d46ca3f44 100644 --- a/lib/VMCore/Linker.cpp +++ b/lib/VMCore/Linker.cpp @@ -15,63 +15,229 @@ #include "llvm/DerivedTypes.h" #include "llvm/iOther.h" #include "llvm/Constants.h" -using std::cerr; -using std::string; -using std::map; // Error - Simple wrapper function to conditionally assign to E and return true. // This just makes error return conditions a little bit simpler... // -static inline bool Error(string *E, string Message) { +static inline bool Error(std::string *E, const std::string &Message) { if (E) *E = Message; return true; } +// ResolveTypes - Attempt to link the two specified types together. Return true +// if there is an error and they cannot yet be linked. +// +static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, + SymbolTable *DestST, const std::string &Name) { + if (DestTy == SrcTy) return false; // If already equal, noop + + // Does the type already exist in the module? + if (DestTy && !isa(DestTy)) { // Yup, the type already exists... + if (const OpaqueType *OT = dyn_cast(SrcTy)) { + const_cast(OT)->refineAbstractTypeTo(DestTy); + } else { + return true; // Cannot link types... neither is opaque and not-equal + } + } else { // Type not in dest module. Add it now. + if (DestTy) // Type _is_ in module, just opaque... + const_cast(cast(DestTy)) + ->refineAbstractTypeTo(SrcTy); + else if (!Name.empty()) + DestST->insert(Name, const_cast(SrcTy)); + } + return false; +} + +static const FunctionType *getFT(const PATypeHolder &TH) { + return cast(TH.get()); +} +static const StructType *getST(const PATypeHolder &TH) { + return cast(TH.get()); +} + +// RecursiveResolveTypes - This is just like ResolveTypes, except that it +// recurses down into derived types, merging the used types if the parent types +// are compatible. +// +static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, + const PATypeHolder &SrcTy, + SymbolTable *DestST, const std::string &Name, + std::vector > &Pointers) { + const Type *SrcTyT = SrcTy.get(); + const Type *DestTyT = DestTy.get(); + if (DestTyT == SrcTyT) return false; // If already equal, noop + + // If we found our opaque type, resolve it now! + if (isa(DestTyT) || isa(SrcTyT)) + return ResolveTypes(DestTyT, SrcTyT, DestST, Name); + + // Two types cannot be resolved together if they are of different primitive + // type. For example, we cannot resolve an int to a float. + if (DestTyT->getPrimitiveID() != SrcTyT->getPrimitiveID()) return true; + + // Otherwise, resolve the used type used by this derived type... + switch (DestTyT->getPrimitiveID()) { + case Type::FunctionTyID: { + if (cast(DestTyT)->isVarArg() != + cast(SrcTyT)->isVarArg() || + cast(DestTyT)->getNumContainedTypes() != + cast(SrcTyT)->getNumContainedTypes()) + return true; + for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) + if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), + getFT(SrcTy)->getContainedType(i), DestST, "", + Pointers)) + return true; + return false; + } + case Type::StructTyID: { + if (getST(DestTy)->getNumContainedTypes() != + getST(SrcTy)->getNumContainedTypes()) return 1; + for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) + if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), + getST(SrcTy)->getContainedType(i), DestST, "", + Pointers)) + return true; + return false; + } + case Type::ArrayTyID: { + const ArrayType *DAT = cast(DestTy.get()); + const ArrayType *SAT = cast(SrcTy.get()); + if (DAT->getNumElements() != SAT->getNumElements()) return true; + return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), + DestST, "", Pointers); + } + case Type::PointerTyID: { + // If this is a pointer type, check to see if we have already seen it. If + // so, we are in a recursive branch. Cut off the search now. We cannot use + // an associative container for this search, because the type pointers (keys + // in the container) change whenever types get resolved... + // + for (unsigned i = 0, e = Pointers.size(); i != e; ++i) + if (Pointers[i].first == DestTy) + return Pointers[i].second != SrcTy; + + // Otherwise, add the current pointers to the vector to stop recursion on + // this pair. + Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); + bool Result = + RecursiveResolveTypesI(cast(DestTy.get())->getElementType(), + cast(SrcTy.get())->getElementType(), + DestST, "", Pointers); + Pointers.pop_back(); + return Result; + } + default: assert(0 && "Unexpected type!"); return true; + } +} + +static bool RecursiveResolveTypes(const PATypeHolder &DestTy, + const PATypeHolder &SrcTy, + SymbolTable *DestST, const std::string &Name){ + std::vector > PointerTypes; + return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); +} + + // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. // Make sure there are no type name conflicts. // -static bool LinkTypes(Module *Dest, const Module *Src, string *Err = 0) { - // No symbol table? Can't have named types. - if (!Src->hasSymbolTable()) return false; - - SymbolTable *DestST = Dest->getSymbolTableSure(); - const SymbolTable *SrcST = Src->getSymbolTable(); +static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { + SymbolTable *DestST = &Dest->getSymbolTable(); + const SymbolTable *SrcST = &Src->getSymbolTable(); // Look for a type plane for Type's... SymbolTable::const_iterator PI = SrcST->find(Type::TypeTy); if (PI == SrcST->end()) return false; // No named types, do nothing. + // Some types cannot be resolved immediately becuse they depend on other types + // being resolved to each other first. This contains a list of types we are + // waiting to recheck. + std::vector DelayedTypesToResolve; + const SymbolTable::VarMap &VM = PI->second; for (SymbolTable::type_const_iterator I = VM.begin(), E = VM.end(); I != E; ++I) { - const string &Name = I->first; - const Type *RHS = cast(I->second); + const std::string &Name = I->first; + Type *RHS = cast(I->second); // Check to see if this type name is already in the dest module... - const Type *Entry = cast_or_null(DestST->lookup(Type::TypeTy, Name)); - if (Entry) { // Yup, the value already exists... - if (Entry != RHS) // If it's the same, noop. Otherwise, error. - return Error(Err, "Type named '" + Name + - "' of different shape in modules.\n Src='" + - Entry->getDescription() + "'.\n Dst='" + - RHS->getDescription() + "'"); - } else { // Type not in dest module. Add it now. - // TODO: FIXME WHEN TYPES AREN'T CONST - DestST->insert(Name, const_cast(RHS)); + Type *Entry = cast_or_null(DestST->lookup(Type::TypeTy, Name)); + + if (ResolveTypes(Entry, RHS, DestST, Name)) { + // They look different, save the types 'till later to resolve. + DelayedTypesToResolve.push_back(Name); + } + } + + // Iteratively resolve types while we can... + while (!DelayedTypesToResolve.empty()) { + // Loop over all of the types, attempting to resolve them if possible... + unsigned OldSize = DelayedTypesToResolve.size(); + + // Try direct resolution by name... + for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { + const std::string &Name = DelayedTypesToResolve[i]; + Type *T1 = cast(VM.find(Name)->second); + Type *T2 = cast(DestST->lookup(Type::TypeTy, Name)); + if (!ResolveTypes(T2, T1, DestST, Name)) { + // We are making progress! + DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); + --i; + } + } + + // Did we not eliminate any types? + if (DelayedTypesToResolve.size() == OldSize) { + // Attempt to resolve subelements of types. This allows us to merge these + // two types: { int* } and { opaque* } + for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { + const std::string &Name = DelayedTypesToResolve[i]; + PATypeHolder T1(cast(VM.find(Name)->second)); + PATypeHolder T2(cast(DestST->lookup(Type::TypeTy, Name))); + + if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { + // We are making progress! + DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); + + // Go back to the main loop, perhaps we can resolve directly by name + // now... + break; + } + } + + // If we STILL cannot resolve the types, then there is something wrong. + // Report the error. + if (DelayedTypesToResolve.size() == OldSize) { + // Build up an error message of all of the mismatched types. + std::string ErrorMessage; + for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { + const std::string &Name = DelayedTypesToResolve[i]; + const Type *T1 = cast(VM.find(Name)->second); + const Type *T2 = cast(DestST->lookup(Type::TypeTy, Name)); + ErrorMessage += " Type named '" + Name + + "' conflicts.\n Src='" + T1->getDescription() + + "'.