X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FVerifier.cpp;h=10816e6248bce95c3b4ec9199be2d2ddd7200185;hb=baeb911d60401818dc9fe0db6182cd048e4fdd03;hp=aec5974209b9a18e96e7951b0cb8d88ec46452c6;hpb=018f77139892111d36ecf5580856dba4cc4b75d1;p=oota-llvm.git diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index aec5974209b..10816e6248b 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -45,6 +45,7 @@ #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" +#include "llvm/MDNode.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/Pass.h" @@ -61,6 +62,7 @@ #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" +#include "llvm/Support/raw_ostream.h" #include #include #include @@ -70,7 +72,11 @@ namespace { // Anonymous namespace for class struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { static char ID; // Pass ID, replacement for typeid - PreVerifier() : FunctionPass((intptr_t)&ID) { } + PreVerifier() : FunctionPass(&ID) { } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } // Check that the prerequisites for successful DominatorTree construction // are satisfied. @@ -92,11 +98,14 @@ namespace { // Anonymous namespace for class return false; } }; +} - char PreVerifier::ID = 0; - RegisterPass PreVer("preverify", "Preliminary module verification"); - const PassInfo *PreVerifyID = PreVer.getPassInfo(); +char PreVerifier::ID = 0; +static RegisterPass +PreVer("preverify", "Preliminary module verification"); +static const PassInfo *const PreVerifyID = &PreVer; +namespace { struct VISIBILITY_HIDDEN Verifier : public FunctionPass, InstVisitor { static char ID; // Pass ID, replacement for typeid @@ -115,20 +124,20 @@ namespace { // Anonymous namespace for class SmallPtrSet InstsInThisBlock; Verifier() - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action(AbortProcessAction), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(VerifierFailureAction ctn) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action(ctn), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(bool AB) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action( AB ? AbortProcessAction : PrintMessageAction), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(DominatorTree &dt) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(false), action(PrintMessageAction), DT(&dt), msgs( std::ios::app | std::ios::out ) {} @@ -195,23 +204,22 @@ namespace { // Anonymous namespace for class /// this condition, do so. /// bool abortIfBroken() { - if (Broken) { - msgs << "Broken module found, "; - switch (action) { - case AbortProcessAction: - msgs << "compilation aborted!\n"; - cerr << msgs.str(); - abort(); - case PrintMessageAction: - msgs << "verification continues.\n"; - cerr << msgs.str(); - return false; - case ReturnStatusAction: - msgs << "compilation terminated.\n"; - return Broken; - } + if (!Broken) return false; + msgs << "Broken module found, "; + switch (action) { + default: assert(0 && "Unknown action"); + case AbortProcessAction: + msgs << "compilation aborted!\n"; + cerr << msgs.str(); + abort(); + case PrintMessageAction: + msgs << "verification continues.\n"; + cerr << msgs.str(); + return false; + case ReturnStatusAction: + msgs << "compilation terminated.\n"; + return true; } - return false; } @@ -222,6 +230,10 @@ namespace { // Anonymous namespace for class void visitGlobalAlias(GlobalAlias &GA); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); + using InstVisitor::visit; + + void visit(Instruction &I); + void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); @@ -256,14 +268,17 @@ namespace { // Anonymous namespace for class void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); void visitAllocationInst(AllocationInst &AI); - void visitGetResultInst(GetResultInst &GRI); + void visitExtractValueInst(ExtractValueInst &EVI); + void visitInsertValueInst(InsertValueInst &IVI); void VerifyCallSite(CallSite CS); + bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix); void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, - unsigned Count, ...); - void VerifyAttrs(ParameterAttributes Attrs, const Type *Ty, - bool isReturnValue, const Value *V); - void VerifyFunctionAttrs(const FunctionType *FT, const PAListPtr &Attrs, + unsigned RetNum, unsigned ParamNum, ...); + void VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V); + void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, const Value *V); void WriteValue(const Value *V) { @@ -276,9 +291,11 @@ namespace { // Anonymous namespace for class } } - void WriteType(const Type* T ) { - if ( !T ) return; - WriteTypeSymbolic(msgs, T, Mod ); + void WriteType(const Type *T) { + if (!T) return; + raw_os_ostream RO(msgs); + RO << ' '; + WriteTypeSymbolic(RO, T, Mod); } @@ -305,11 +322,10 @@ namespace { // Anonymous namespace for class Broken = true; } }; - - char Verifier::ID = 0; - RegisterPass X("verify", "Module Verifier"); } // End anonymous namespace +char Verifier::ID = 0; +static RegisterPass X("verify", "Module Verifier"); // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ @@ -323,14 +339,21 @@ namespace { // Anonymous namespace for class #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert1(I.getOperand(i) != 0, "Operand is null", &I); + InstVisitor::visit(I); +} + void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage() || + GV.hasGhostLinkage() || (isa(GV) && - (GV.hasInternalLinkage() || GV.hasWeakLinkage())), + (GV.hasLocalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", &GV); @@ -352,6 +375,28 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) { Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), "Global variable initializer type