X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FVerifier.cpp;h=784a66fa09d8ddcb53a39a6b018a42618259ec8d;hb=30794269d5ba15613d4e013d9fe1eb9e892fa6da;hp=299a0f4043c4b881114fd208b7257218a5ae1e23;hpb=9f50eeea8c561dd9410846ef09315acc75b55b9b;p=oota-llvm.git diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index 299a0f4043c..784a66fa09d 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -61,6 +61,7 @@ #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" +#include "llvm/Support/raw_ostream.h" #include #include #include @@ -70,7 +71,11 @@ namespace { // Anonymous namespace for class struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { static char ID; // Pass ID, replacement for typeid - PreVerifier() : FunctionPass((intptr_t)&ID) { } + PreVerifier() : FunctionPass(&ID) { } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + } // Check that the prerequisites for successful DominatorTree construction // are satisfied. @@ -118,20 +123,20 @@ namespace { SmallPtrSet InstsInThisBlock; Verifier() - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action(AbortProcessAction), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(VerifierFailureAction ctn) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action(ctn), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(bool AB) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(true), action( AB ? AbortProcessAction : PrintMessageAction), DT(0), msgs( std::ios::app | std::ios::out ) {} explicit Verifier(DominatorTree &dt) - : FunctionPass((intptr_t)&ID), + : FunctionPass(&ID), Broken(false), RealPass(false), action(PrintMessageAction), DT(&dt), msgs( std::ios::app | std::ios::out ) {} @@ -198,23 +203,22 @@ namespace { /// this condition, do so. /// bool abortIfBroken() { - if (Broken) { - msgs << "Broken module found, "; - switch (action) { - case AbortProcessAction: - msgs << "compilation aborted!\n"; - cerr << msgs.str(); - abort(); - case PrintMessageAction: - msgs << "verification continues.\n"; - cerr << msgs.str(); - return false; - case ReturnStatusAction: - msgs << "compilation terminated.\n"; - return Broken; - } + if (!Broken) return false; + msgs << "Broken module found, "; + switch (action) { + default: assert(0 && "Unknown action"); + case AbortProcessAction: + msgs << "compilation aborted!\n"; + cerr << msgs.str(); + abort(); + case PrintMessageAction: + msgs << "verification continues.\n"; + cerr << msgs.str(); + return false; + case ReturnStatusAction: + msgs << "compilation terminated.\n"; + return Broken; } - return false; } @@ -225,6 +229,10 @@ namespace { void visitGlobalAlias(GlobalAlias &GA); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); + using InstVisitor::visit; + + void visit(Instruction &I); + void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); @@ -263,11 +271,13 @@ namespace { void visitInsertValueInst(InsertValueInst &IVI); void VerifyCallSite(CallSite CS); + bool PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix); void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, - unsigned Count, ...); - void VerifyAttrs(ParameterAttributes Attrs, const Type *Ty, + unsigned RetNum, unsigned ParamNum, ...); + void VerifyAttrs(Attributes Attrs, const Type *Ty, bool isReturnValue, const Value *V); - void VerifyFunctionAttrs(const FunctionType *FT, const PAListPtr &Attrs, + void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, const Value *V); void WriteValue(const Value *V) { @@ -281,8 +291,10 @@ namespace { } void WriteType(const Type *T) { - if ( !T ) return; - WriteTypeSymbolic(msgs, T, Mod ); + if (!T) return; + raw_os_ostream RO(msgs); + RO << ' '; + WriteTypeSymbolic(RO, T, Mod); } @@ -327,6 +339,13 @@ static RegisterPass X("verify", "Module Verifier"); do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) +void Verifier::visit(Instruction &I) { + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + Assert1(I.getOperand(i) != 0, "Operand is null", &I); + InstVisitor::visit(I); +} + + void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() || @@ -334,7 +353,7 @@ void Verifier::visitGlobalValue(GlobalValue &GV) { GV.hasExternalWeakLinkage() || GV.hasGhostLinkage() || (isa(GV) && - (GV.hasInternalLinkage() || GV.hasWeakLinkage())), + (GV.hasLocalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", &GV); @@ -368,7 +387,7 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) { void Verifier::visitGlobalAlias(GlobalAlias &GA) { Assert1(!GA.getName().empty(), "Alias name cannot be empty!", &GA); - Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() || + Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || GA.hasWeakLinkage(), "Alias should have external or external weak linkage!", &GA); Assert1(GA.getAliasee(), @@ -384,7 +403,7 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { &GA); } - const GlobalValue* Aliasee = GA.resolveAliasedGlobal(); + const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); Assert1(Aliasee, "Aliasing chain should end with function or global variable", &GA); @@ -396,37 +415,47 @@ void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { // VerifyAttrs - Check the given parameter attributes for an argument or return // value of the specified type. The value V is printed in error messages. -void Verifier::VerifyAttrs(ParameterAttributes Attrs, const Type *Ty, +void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty, bool isReturnValue, const Value *V) { - if (Attrs == ParamAttr::None) + if (Attrs == Attribute::None) return; if (isReturnValue) { - ParameterAttributes RetI = Attrs & ParamAttr::ParameterOnly; - Assert1(!RetI, "Attribute " + ParamAttr::getAsString(RetI) + + Attributes RetI = Attrs & Attribute::ParameterOnly; + Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + " does not apply to return values!", V); - } else { - ParameterAttributes ParmI = Attrs & ParamAttr::ReturnOnly; - Assert1(!ParmI, "Attribute " + ParamAttr::getAsString(ParmI) + - " only applies to return values!", V); } - + Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; + Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + + " only applies to functions!", V); + for (unsigned i = 0; - i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) { - ParameterAttributes MutI = Attrs & ParamAttr::MutuallyIncompatible[i]; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; Assert1(!(MutI & (MutI - 1)), "Attributes " + - ParamAttr::getAsString(MutI) + " are incompatible!", V); + Attribute::getAsString(MutI) + " are incompatible!", V); } - ParameterAttributes TypeI = Attrs & ParamAttr::typeIncompatible(Ty); + Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); Assert1(!TypeI, "Wrong type for attribute " + - ParamAttr::getAsString(TypeI), V); + Attribute::getAsString(TypeI), V); + + Attributes ByValI = Attrs & Attribute::ByVal; + if (const PointerType *PTy = dyn_cast(Ty)) { + Assert1(!ByValI || PTy->getElementType()->isSized(), + "Attribute " + Attribute::getAsString(ByValI) + + " does not support unsized types!", V); + } else { + Assert1(!ByValI, + "Attribute " + Attribute::getAsString(ByValI) + + " only applies to parameters with pointer type!", V); + } } // VerifyFunctionAttrs - Check parameter attributes against a function type. // The value V is printed in error messages. void Verifier::VerifyFunctionAttrs(const FunctionType *FT, - const PAListPtr &Attrs, + const AttrListPtr &Attrs, const Value *V) { if (Attrs.isEmpty()) return; @@ -434,7 +463,7 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, bool SawNest = false; for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { - const ParamAttrsWithIndex &Attr = Attrs.getSlot(i); + const AttributeWithIndex &Attr = Attrs.getSlot(i); const Type *Ty; if (Attr.Index == 0) @@ -446,16 +475,41 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); - if (Attr.Attrs & ParamAttr::Nest) { + if (Attr.Attrs & Attribute::Nest) { Assert1(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } - if (Attr.Attrs & ParamAttr::StructRet) + if (Attr.Attrs & Attribute::StructRet) Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); } + + Attributes FAttrs = Attrs.getFnAttributes(); + Assert1(!(FAttrs & (~Attribute::FunctionOnly)), + "Attribute " + Attribute::getAsString(FAttrs) + + " does not apply to function!", V); + + for (unsigned i = 0; + i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { + Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; + Assert1(!(MutI & (MutI - 1)), "Attributes " + + Attribute::getAsString(MutI) + " are incompatible!", V); + } } +static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { + if (Attrs.isEmpty()) + return true; + + unsigned LastSlot = Attrs.getNumSlots() - 1; + unsigned LastIndex = Attrs.getSlot(LastSlot).Index; + if (LastIndex <= Params + || (LastIndex == (unsigned)~0 + && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) + return true; + + return false; +} // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { @@ -474,10 +528,9 @@ void Verifier::visitFunction(Function &F) { Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy, "Invalid struct return type!", &F); - const PAListPtr &Attrs = F.getParamAttrs(); + const AttrListPtr &Attrs = F.getAttributes(); - Assert1(Attrs.isEmpty() || - Attrs.getSlot(Attrs.getNumSlots()-1).Index <= FT->getNumParams(), + Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), "Attributes after last parameter!", &F); // Check function attributes. @@ -488,7 +541,6 @@ void