\n Dest='" + T2->getDescription() + "'\n"; + } + return Error(Err, "Type conflict between types in modules:\n" + + ErrorMessage); + } } } + + return false; } -static void PrintMap(const map &M) { - for (map::const_iterator I = M.begin(), E = M.end(); +static void PrintMap(const std::map &M) { + for (std::map::const_iterator I = M.begin(), E =M.end(); I != E; ++I) { - cerr << " Fr: " << (void*)I->first << " "; + std::cerr << " Fr: " << (void*)I->first << " "; I->first->dump(); - cerr << " To: " << (void*)I->second << " "; + std::cerr << " To: " << (void*)I->second << " "; I->second->dump(); - cerr << "\n"; + std::cerr << "\n"; } } @@ -80,9 +246,10 @@ static void PrintMap(const map &M) { // module to another. This is somewhat sophisticated in that it can // automatically handle constant references correctly as well... // -static Value *RemapOperand(const Value *In, map &LocalMap, - map *GlobalMap = 0) { - map::const_iterator I = LocalMap.find(In); +static Value *RemapOperand(const Value *In, + std::map &LocalMap, + std::map *GlobalMap) { + std::map::const_iterator I = LocalMap.find(In); if (I != LocalMap.end()) return I->second; if (GlobalMap) { @@ -155,69 +322,158 @@ static Value *RemapOperand(const Value *In, map &LocalMap, return Result; } - cerr << "XXX LocalMap: \n"; + std::cerr << "XXX LocalMap: \n"; PrintMap(LocalMap); if (GlobalMap) { - cerr << "XXX GlobalMap: \n"; + std::cerr << "XXX GlobalMap: \n"; PrintMap(*GlobalMap); } - cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; + std::cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; assert(0 && "Couldn't remap value!"); return 0; } +/// FindGlobalNamed - Look in the specified symbol table for a global with the +/// specified name and type. If an exactly matching global does not exist, see +/// if there is a global which is "type compatible" with the specified +/// name/type. This allows us to resolve things like '%x = global int*' with +/// '%x = global opaque*'. +/// +static GlobalValue *FindGlobalNamed(const std::string &Name, const Type *Ty, + SymbolTable *ST) { + // See if an exact match exists in the symbol table... + if (Value *V = ST->lookup(Ty, Name)) return cast(V); + + // It doesn't exist exactly, scan through all of the type planes in the symbol + // table, checking each of them for a type-compatible version. + // + for (SymbolTable::iterator I = ST->begin(), E = ST->end(); I != E; ++I) + if (I->first != Type::TypeTy) { + SymbolTable::VarMap &VM = I->second; + // Does this type plane contain an entry with the specified name? + SymbolTable::type_iterator TI = VM.find(Name); + if (TI != VM.end()) { + // Determine whether we can fold the two types together, resolving them. + // If so, we can use this value. + if (!RecursiveResolveTypes(Ty, I->first, ST, "")) + return cast(TI->second); + } + } + return 0; // Otherwise, nothing could be found. +} + // LinkGlobals - Loop through the global variables in the src module and merge -// them into the dest module... +// them into the dest module. // static bool LinkGlobals(Module *Dest, const Module *Src, - map &ValueMap, string *Err = 0) { + std::map &ValueMap, + std::multimap &AppendingVars, + std::string *Err) { // We will need a module level symbol table if the src module has a module // level symbol table... - SymbolTable *ST = Src->getSymbolTable() ? Dest->getSymbolTableSure() : 0; + SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); // Loop over all of the globals in the src module, mapping them over as we go // for (Module::const_giterator I = Src->gbegin(), E = Src->gend(); I != E; ++I){ const GlobalVariable *SGV = I; - Value *V; - - // If the global variable has a name, and that name is already in use in the - // Dest module, make sure that the name is a compatible global variable... - // - if (SGV->hasExternalLinkage() && SGV->hasName() && - (V = ST->lookup(SGV->getType(), SGV->getName())) && - cast(V)->hasExternalLinkage()) { - // The same named thing is a global variable, because the only two things + GlobalVariable *DGV = 0; + if (SGV->hasName()) { + // A same named thing is a global variable, because the only two things // that may be in a module level symbol table are Global Vars and // Functions, and they both have distinct, nonoverlapping, possible