does not match global " "variable type!", &GV); + + // Verify that any metadata used in a global initializer points only to + // other globals. + if (MDNode *FirstNode = dyn_cast(GV.getInitializer())) { + SmallVector NodesToAnalyze; + NodesToAnalyze.push_back(FirstNode); + while (!NodesToAnalyze.empty()) { + const MDNode *N = NodesToAnalyze.back(); + NodesToAnalyze.pop_back(); + + for (MDNode::const_elem_iterator I = N->elem_begin(), + E = N->elem_end(); I != E; ++I) + if (const Value *V = *I) { + if (const MDNode *Next = dyn_cast(V)) + NodesToAnalyze.push_back(Next); + else + Assert3(isa(V), + "reference to instruction from global metadata node", + &GV, N, V); + } + } + } } else { Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage(), @@ -364,7 +409,7 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) { void Verifier::visitGlobalAlias(GlobalAlias &GA) { Assert1(!GA.getName().empty(), "Alias name cannot be empty!", &GA); - Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() || + Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || GA.hasWeakLinkage(), "Alias should have external or external weak linkage!", &GA); Assert1(GA.getAliasee(), @@ -374,13 +419,15 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { if (!isa(GA.getAliasee())) { const ConstantExpr *CE = dyn_cast(GA.getAliasee()); - Assert1(CE && CE->getOpcode() == Instruction::BitCast && + Assert1(CE && + (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && isa(CE->getOperand(0)), "Aliasee should be either GlobalValue or bitcast of GlobalValue", &GA); } - const GlobalValue* Aliasee = GA.resolveAliasedGlobal(); + const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); Assert1(Aliasee, "Aliasing chain should end with function or global variable", &GA); @@ -390,39 +437,50 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { } -// VerifyAttrs - Check the given parameter attributes for an argument or return +// VerifyParameterAttrs - Check the given attributes for an argument or return // value of the specified type. The value V is printed in error messages. -void Verifier::VerifyAttrs(ParameterAttributes Attrs, const Type *Ty, - bool isReturnValue, const Value *V) { - if (Attrs == ParamAttr::None) +void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V) { + if (Attrs == Attribute::None) return; + Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; + Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + + " only applies to the function!", V); + if (isReturnValue) { - ParameterAttributes RetI = Attrs & ParamAttr::ParameterOnly; - Assert1(!RetI, "Attribute " + ParamAttr::getAsString(RetI) + - "does not apply to return values!", V); - } else { - ParameterAttributes ParmI = Attrs & ParamAttr::ReturnOnly; - Assert1(!ParmI, "Attribute " + ParamAttr::getAsString(ParmI) + - "only applies to return values!", V); + Attributes RetI = Attrs & Attribute::ParameterOnly; + Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + + " does not apply to return values!", V); } for (unsigned i = 0; - i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) { - ParameterAttributes MutI = Attrs & ParamAttr::MutuallyIncompatible[i]; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; Assert1(!(MutI & (MutI - 1)), "Attributes " + - ParamAttr::getAsString(MutI) + "are incompatible!", V); + Attribute::getAsString(MutI) + " are incompatible!", V); } - ParameterAttributes TypeI = Attrs & ParamAttr::typeIncompatible(Ty); + Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); Assert1(!TypeI, "Wrong type for attribute " + - ParamAttr::getAsString(TypeI), V); + Attribute::getAsString(TypeI), V); + + Attributes ByValI = Attrs & Attribute::ByVal; + if (const PointerType *PTy = dyn_cast(Ty)) { + Assert1(!ByValI || PTy->getElementType()->isSized(), + "Attribute " + Attribute::getAsString(ByValI) + + " does not support unsized types!", V); + } else { + Assert1(!ByValI, + "Attribute " + Attribute::getAsString(ByValI) + + " only applies to parameters with pointer type!", V); + } } // VerifyFunctionAttrs - Check parameter attributes against a function type. // The value V is printed in error messages. void Verifier::VerifyFunctionAttrs(const FunctionType *FT, - const PAListPtr &Attrs, + const AttrListPtr &Attrs, const Value *V) { if (Attrs.isEmpty()) return; @@ -430,7 +488,7 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, bool SawNest = false; for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { - const ParamAttrsWithIndex &Attr = Attrs.getSlot(i); + const AttributeWithIndex &Attr = Attrs.getSlot(i); const Type *Ty; if (Attr.Index == 0) @@ -438,20 +496,45 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, else if (Attr.Index-1 < FT->getNumParams()) Ty = FT->getParamType(Attr.Index-1); else - break; // VarArgs attributes, don't verify. - - VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); + break; // VarArgs attributes, verified elsewhere. + + VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); - if (Attr.Attrs & ParamAttr::Nest) { + if (Attr.Attrs & Attribute::Nest) { Assert1(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } - if (Attr.Attrs & ParamAttr::StructRet) + if (Attr.Attrs & Attribute::StructRet) Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); } + + Attributes FAttrs = Attrs.getFnAttributes(); + Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); + Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + + " does not apply to the function!", V); + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } } +static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { + if (Attrs.isEmpty()) + return true; + + unsigned LastSlot = Attrs.getNumSlots() - 