Verifier::visitFunction(Function &F) { default: break; case CallingConv::C: - case CallingConv::X86_SSECall: break; case CallingConv::Fast: case CallingConv::Cold: @@ -594,7 +646,7 @@ void Verifier::visitReturnInst(ReturnInst &RI) { unsigned N = RI.getNumOperands(); if (F->getReturnType() == Type::VoidTy) Assert2(N == 0, - "Found return instr that returns void in Function of non-void " + "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) { // Exactly one return value and it matches the return type. Good. @@ -638,10 +690,10 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { } void Verifier::visitSelectInst(SelectInst &SI) { - Assert1(SI.getCondition()->getType() == Type::Int1Ty, - "Select condition type must be bool!", &SI); - Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), - "Select values must have identical types!", &SI); + Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), + SI.getOperand(2)), + "Invalid operands for select instruction!", &SI); + Assert1(SI.getTrueValue()->getType() == SI.getType(), "Select values must have same type as select instruction!", &SI); visitInstruction(SI); @@ -666,6 +718,8 @@ void Verifier::visitTruncInst(TruncInst &I) { Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); visitInstruction(I); @@ -679,6 +733,8 @@ void Verifier::visitZExtInst(ZExtInst &I) { // Get the size of the types in bits, we'll need this later Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); @@ -698,6 +754,8 @@ void Verifier::visitSExtInst(SExtInst &I) { Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); visitInstruction(I); @@ -713,6 +771,8 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); visitInstruction(I); @@ -729,6 +789,8 @@ void Verifier::visitFPExtInst(FPExtInst &I) { Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); + Assert1(isa(SrcTy) == isa(DestTy), + "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); visitInstruction(I); @@ -862,6 +924,12 @@ void Verifier::visitBitCastInst(BitCastInst &I) { "Bitcast requires both operands to be pointer or neither", &I); Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); + // Disallow aggregates. + Assert1(!SrcTy->isAggregateType(), + "Bitcast operand must not be aggregate", &I); + Assert1(!DestTy->isAggregateType(), + "Bitcast type must not be aggregate", &I); + visitInstruction(I); } @@ -913,10 +981,9 @@ void Verifier::VerifyCallSite(CallSite CS) { "Call parameter type does not match function signature!", CS.getArgument(i), FTy->getParamType(i), I); - const PAListPtr &Attrs = CS.getParamAttrs(); + const AttrListPtr &Attrs = CS.getAttributes(); - Assert1(Attrs.isEmpty() || - Attrs.getSlot(Attrs.getNumSlots()-1).Index <= CS.arg_size(), + Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), "Attributes after last parameter!", I); // Verify call attributes. @@ -925,12 +992,12 @@ void Verifier::VerifyCallSite(CallSite CS) { if (FTy->isVarArg()) // Check attributes on the varargs part. for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { - ParameterAttributes Attr = Attrs.getParamAttrs(Idx); + Attributes Attr = Attrs.getParamAttributes(Idx); VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); - ParameterAttributes VArgI = Attr & ParamAttr::VarArgsIncompatible; - Assert1(!VArgI, "Attribute " + ParamAttr::getAsString(VArgI) + + Attributes VArgI = Attr & Attribute::VarArgsIncompatible; + Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + " cannot be used for vararg call arguments!", I); } @@ -940,10 +1007,9 @@ void Verifier::VerifyCallSite(CallSite CS) { void Verifier::visitCallInst(CallInst &CI) { VerifyCallSite(&CI); - if (Function *F = CI.getCalledFunction()) { + if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicFunctionCall(ID, CI); - } } void Verifier::visitInvokeInst(InvokeInst &II) { @@ -1001,7 +1067,7 @@ void Verifier::visitICmpInst(ICmpInst& IC) { Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isInteger() || isa(Op0Ty), + Assert1(Op0Ty->isIntOrIntVector() || isa(Op0Ty), "Invalid operand types for ICmp instruction", &IC); visitInstruction(IC); } @@ -1013,7 +1079,7 @@ void Verifier::visitFCmpInst(FCmpInst& FC) { Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFloatingPoint(), + Assert1(Op0Ty->isFPOrFPVector(), "Invalid operand types for FCmp instruction", &FC); visitInstruction(FC); } @@ -1037,14 +1103,15 @@ void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), SV.getOperand(2)), "Invalid shufflevector operands!", &SV); - Assert1(SV.getType() == SV.getOperand(0)->getType(), - "Result of shufflevector must match first operand type!", &SV); - + + const VectorType *VTy = dyn_cast(SV.getOperand(0)->getType()); + Assert1(VTy, "Operands are not a vector type", &SV); + // Check to see if Mask is valid. if (const ConstantVector *MV = dyn_cast(SV.getOperand(2))) { for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { if (ConstantInt* CI = dyn_cast(MV->getOperand(i))) { - Assert1(!CI->uge(MV->getNumOperands()*2), + Assert1(!CI->uge(VTy->getNumElements()*2), "Invalid shufflevector shuffle mask!", &SV); } else { Assert1(isa(MV->getOperand(i)), @@ -1056,7 +1123,7 @@ void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { isa(SV.getOperand(2)), "Invalid shufflevector shuffle mask!", &SV); } - + visitInstruction(SV); } @@ -1258,6 +1325,11 @@ void Verifier::visitInstruction(Instruction &I) { InstsInThisBlock.insert(&I); } +// Flags used by TableGen to mark intrinsic parameters with the +// LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. +static const unsigned ExtendedElementVectorType = 0x40000000; +static const unsigned TruncatedElementVectorType = 0x20000000; + /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { @@ -1272,12 +1344,14 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { switch (ID) { default: break; - case Intrinsic::memcpy_i32: - case Intrinsic::memcpy_i64: - case Intrinsic::memmove_i32: - case Intrinsic::memmove_i64: - case Intrinsic::memset_i32: - case Intrinsic::memset_i64: + case Intrinsic::dbg_declare: // llvm.dbg.declare + if (Constant *C = dyn_cast(CI.getOperand(1))) + Assert1(C && !isa(C), + "invalid llvm.dbg.declare intrinsic call", &CI); + break; + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: Assert1(isa(CI.getOperand(4)), "alignment argument of memory intrinsics must be a constant int", &CI); @@ -1286,8 +1360,10 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { case Intrinsic::gcwrite: case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { - Assert1(isa(CI.getOperand(1)->stripPointerCasts()), - "llvm.gcroot parameter #1 must be an alloca.", &CI); + AllocaInst *AI = + dyn_cast(CI.getOperand(1)->stripPointerCasts()); + Assert1(AI && isa(AI->getType()->getElementType()), + "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); Assert1(isa(CI.getOperand(2)), "llvm.gcroot parameter #2 must be a constant.", &CI); } @@ -1300,17 +1376,188 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { "llvm.init_trampoline parameter #2 must resolve to a function.", &CI); break; + case Intrinsic::prefetch: + Assert1(isa(CI.getOperand(2)) && + isa(CI.getOperand(3)) && + cast(CI.getOperand(2))->getZExtValue() < 2 && + cast(CI.getOperand(3))->getZExtValue() < 4, + "invalid arguments to llvm.prefetch", + &CI); + break; + case Intrinsic::stackprotector: + Assert1(isa(CI.getOperand(2)->stripPointerCasts()), + "llvm.stackprotector parameter #2 must resolve to an alloca.", + &CI); + break; + } +} + +/// Produce a string to identify an intrinsic parameter or return value. +/// The ArgNo value numbers the return values from 0 to NumRets-1 and the +/// parameters beginning with NumRets. +/// +static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { + if (ArgNo < NumRets) { + if (NumRets == 1) + return "Intrinsic result type"; + else + return "Intrinsic result type #" + utostr(ArgNo); + } else + return "Intrinsic parameter #" + utostr(ArgNo - NumRets); +} + +bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, + int VT, unsigned ArgNo, std::string &Suffix) { + const FunctionType *FTy = F->getFunctionType(); + + unsigned NumElts = 0; + const Type *EltTy = Ty; + const VectorType *VTy = dyn_cast(Ty); + if (VTy) { + EltTy = VTy->getElementType(); + NumElts = VTy->getNumElements(); + } + + const Type *RetTy = FTy->getReturnType(); + const StructType *ST = dyn_cast(RetTy); + unsigned NumRets = 1; + if (ST) + NumRets = ST->getNumElements(); + + if (VT < 0) { + int Match = ~VT; + + // Check flags that indicate a type that is an integral vector type with + // elements that are larger or smaller than the elements of the matched + // type. + if ((Match & (ExtendedElementVectorType | + TruncatedElementVectorType)) != 0) { + const IntegerType *IEltTy = dyn_cast(EltTy); + if (!VTy || !IEltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integral vector type.", F); + return false; + } + // Adjust the current Ty (in the opposite direction) rather than + // the type being matched against. + if ((Match & ExtendedElementVectorType) != 0) { + if ((IEltTy->getBitWidth() & 1) != 0) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " + "element bit-width is odd.", F); + return false; + } + Ty = VectorType::getTruncatedElementVectorType(VTy); + } else + Ty = VectorType::getExtendedElementVectorType(VTy); + Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); + } + + if (Match <= static_cast(NumRets - 1)) { + if (ST) + RetTy = ST->getElementType(Match); + + if (Ty != RetTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match