types. // - GlobalVariable *DGV = cast(V); + DGV = cast_or_null(FindGlobalNamed(SGV->getName(), + SGV->getType(), ST)); + } - // Check to see if the two GV's have the same Const'ness... - if (SGV->isConstant() != DGV->isConstant()) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + "':%" + SGV->getName() + - " - Global variables differ in const'ness"); + assert(SGV->hasInitializer() || SGV->hasExternalLinkage() && + "Global must either be external or have an initializer!"); - // Okay, everything is cool, remember the mapping... - ValueMap.insert(std::make_pair(SGV, DGV)); - } else { + bool SGExtern = SGV->isExternal(); + bool DGExtern = DGV ? DGV->isExternal() : false; + + if (!DGV || DGV->hasInternalLinkage() || SGV->hasInternalLinkage()) { // No linking to be performed, simply create an identical version of the // symbol over in the dest module... the initializer will be filled in // later by LinkGlobalInits... // - GlobalVariable *DGV = - new GlobalVariable(SGV->getType()->getElementType(), SGV->isConstant(), - SGV->hasInternalLinkage(), 0, SGV->getName()); - - // Add the new global to the dest module - Dest->getGlobalList().push_back(DGV); + GlobalVariable *NewDGV = + new GlobalVariable(SGV->getType()->getElementType(), + SGV->isConstant(), SGV->getLinkage(), /*init*/0, + SGV->getName(), Dest); + + // If the LLVM runtime renamed the global, but it is an externally visible + // symbol, DGV must be an existing global with internal linkage. Rename + // it. + if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()){ + assert(DGV && DGV->getName() == SGV->getName() && + DGV->hasInternalLinkage()); + DGV->setName(""); + NewDGV->setName(SGV->getName()); // Force the name back + DGV->setName(SGV->getName()); // This will cause a renaming + assert(NewDGV->getName() == SGV->getName() && + DGV->getName() != SGV->getName()); + } // Make sure to remember this mapping... + ValueMap.insert(std::make_pair(SGV, NewDGV)); + if (SGV->hasAppendingLinkage()) + // Keep track that this is an appending variable... + AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); + + } else if (SGV->isExternal()) { + // If SGV is external or if both SGV & DGV are external.. Just link the + // external globals, we aren't adding anything. + ValueMap.insert(std::make_pair(SGV, DGV)); + + } else if (DGV->isExternal()) { // If DGV is external but SGV is not... ValueMap.insert(std::make_pair(SGV, DGV)); + DGV->setLinkage(SGV->getLinkage()); // Inherit linkage! + } else if (SGV->getLinkage() != DGV->getLinkage()) { + return Error(Err, "Global variables named '" + SGV->getName() + + "' have different linkage specifiers!"); + } else if (SGV->hasExternalLinkage()) { + // Allow linking two exactly identical external global variables... + if (SGV->isConstant() != DGV->isConstant() || + SGV->getInitializer() != DGV->getInitializer()) + return Error(Err, "Global Variable Collision on '" + + SGV->getType()->getDescription() + " %" + SGV->getName() + + "' - Global variables differ in const'ness"); + ValueMap.insert(std::make_pair(SGV, DGV)); + } else if (SGV->hasLinkOnceLinkage()) { + // If the global variable has a name, and that name is already in use in + // the Dest module, make sure that the name is a compatible global + // variable... + // + // Check to see if the two GV's have the same Const'ness... + if (SGV->isConstant() != DGV->isConstant()) + return Error(Err, "Global Variable Collision on '" + + SGV->getType()->getDescription() + " %" + SGV->getName() + + "' - Global variables differ in const'ness"); + + // Okay, everything is cool, remember the mapping... + ValueMap.insert(std::make_pair(SGV, DGV)); + } else if (SGV->hasAppendingLinkage()) { + // No linking is performed yet. Just insert a new copy of the global, and + // keep track of the fact that it is an appending variable in the + // AppendingVars map. The name is cleared out so that no linkage is + // performed. + GlobalVariable *NewDGV = + new GlobalVariable(SGV->getType()->getElementType(), + SGV->isConstant(), SGV->getLinkage(), /*init*/0, + "", Dest); + + // Make sure to remember this mapping... + ValueMap.insert(std::make_pair(SGV, NewDGV)); + + // Keep track that this is an appending variable... + AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); + } else { + assert(0 && "Unknown linkage!"); } } return false; @@ -228,8 +484,8 @@ static bool LinkGlobals(Module *Dest, const Module *Src, // globals that may be referenced are in Dest. // static bool LinkGlobalInits(Module *Dest, const Module *Src, - map &ValueMap, - string *Err = 0) { + std::map &ValueMap, + std::string *Err) { // Loop over all of the globals in the src module, mapping them over as we go // @@ -238,19 +494,28 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src, if (SGV->hasInitializer()) { // Only process initialized GV's // Figure out what the initializer looks like in the dest module... - Constant *DInit = - cast(RemapOperand(SGV->getInitializer(), ValueMap)); + Constant *SInit = + cast(RemapOperand(SGV->getInitializer(), ValueMap, 0)); GlobalVariable *DGV = cast(ValueMap[SGV]); - if (DGV->hasInitializer() && SGV->hasExternalLinkage() && - DGV->hasExternalLinkage()) { - if (DGV->getInitializer() != DInit) - return Error(Err, "Global Variable Collision on '" + - SGV->getType()->getDescription() + "':%" +SGV->getName()+ - " - Global variables have different initializers"); + if (DGV->hasInitializer()) { + assert(SGV->getLinkage() == DGV->getLinkage()); + if (SGV->hasExternalLinkage()) { + if (DGV->getInitializer() != SInit) + return Error(Err, "Global Variable Collision on '" + + SGV->getType()->getDescription() +"':%"+SGV->getName()+ + " - Global variables have different initializers"); + } else if (DGV->hasLinkOnceLinkage()) { + // Nothing is required, mapped values will take the new global + // automatically. + } else if (DGV->hasAppendingLinkage()) { + assert(0 && "Appending linkage unimplemented!"); + } else { + assert(0 && "Unknown linkage!"); + } } else { // Copy the initializer over now... - DGV->setInitializer(DInit); + DGV->setInitializer(SInit); } } } @@ -262,51 +527,66 @@ static bool LinkGlobalInits(Module *Dest, const Module *Src, // to the Dest function... // static bool LinkFunctionProtos(Module *Dest, const Module *Src, - map &ValueMap, - string *Err = 0) { - // We will need a module level symbol table if the src module has a module - // level symbol table... - SymbolTable *ST = Src->getSymbolTable() ? Dest->getSymbolTableSure() : 0; + std::map &ValueMap, + std::string *Err) { + SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); // Loop over all of the functions in the src module, mapping them over as we // go // for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { const Function *SF = I; // SrcFunction - Value *V; - - // If the function has a name, and that name is already in use in the Dest - // module, make sure that the name is a compatible function... - // - if (SF->hasExternalLinkage() && SF->hasName() && - (V = ST->lookup(SF->getType(), SF->getName())) && - cast(V)->hasExternalLinkage()) { + Function *DF = 0; + if (SF->hasName()) // The same named thing is a Function, because the only two things // that may be in a module level symbol table are Global Vars and // Functions, and they both have distinct, nonoverlapping, possible types. // - Function *DF = cast(V); // DestFunction - - // Check to make sure the function is not defined in both modules... - if (!SF->isExternal() && !DF->isExternal()) - return Error(Err, "Function '" + - SF->getFunctionType()->getDescription() + "':\"" + - SF->getName() + "\" - Function is already defined!"); - - // Otherwise, just remember this mapping... - ValueMap.insert(std::make_pair(SF, DF)); - } else { - // Function does not already exist, simply insert an external function - // signature identical to SF into the dest module... - Function *DF = new Function(SF->getFunctionType(), - SF->hasInternalLinkage(), - SF->getName()); - - // Add the function signature to the dest module... - Dest->getFunctionList().push_back(DF); + DF = cast_or_null(FindGlobalNamed(SF->getName(), SF->getType(), + ST)); + + if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { + // Function does not already exist, simply insert an function signature + // identical to SF into the dest module... + Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), + SF->getName(), Dest); + + // If the LLVM runtime renamed the function, but it is an externally + // visible symbol, DF must be an existing function