1; + unsigned LastIndex = Attrs.getSlot(LastSlot).Index; + if (LastIndex <= Params + || (LastIndex == (unsigned)~0 + && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) + return true; + + return false; +} // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { @@ -470,10 +553,9 @@ void Verifier::visitFunction(Function &F) { Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy, "Invalid struct return type!", &F); - const PAListPtr &Attrs = F.getParamAttrs(); + const AttrListPtr &Attrs = F.getAttributes(); - Assert1(Attrs.isEmpty() || - Attrs.getSlot(Attrs.getNumSlots()-1).Index <= FT->getNumParams(), + Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), "Attributes after last parameter!", &F); // Check function attributes. @@ -493,6 +575,12 @@ void Verifier::visitFunction(Function &F) { break; } + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + if (!isLLVMdotName) + Assert1(F.getReturnType() != Type::MetadataTy, + "Function may not return metadata unless it's an intrinsic", &F); + // Check that the argument values match the function type for this function... unsigned i = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); @@ -500,21 +588,21 @@ void Verifier::visitFunction(Function &F) { Assert2(I->getType() == FT->getParamType(i), "Argument value does not match function argument type!", I, FT->getParamType(i)); - // Make sure no aggregates are passed by value. Assert1(I->getType()->isFirstClassType(), - "Functions cannot take aggregates as arguments by value!", I); - } + "Function arguments must have first-class types!", I); + if (!isLLVMdotName) + Assert2(I->getType() != Type::MetadataTy, + "Function takes metadata but isn't an intrinsic", I, &F); + } if (F.isDeclaration()) { Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || - F.hasExternalWeakLinkage(), + F.hasExternalWeakLinkage() || F.hasGhostLinkage(), "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. - if (F.getName().size() >= 5) - Assert1(F.getName().substr(0, 5) != "llvm.", - "llvm intrinsics cannot be defined!", &F); + Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node BasicBlock *Entry = &F.getEntryBlock(); @@ -590,9 +678,12 @@ void Verifier::visitReturnInst(ReturnInst &RI) { unsigned N = RI.getNumOperands(); if (F->getReturnType() == Type::VoidTy) Assert2(N == 0, - "Found return instr that returns void in Function of non-void " + "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); - else if (const StructType *STy = dyn_cast(F->getReturnType())) { + else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { + // Exactly one return value and it matches the return type. Good. + } else if (const StructType *STy = dyn_cast(F->getReturnType())) { + // The return type is a struct; check for multiple return values. Assert2(STy->getNumElements() == N, "Incorrect number of return values in ret instruction!", &RI, F->getReturnType()); @@ -600,10 +691,18 @@ void Verifier::visitReturnInst(ReturnInst &RI) { Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(), "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); + } else if (const ArrayType *ATy = dyn_cast(F->getReturnType())) { + // The return type is an array; check for multiple return values. + Assert2(ATy->getNumElements() == N, + "Incorrect number of return values in ret instruction!", + &RI, F->getReturnType()); + for (unsigned i = 0; i != N; ++i) + Assert2(ATy->getElementType() == RI.getOperand(i)->getType(), + "Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); } else { - Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), - "Function return type does not match operand " - "type of return inst!", &RI, F->getReturnType()); + CheckFailed("Function return type does not match operand " + "type of return inst!", &RI, F->getReturnType()); } // Check to make sure that the return value has necessary properties for @@ -623,10 +722,10 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { } void Verifier::visitSelectInst(SelectInst &SI) { - Assert1(SI.getCondition()->getType() == Type::Int1Ty, - "Select condition type must be bool!", &SI); - Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), - "Select values must have identical types!", &SI); + Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + Assert1(SI.getTrueValue()->getType() == SI.getType(), "Select values must have same type as select instruction!", &SI); visitInstruction(SI); @@ -646,11 +745,13 @@ void Verifier::visitTruncInst(TruncInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I); - Assert1(DestTy->isInteger(), "Trunc only produces integer", &I); + Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); visitInstruction(I); @@ -662,10 +763,12 @@ void Verifier::visitZExtInst(ZExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I); - Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I); - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "zext source and destination must both be a vector or neither", &I); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); @@ -678,11 +781,13 @@ void Verifier::visitSExtInst(SExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I); - Assert1(DestTy->isInteger(), "SExt only produces an integer", &I); + Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); visitInstruction(I); @@ -693,11 +798,13 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I); - Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I); + Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); + Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); visitInstruction(I); @@ -709,11 +816,13 @@ void Verifier::visitFPExtInst(FPExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I); - Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I); + Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); + Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); visitInstruction(I); @@ -847,6 +956,12 @@ void Verifier::visitBitCastInst(BitCastInst &I) { "Bitcast requires both operands to be pointer or neither", &I); Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); + // Disallow aggregates. + Assert1(!SrcTy->isAggregateType(), + "Bitcast operand must not be aggregate", &I); + Assert1(!DestTy->isAggregateType(), + "Bitcast type must not be aggregate", &I); + visitInstruction(I); } @@ -898,10 +1013,9 @@ void Verifier::VerifyCallSite(CallSite CS) { "Call parameter type does not match function signature!", CS.getArgument(i), FTy->getParamType(i), I); - const PAListPtr &Attrs = CS.getParamAttrs(); + const AttrListPtr &Attrs = CS.getAttributes(); - Assert1(Attrs.isEmpty() || - Attrs.getSlot(Attrs.getNumSlots()-1).Index <= CS.arg_size(), + Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), "Attributes after last parameter!", I); // Verify call attributes. @@ -910,25 +1024,35 @@ void Verifier::VerifyCallSite(CallSite CS) { if (FTy->isVarArg()) // Check attributes on the varargs part. for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { - ParameterAttributes Attr = Attrs.getParamAttrs(Idx); + Attributes Attr = Attrs.getParamAttributes(Idx); - VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); + VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); - ParameterAttributes VArgI = Attr & ParamAttr::VarArgsIncompatible; - Assert1(!VArgI, "Attribute " + ParamAttr::getAsString(VArgI) + - "cannot be used for vararg call arguments!", I); + Attributes VArgI = Attr & Attribute::VarArgsIncompatible; + Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + + " cannot be used for vararg call arguments!", I); } + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || + CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { + Assert1(FTy->getReturnType() != Type::MetadataTy, + "Only intrinsics may return metadata", I); + for (FunctionType::param_iterator PI = FTy->param_begin(), + PE = FTy->param_end(); PI != PE; ++PI) + Assert1(PI->get() != Type::MetadataTy, "Function has metadata parameter " + "but isn't an intrinsic", I); + } + visitInstruction(*I); } void Verifier::visitCallInst(CallInst &CI) { VerifyCallSite(&CI); - if (Function *F = CI.getCalledFunction()) { + if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicFunctionCall(ID, CI); - } } void Verifier::visitInvokeInst(InvokeInst &II) { @@ -943,13 +1067,40 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { + // Check that integer arithmetic operators are only used with + // integral operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + Assert1(B.getType()->isIntOrIntVector(), + "Integer arithmetic operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", &B); + break; + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + Assert1(B.getType()->isFPOrFPVector(), + "Floating-point arithmetic operators only work with " + "floating-point types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", &B); + break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: - Assert1(B.getType()->isInteger() || - (isa(B.getType()) && - cast(B.getType())->getElementType()->isInteger()), + Assert1(B.getType()->isIntOrIntVector(), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", @@ -958,20 +1109,13 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - Assert1(B.getType()->isInteger(), - "Shift must return an integer result!", &B); + Assert1(B.getType()->isIntOrIntVector(), + "Shifts only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); - /* FALL THROUGH */ - default: - // Arithmetic operators only work on integer or fp values - Assert1(B.getType() == B.getOperand(0)->getType(), - "Arithmetic operators must have same type for operands and result!", - &B); - Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || - isa(B.getType()), - "Arithmetic operators must have integer, fp, or vector type!", &B); break; + default: + assert(0 && "Unknown BinaryOperator opcode!"); } visitInstruction(B); @@ -984,8 +1128,9 @@ void Verifier::visitICmpInst(ICmpInst& IC) { Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isInteger() || isa(Op0Ty), + Assert1(Op0Ty->isIntOrIntVector() || isa(Op0Ty), "Invalid operand types for ICmp instruction", &IC); + visitInstruction(IC); } @@ -996,7 +1141,7 @@ void Verifier::visitFCmpInst(FCmpInst& FC) { Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFloatingPoint(), + Assert1(Op0Ty->isFPOrFPVector(), "Invalid operand types for FCmp instruction", &FC); visitInstruction(FC); } @@ -1020,22 +1165,27 @@ void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), SV.getOperand(2)), "Invalid shufflevector operands!", &SV); - Assert1(SV.getType() == SV.getOperand(0)->getType(), - "Result of shufflevector must match first operand type!", &SV); - + + const VectorType *VTy = dyn_cast(SV.getOperand(0)->getType()); + Assert1(VTy, "Operands are not a vector type", &SV); + // Check to see if Mask is valid. if (const ConstantVector *MV = dyn_cast(SV.getOperand(2))) { for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { - Assert1(isa(MV->getOperand(i)) || - isa(MV->getOperand(i)), - "Invalid shufflevector shuffle mask!", &SV); + if (ConstantInt* CI = dyn_cast(MV->getOperand(i))) { + Assert1(!CI->uge(VTy->getNumElements()*2), + "Invalid shufflevector shuffle mask!", &SV); + } else { + Assert1(isa(MV->getOperand(i)), + "Invalid shufflevector shuffle mask!", &SV); + } } } else { Assert1(isa(SV.getOperand(2)) || isa(SV.getOperand(2)), "Invalid shufflevector shuffle mask!", &SV); } - + visitInstruction(SV); } @@ -1043,7 +1193,7 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { SmallVector Idxs(GEP.idx_begin(), GEP.idx_end()); const Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), - Idxs.begin(), Idxs.end(), true); + Idxs.begin(), Idxs.end()); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); Assert2(isa(GEP.getType()) && cast(GEP.getType())->getElementType() == ElTy, @@ -1056,6 +1206,7 @@ void Verifier::visitLoadInst(LoadInst &LI) { cast(LI.getOperand(0)->getType())->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); + Assert1(ElTy != Type::MetadataTy, "Can't load metadata!", &LI); visitInstruction(LI); } @@ -1064,6 +1215,7 @@ void Verifier::visitStoreInst(StoreInst &SI) { cast(SI.getOperand(1)->getType())->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), "Stored value type does not match pointer operand type!", &SI, ElTy); + Assert1(ElTy != Type::MetadataTy, "Can't store metadata!", &SI); visitInstruction(SI); } @@ -1077,18 +1229,23 @@ void Verifier::visitAllocationInst(AllocationInst &AI) { visitInstruction(AI); } -void Verifier::visitGetResultInst(GetResultInst &GRI) { - Assert1(GetResultInst::isValidOperands(GRI.getAggregateValue(), - GRI.getIndex()), - "Invalid GetResultInst operands!", &GRI); - Assert1(isa(GRI.getAggregateValue()) || - isa(GRI.getAggregateValue()) || - isa(GRI.getAggregateValue()), - "GetResultInst operand must be a call/invoke/undef!", &GRI); +void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { + Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), + EVI.idx_begin(), EVI.idx_end()) == + EVI.getType(), + "Invalid ExtractValueInst operands!", &EVI); - visitInstruction(GRI); + visitInstruction(EVI); } +void Verifier::visitInsertValueInst(InsertValueInst &IVI) { + Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), + IVI.idx_begin(), IVI.idx_end()) == + IVI.getOperand(1)->getType(), + "Invalid InsertValueInst operands!", &IVI); + + visitInstruction(IVI); +} /// verifyInstruction - Verify that an instruction is well formed. /// @@ -1099,8 +1256,7 @@ void Verifier::visitInstruction(Instruction &I) { if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) - Assert1(*UI != (User*)&I || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), + Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), "Only PHI nodes may reference their own value!", &I); } @@ -1120,6 +1276,17 @@ void Verifier::visitInstruction(Instruction &I) { && isa(I.getType())), "Instruction returns a non-scalar type!", &I); + // Check that the instruction doesn't produce metadata or metadata*. Calls + // all already checked against the callee type. + Assert1(I.getType() != Type::MetadataTy || + isa(I) || isa(I), + "Invalid use of metadata!", &I); + + if (const PointerType *PTy = dyn_cast(I.getType())) + Assert1(PTy->getElementType() != Type::MetadataTy, + "Instructions may not produce pointer to metadata.", &I); + + // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! @@ -1129,7 +1296,7 @@ void Verifier::visitInstruction(Instruction &I) { *UI); Instruction *Used = cast(*UI); Assert2(Used->getParent() != 0, "Instruction referencing instruction not" - " embeded in a basic block!", &I, Used); + " embedded in a basic block!", &I, Used); } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { @@ -1138,21 +1305,13 @@ void Verifier::visitInstruction(Instruction &I) { // Check to make sure that only first-class-values are operands to // instructions. if (!I.getOperand(i)->getType()->isFirstClassType()) { - if (isa(I) || isa(I)) - Assert1(isa(I.getOperand(i)->getType()), - "Invalid ReturnInst operands!", &I); - else if (isa(I) || isa(I)) { - if (const PointerType *PT = dyn_cast - (I.getOperand(i)->getType())) { - const Type *ETy = PT->getElementType(); - Assert1(isa(ETy), "Invalid CallInst operands!", &I); - } - else - Assert1(0, "Invalid CallInst operands!", &I); - } - else - Assert1(0, "Instruction operands must be first-class values!", &I); + Assert1(0, "Instruction operands must be first-class values!", &I); } + + if (const PointerType *PTy = + dyn_cast(I.getOperand(i)->getType())) + Assert1(PTy->getElementType() != Type::MetadataTy, + "Invalid use of metadata pointer.", &I); if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never @@ -1174,67 +1333,67 @@ void Verifier::visitInstruction(Instruction &I) { BasicBlock *OpBlock = Op->getParent(); // Check that a definition dominates all of its uses. - if (!isa(I)) { + if (InvokeInst *II = dyn_cast(Op)) { // Invoke results are only usable in the normal destination, not in the // exceptional destination. - if (InvokeInst *II = dyn_cast(Op)) { - OpBlock = II->getNormalDest(); - - Assert2(OpBlock != II->getUnwindDest(), - "No uses of invoke possible due to dominance structure!", - Op, II); - + BasicBlock *NormalDest = II->getNormalDest(); + + Assert2(NormalDest != II->getUnwindDest(), + "No uses of invoke possible due to dominance structure!", + Op, &I); + + // PHI nodes differ from other nodes because they actually "use" the + // value in the predecessor basic blocks they correspond to. + BasicBlock *UseBlock = BB; + if (isa(I)) + UseBlock = cast(I.getOperand(i+1)); + + if (isa(I) && UseBlock == OpBlock) { + // Special case of a phi node in the normal destination or the unwind + // destination. + Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), + "Invoke result not available in the unwind destination!", + Op, &I); + } else { + Assert2(DT->dominates(NormalDest, UseBlock) || + !DT->isReachableFromEntry(UseBlock), + "Invoke result does not dominate all uses!", Op, &I); + // If the normal successor of an invoke instruction has multiple - // predecessors, then the normal