with internal linkage. + // Rename it. + if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) { + assert(DF && DF->getName() == SF->getName() &&DF->hasInternalLinkage()); + DF->setName(""); + NewDF->setName(SF->getName()); // Force the name back + DF->setName(SF->getName()); // This will cause a renaming + assert(NewDF->getName() == SF->getName() && + DF->getName() != SF->getName()); + } // ... and remember this mapping... + ValueMap.insert(std::make_pair(SF, NewDF)); + } else if (SF->isExternal()) { + // If SF is external or if both SF & DF are external.. Just link the + // external functions, we aren't adding anything. + ValueMap.insert(std::make_pair(SF, DF)); + } else if (DF->isExternal()) { // If DF is external but SF is not... + // Link the external functions, update linkage qualifiers + ValueMap.insert(std::make_pair(SF, DF)); + DF->setLinkage(SF->getLinkage()); + + } else if (SF->getLinkage() != DF->getLinkage()) { + return Error(Err, "Functions named '" + SF->getName() + + "' have different linkage specifiers!"); + } else if (SF->hasExternalLinkage()) { + // The function is defined in both modules!! + return Error(Err, "Function '" + + SF->getFunctionType()->getDescription() + "':\"" + + SF->getName() + "\" - Function is already defined!"); + } else if (SF->hasLinkOnceLinkage()) { + // Completely ignore the source function. ValueMap.insert(std::make_pair(SF, DF)); + } else { + assert(0 && "Unknown linkage configuration found!"); } } return false; @@ -317,10 +597,10 @@ static bool LinkFunctionProtos(Module *Dest, const Module *Src, // function, and that Src is not. // static bool LinkFunctionBody(Function *Dest, const Function *Src, - map &GlobalMap, - string *Err = 0) { + std::map &GlobalMap, + std::string *Err) { assert(Src && Dest && Dest->isExternal() && !Src->isExternal()); - map LocalMap; // Map for function local values + std::map LocalMap; // Map for function local values // Go through and convert function arguments over... Function::aiterator DI = Dest->abegin(); @@ -374,8 +654,8 @@ static bool LinkFunctionBody(Function *Dest, const Function *Src, // function over and fixing up references to values. // static bool LinkFunctionBodies(Module *Dest, const Module *Src, - map &ValueMap, - string *Err = 0) { + std::map &ValueMap, + std::string *Err) { // Loop over all of the functions in the src module, mapping them over as we // go @@ -386,9 +666,10 @@ static bool LinkFunctionBodies(Module *Dest, const Module *Src, // DF not external SF external? if (!DF->isExternal()) { + if (DF->hasLinkOnceLinkage()) continue; // No relinkage for link-once! if (Err) - *Err = "Function '" + (SF->hasName() ? SF->getName() : string("")) + - "' body multiply defined!"; + *Err = "Function '" + (SF->hasName() ? SF->getName() :std::string("")) + + "' body multiply defined!"; return true; } @@ -398,6 +679,81 @@ static bool LinkFunctionBodies(Module *Dest, const Module *Src, return false; } +// LinkAppendingVars - If there were any appending global variables, link them +// together now. Return true on error. +// +static bool LinkAppendingVars(Module *M, + std::multimap &AppendingVars, + std::string *ErrorMsg) { + if (AppendingVars.empty()) return false; // Nothing to do. + + // Loop over the multimap of appending vars, processing any variables with the + // same name, forming a new appending global variable with both of the + // initializers merged together, then rewrite references to the old variables + // and delete them. + // + std::vector Inits; + while (AppendingVars.size() > 1) { + // Get the first two elements in the map... + std::multimap::iterator Second = AppendingVars.begin(), First=Second++; + + // If the first two elements are for different names, there is no pair... + // Otherwise there is a pair, so link them together... + if (First->first == Second->first) { + GlobalVariable *G1 = First->second, *G2 = Second->second; + const ArrayType *T1 = cast(G1->getType()->getElementType()); + const ArrayType *T2 = cast(G2->getType()->getElementType()); + + // Check to see that they two arrays agree on type... + if (T1->getElementType() != T2->getElementType()) + return Error(ErrorMsg, + "Appending variables with different element types need to be linked!"); + if (G1->isConstant() != G2->isConstant()) + return Error(ErrorMsg, + "Appending variables linked with different const'ness!"); + + unsigned NewSize = T1->getNumElements() + T2->getNumElements(); + ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize); + + // Create the new global variable... + GlobalVariable *NG = + new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(), + /*init*/0, First->first, M); + + // Merge the initializer... + Inits.reserve(NewSize); + ConstantArray *I = cast(G1->getInitializer()); + for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) + Inits.push_back(cast(I->getValues()[i])); + I = cast(G2->getInitializer()); + for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) + Inits.push_back(cast(I->getValues()[i])); + NG->setInitializer(ConstantArray::get(NewType, Inits)); + Inits.clear(); + + // Replace any uses of the two global variables with uses of the new + // global... + + // FIXME: This should rewrite simple/straight-forward uses such as + // getelementptr instructions to not use the Cast! + ConstantPointerRef *NGCP = ConstantPointerRef::get(NG); + G1->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G1->getType())); + G2->replaceAllUsesWith(ConstantExpr::getCast(NGCP, G2->getType())); + + // Remove the two globals from the module now... + M->getGlobalList().erase(G1); + M->getGlobalList().erase(G2); + + // Put the new global into the AppendingVars map so that we can handle + // linking of more than two vars... + Second->second = NG; + } + AppendingVars.erase(First); + } + + return false; +} // LinkModules - This function links two modules together, with the resulting @@ -406,7 +762,18 @@ static bool LinkFunctionBodies(Module *Dest, const Module *Src, // the problem. Upon failure, the Dest module could be in a modified state, and // shouldn't be relied on to be consistent. // -bool LinkModules(Module *Dest, const Module *Src, string *ErrorMsg) { +bool LinkModules(Module *Dest, const Module *Src, std::string *ErrorMsg) { + if (Dest->getEndianness() == Module::AnyEndianness) + Dest->setEndianness(Src->getEndianness()); + if (Dest->getPointerSize() == Module::AnyPointerSize) + Dest->setPointerSize(Src->getPointerSize()); + + if (Src->getEndianness() != Module::AnyEndianness && + Dest->getEndianness() != Src->getEndianness()) + std::cerr << "WARNING: Linking two modules of different endianness!\n"; + if (Src->getPointerSize() != Module::AnyPointerSize && + Dest->getPointerSize() != Src->getPointerSize()) + std::cerr << "WARNING: Linking two modules of different pointer size!\n"; // LinkTypes - Go through the symbol table of the Src module and see if any // types are named in the src module that are not named in the Dst module. @@ -417,11 +784,24 @@ bool LinkModules(Module *Dest, const Module *Src, string *ErrorMsg) { // ValueMap - Mapping of values from what they used to be in Src, to what they // are now in Dest. // - map ValueMap; + std::map ValueMap; - // Insert all of the globals in src into the Dest module... without - // initializers - if (LinkGlobals(Dest, Src, ValueMap, ErrorMsg)) return true; + // AppendingVars - Keep track of global variables in the destination module + // with appending linkage. After the module is linked together, they are + // appended and the module is rewritten. + // + std::multimap AppendingVars; + + // Add all of the appending globals already in the Dest module to + // AppendingVars. + for (Module::giterator I = Dest->gbegin(), E = Dest->gend(); I != E; ++I) + if (I->hasAppendingLinkage()) + AppendingVars.insert(std::make_pair(I->getName(), I)); + + // Insert all of the globals in src into the Dest module... without linking + // initializers (which could refer to functions not yet mapped over). + // + if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, ErrorMsg)) return true; // Link the functions together between the two modules, without doing function // bodies... this just adds external function prototypes to the Dest @@ -442,6 +822,10 @@ bool LinkModules(Module *Dest, const Module *Src, string *ErrorMsg) { // if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; + // If there were any appending global variables, link them together now. + // + if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; + return false; }