edge from the invoke is critical, so - // the invoke value can only be live if the destination block - // dominates all of it's predecessors (other than the invoke) or if - // the invoke value is only used by a phi in the successor. - if (!OpBlock->getSinglePredecessor() && - DT->dominates(&BB->getParent()->getEntryBlock(), BB)) { - // The first case we allow is if the use is a PHI operand in the - // normal block, and if that PHI operand corresponds to the invoke's - // block. - bool Bad = true; - if (PHINode *PN = dyn_cast(&I)) - if (PN->getParent() == OpBlock && - PN->getIncomingBlock(i/2) == Op->getParent()) - Bad = false; - + // predecessors, then the normal edge from the invoke is critical, + // so the invoke value can only be live if the destination block + // dominates all of it's predecessors (other than the invoke). + if (!NormalDest->getSinglePredecessor() && + DT->isReachableFromEntry(UseBlock)) // If it is used by something non-phi, then the other case is that - // 'OpBlock' dominates all of its predecessors other than the + // 'NormalDest' dominates all of its predecessors other than the // invoke. In this case, the invoke value can still be used. - if (Bad) { - Bad = false; - for (pred_iterator PI = pred_begin(OpBlock), - E = pred_end(OpBlock); PI != E; ++PI) { - if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) { - Bad = true; - break; - } + for (pred_iterator PI = pred_begin(NormalDest), + E = pred_end(NormalDest); PI != E; ++PI) + if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && + DT->isReachableFromEntry(*PI)) { + CheckFailed("Invoke result does not dominate all uses!", Op,&I); + return; } - } - Assert2(!Bad, - "Invoke value defined on critical edge but not dead!", &I, - Op); - } - } else if (OpBlock == BB) { + } + } else if (isa(I)) { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = cast(I.getOperand(i+1)); + Assert2(DT->dominates(OpBlock, PredBB) || + !DT->isReachableFromEntry(PredBB), + "Instruction does not dominate all uses!", Op, &I); + } else { + if (OpBlock == BB) { // If they are in the same basic block, make sure that the definition // comes before the use. - Assert2(InstsInThisBlock.count(Op) || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), + Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), "Instruction does not dominate all uses!", Op, &I); } // Definition must dominate use unless use is unreachable! - Assert2(DT->dominates(Op, &I) || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), - "Instruction does not dominate all uses!", Op, &I); - } else { - // PHI nodes are more difficult than other nodes because they actually - // "use" the value in the predecessor basic blocks they correspond to. - BasicBlock *PredBB = cast(I.getOperand(i+1)); - Assert2(DT->dominates(OpBlock, PredBB) || - !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB), + Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || + !DT->isReachableFromEntry(BB), "Instruction does not dominate all uses!", Op, &I); } } else if (isa(I.getOperand(i))) { @@ -1245,6 +1404,11 @@ void Verifier::visitInstruction(Instruction &I) { InstsInThisBlock.insert(&I); } +// Flags used by TableGen to mark intrinsic parameters with the +// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. +static const unsigned ExtendedElementVectorType = 0x40000000; +static const unsigned TruncatedElementVectorType = 0x20000000; + /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { @@ -1259,62 +1423,220 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { switch (ID) { default: break; + case Intrinsic::dbg_declare: // llvm.dbg.declare + if (Constant *C = dyn_cast(CI.getOperand(1))) + Assert1(C && !isa(C), + "invalid llvm.dbg.declare intrinsic call", &CI); + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + Assert1(isa(CI.getOperand(4)), + "alignment argument of memory intrinsics must be a constant int", + &CI); + break; case Intrinsic::gcroot: case Intrinsic::gcwrite: - case Intrinsic::gcread: { - Type *PtrTy = PointerType::getUnqual(Type::Int8Ty), - *PtrPtrTy = PointerType::getUnqual(PtrTy); - - switch (ID) { - default: - break; - case Intrinsic::gcroot: - Assert1(CI.getOperand(1)->getType() == PtrPtrTy, - "Intrinsic parameter #1 is not i8**.", &CI); - Assert1(CI.getOperand(2)->getType() == PtrTy, - "Intrinsic parameter #2 is not i8*.", &CI); - Assert1(isa(CI.getOperand(1)->stripPointerCasts()), - "llvm.gcroot parameter #1 must be an alloca.", &CI); - Assert1(isa(CI.getOperand(2)), - "llvm.gcroot parameter #2 must be a constant.", &CI); - break; - case Intrinsic::gcwrite: - Assert1(CI.getOperand(1)->getType() == PtrTy, - "Intrinsic parameter #1 is not a i8*.", &CI); - Assert1(CI.getOperand(2)->getType() == PtrTy, - "Intrinsic parameter #2 is not a i8*.", &CI); - Assert1(CI.getOperand(3)->getType() == PtrPtrTy, - "Intrinsic parameter #3 is not a i8**.", &CI); - break; - case Intrinsic::gcread: - Assert1(CI.getOperand(1)->getType() == PtrTy, - "Intrinsic parameter #1 is not a i8*.", &CI); - Assert1(CI.getOperand(2)->getType() == PtrPtrTy, - "Intrinsic parameter #2 is not a i8**.", &CI); - break; - } + case Intrinsic::gcread: + if (ID == Intrinsic::gcroot) { + AllocaInst *AI = + dyn_cast(CI.getOperand(1)->stripPointerCasts()); + Assert1(AI && isa(AI->getType()->getElementType()), + "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); + Assert1(isa(CI.getOperand(2)), + "llvm.gcroot parameter #2 must be a constant.", &CI); + } - Assert1(CI.getParent()->getParent()->hasCollector(), - "Enclosing function does not specify a collector algorithm.", - &CI); - } break; + Assert1(CI.getParent()->getParent()->hasGC(), + "Enclosing function does not use GC.", &CI); + break; case Intrinsic::init_trampoline: Assert1(isa(CI.getOperand(2)->stripPointerCasts()), "llvm.init_trampoline parameter #2 must resolve to a function.", &CI); break; + case Intrinsic::prefetch: + Assert1(isa(CI.getOperand(2)) && + isa(CI.getOperand(3)) && + cast(CI.getOperand(2))->getZExtValue() < 2 && + cast(CI.getOperand(3))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", + &CI); + break; + case Intrinsic::stackprotector: + Assert1(isa(CI.getOperand(2)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", + &CI); + break; } } +/// Produce a string to identify an intrinsic parameter or return value. +/// The ArgNo value numbers the return values from 0 to NumRets-1 and the +/// parameters beginning with NumRets. +/// +static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { + if (ArgNo < NumRets) { + if (NumRets == 1) + return "Intrinsic result type"; + else + return "Intrinsic result type #" + utostr(ArgNo); + } else + return "Intrinsic parameter #" + utostr(ArgNo - NumRets); +} + +bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix) { + const FunctionType *FTy = F->getFunctionType(); + + unsigned NumElts = 0; + const Type *EltTy = Ty; + const VectorType *VTy = dyn_cast(Ty); + if (VTy) { + EltTy = VTy->getElementType(); + NumElts = VTy->getNumElements(); + } + + const Type *RetTy = FTy->getReturnType(); + const StructType *ST = dyn_cast(RetTy); + unsigned NumRets = 1; + if (ST) + NumRets = ST->getNumElements(); + + if (VT < 0) { + int Match = ~VT; + + // Check flags that indicate a type that is an integral vector type with + // elements that are larger or smaller than the elements of the matched + // type. + if ((Match & (ExtendedElementVectorType | + TruncatedElementVectorType)) != 0) { + const IntegerType *IEltTy = dyn_cast(EltTy); + if (!VTy || !IEltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integral vector type.", F); + return false; + } + // Adjust the current Ty (in the opposite direction) rather than + // the type being matched against. + if ((Match & ExtendedElementVectorType) != 0) { + if ((IEltTy->getBitWidth() & 1) != 0) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " + "element bit-width is odd.", F); + return false; + } + Ty = VectorType::getTruncatedElementVectorType(VTy); + } else + Ty = VectorType::getExtendedElementVectorType(VTy); + Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); + } + + if (Match <= static_cast(NumRets - 1)) { + if (ST) + RetTy = ST->getElementType(Match); + + if (Ty != RetTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match return type.", F); + return false; + } + } else { + if (Ty != FTy->getParamType(Match - 1)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match parameter %" + utostr(Match - 1) + ".", F); + return false; + } + } + } else if (VT == MVT::iAny) { + if (!EltTy->isInteger()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integer type.", F); + return false; + } + + unsigned GotBits = cast(EltTy)->getBitWidth(); + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += "i" + utostr(GotBits); + + // Check some constraints on various intrinsics. + switch (ID) { + default: break; // Not everything needs to be checked. + case Intrinsic::bswap: + if (GotBits < 16 || GotBits % 16 != 0) { + CheckFailed("Intrinsic requires even byte width argument", F); + return false; + } + break; + } + } else if (VT == MVT::fAny) { + if (!EltTy->isFloatingPoint()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "a floating-point type.", F); + return false; + } + + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += MVT::getMVT(EltTy).getMVTString(); + } else if (VT == MVT::iPTR) { + if (!isa(Ty)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (VT == MVT::iPTRAny) { + // Outside of TableGen, we don't distinguish iPTRAny (to any address space) + // and iPTR. In the verifier, we can not distinguish which case we have so + // allow either case to be legal. + if (const PointerType* PTyp = dyn_cast(Ty)) { + Suffix += ".p" + utostr(PTyp->getAddressSpace()) + + MVT::getMVT(PTyp->getElementType()).getMVTString(); + } else { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).isVector()) { + MVT VVT = MVT((MVT::SimpleValueType)VT); + + // If this is a vector argument, verify the number and type of elements. + if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { + CheckFailed("Intrinsic prototype has incorrect vector element type!", F); + return false; + } + + if (VVT.getVectorNumElements() != NumElts) { + CheckFailed("Intrinsic prototype has incorrect number of " + "vector elements!", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); + return false; + } else if (EltTy != Ty) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " + "and a scalar is required.", F); + return false; + } + + return true; +} + /// VerifyIntrinsicPrototype - TableGen emits calls to this function into /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. -void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, - Function *F, - unsigned Count, ...) { +void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned RetNum, + unsigned ParamNum, ...) { va_list VA; - va_start(VA, Count); - + va_start(VA, ParamNum); const FunctionType *FTy = F->getFunctionType(); // For overloaded intrinsics, the Suffix of the function name must match the @@ -1322,14 +1644,32 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, // suffix, to be checked at the end. std::string Suffix; - if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) { + if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); return; } - // Note that "arg#0" is the return type. - for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) { - MVT::ValueType VT = va_arg(VA, MVT::ValueType); + const Type *Ty = FTy->getReturnType(); + const StructType *ST = dyn_cast(Ty); + + // Verify the return types. + if (ST && ST->getNumElements() != RetNum) { + CheckFailed("Intrinsic prototype has incorrect number of return types!", F); + return; + } + + for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (ST) Ty = ST->getElementType(ArgNo); + + if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) + break; + } + + // Verify the parameter types. + for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (VT == MVT::isVoid && ArgNo > 0) { if (!FTy->isVarArg()) @@ -1337,126 +1677,32 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, break; } - const Type *Ty; - if (ArgNo == 0) - Ty = FTy->getReturnType(); - else - Ty = FTy->getParamType(ArgNo-1); - - unsigned NumElts = 0; - const Type *EltTy = Ty; - if (const VectorType *VTy = dyn_cast(Ty)) { - EltTy = VTy->getElementType(); - NumElts = VTy->getNumElements(); - } - - if ((int)VT < 0) { - int Match = ~VT; - if (Match == 0) { - if (Ty != FTy->getReturnType()) { - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not " - "match return type.", F); - break; - } - } else { - if (Ty != FTy->getParamType(Match-1)) { - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not " - "match parameter %" + utostr(Match-1) + ".", F); - break; - } - } - } else if (VT == MVT::iAny) { - if (!EltTy->isInteger()) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not " - "an integer type.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not " - "an integer type.", F); - break; - } - unsigned GotBits = cast(EltTy)->getBitWidth(); - Suffix += "."; - if (EltTy != Ty) - Suffix += "v" + utostr(NumElts); - Suffix += "i" + utostr(GotBits);; - // Check some constraints on various intrinsics. - switch (ID) { - default: break; // Not everything needs to be checked. - case Intrinsic::bswap: - if (GotBits < 16 || GotBits % 16 != 0) - CheckFailed("Intrinsic requires even byte width argument", F); - break; - } - } else if (VT == MVT::fAny) { - if (!EltTy->isFloatingPoint()) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not " - "a floating-point type.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not " - "a floating-point type.", F); - break; - } - Suffix += "."; - if (EltTy != Ty) - Suffix += "v" + utostr(NumElts); - Suffix += MVT::getValueTypeString(MVT::getValueType(EltTy)); - } else if (VT == MVT::iPTR) { - if (!isa(Ty)) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not a " - "pointer and a pointer is required.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a " - "pointer and a pointer is required.", F); - break; - } - } else if (MVT::isVector(VT)) { - // If this is a vector argument, verify the number and type of elements. - if (MVT::getVectorElementType(VT) != MVT::getValueType(EltTy)) { - CheckFailed("Intrinsic prototype has incorrect vector element type!", - F); - break; - } - if (MVT::getVectorNumElements(VT) != NumElts) { - CheckFailed("Intrinsic prototype has incorrect number of " - "vector elements!",F); - break; - } - } else if (MVT::getTypeForValueType(VT) != EltTy) { - if (ArgNo == 0) - CheckFailed("Intrinsic prototype has incorrect result type!", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F); + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, + Suffix)) break; - } else if (EltTy != Ty) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is vector " - "and a scalar is required.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector " - "and a scalar is required.", F); - } } va_end(VA); - // If we computed a Suffix then the intrinsic is overloaded and we need to - // make sure that the name of the function is correct. We add the suffix to - // the name of the intrinsic and compare against the given function name. If - // they are not the same, the function name is invalid. This ensures that - // overloading of intrinsics uses a sane and consistent naming convention. + // For intrinsics without pointer arguments, if we computed a Suffix then the + // intrinsic is overloaded and we need to make sure that the name of the + // function is correct. We add the suffix to the name of the intrinsic and + // compare against the given function name. If they are not the same, the + // function name is invalid. This ensures that overloading of intrinsics + // uses a sane and consistent naming convention. Note that intrinsics with + // pointer argument may or may not be overloaded so we will check assuming it + // has a suffix and not. if (!Suffix.empty()) { std::string Name(Intrinsic::getName(ID)); - if (Name + Suffix != F->getName()) + if (Name + Suffix != F->getName()) { CheckFailed("Overloaded intrinsic has incorrect suffix: '" + F->getName().substr(Name.length()) + "'. It should be '" + Suffix + "'", F); + } } // Check parameter attributes. - Assert1(F->getParamAttrs() == Intrinsic::getParamAttrs(ID), + Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), "Intrinsic has wrong parameter attributes!", F); } @@ -1475,10 +1721,12 @@ bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); - FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); + ExistingModuleProvider MP(F.getParent()); + FunctionPassManager FPM(&MP); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); + MP.releaseModule(); return V->Broken; } @@ -1490,7 +1738,7 @@ bool llvm::verifyModule(const Module &M, VerifierFailureAction action, PassManager PM; Verifier *V = new Verifier(action); PM.add(V); - PM.run((Module&)M); + PM.run(const_cast(M)); if (ErrorInfo && V->Broken) *ErrorInfo = V->msgs.str();