return type.", F); + return false; + } + } else { + if (Ty != FTy->getParamType(Match - 1)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + "match parameter %" + utostr(Match - 1) + ".", F); + return false; + } + } + } else if (VT == MVT::iAny) { + if (!EltTy->isInteger()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "an integer type.", F); + return false; + } + + unsigned GotBits = cast(EltTy)->getBitWidth(); + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += "i" + utostr(GotBits);; + + // Check some constraints on various intrinsics. + switch (ID) { + default: break; // Not everything needs to be checked. + case Intrinsic::bswap: + if (GotBits < 16 || GotBits % 16 != 0) { + CheckFailed("Intrinsic requires even byte width argument", F); + return false; + } + break; + } + } else if (VT == MVT::fAny) { + if (!EltTy->isFloatingPoint()) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + "a floating-point type.", F); + return false; + } + + Suffix += "."; + + if (EltTy != Ty) + Suffix += "v" + utostr(NumElts); + + Suffix += MVT::getMVT(EltTy).getMVTString(); + } else if (VT == MVT::iPTR) { + if (!isa(Ty)) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (VT == MVT::iPTRAny) { + // Outside of TableGen, we don't distinguish iPTRAny (to any address space) + // and iPTR. In the verifier, we can not distinguish which case we have so + // allow either case to be legal. + if (const PointerType* PTyp = dyn_cast(Ty)) { + Suffix += ".p" + utostr(PTyp->getAddressSpace()) + + MVT::getMVT(PTyp->getElementType()).getMVTString(); + } else { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + "pointer and a pointer is required.", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).isVector()) { + MVT VVT = MVT((MVT::SimpleValueType)VT); + + // If this is a vector argument, verify the number and type of elements. + if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { + CheckFailed("Intrinsic prototype has incorrect vector element type!", F); + return false; + } + + if (VVT.getVectorNumElements() != NumElts) { + CheckFailed("Intrinsic prototype has incorrect number of " + "vector elements!", F); + return false; + } + } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); + return false; + } else if (EltTy != Ty) { + CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " + "and a scalar is required.", F); + return false; } + + return true; } /// VerifyIntrinsicPrototype - TableGen emits calls to this function into /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. -void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, - Function *F, - unsigned Count, ...) { +void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, + unsigned RetNum, + unsigned ParamNum, ...) { va_list VA; - va_start(VA, Count); + va_start(VA, ParamNum); const FunctionType *FTy = F->getFunctionType(); // For overloaded intrinsics, the Suffix of the function name must match the @@ -1318,13 +1565,31 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, // suffix, to be checked at the end. std::string Suffix; - if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) { + if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); return; } - // Note that "arg#0" is the return type. - for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) { + const Type *Ty = FTy->getReturnType(); + const StructType *ST = dyn_cast(Ty); + + // Verify the return types. + if (ST && ST->getNumElements() != RetNum) { + CheckFailed("Intrinsic prototype has incorrect number of return types!", F); + return; + } + + for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { + int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. + + if (ST) Ty = ST->getElementType(ArgNo); + + if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) + break; + } + + // Verify the parameter types. + for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (VT == MVT::isVoid && ArgNo > 0) { @@ -1333,123 +1598,9 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, break; } - const Type *Ty; - if (ArgNo == 0) - Ty = FTy->getReturnType(); - else - Ty = FTy->getParamType(ArgNo-1); - - unsigned NumElts = 0; - const Type *EltTy = Ty; - if (const VectorType *VTy = dyn_cast(Ty)) { - EltTy = VTy->getElementType(); - NumElts = VTy->getNumElements(); - } - - if (VT < 0) { - int Match = ~VT; - if (Match == 0) { - if (Ty != FTy->getReturnType()) { - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not " - "match return type.", F); - break; - } - } else { - if (Ty != FTy->getParamType(Match-1)) { - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not " - "match parameter %" + utostr(Match-1) + ".", F); - break; - } - } - } else if (VT == MVT::iAny) { - if (!EltTy->isInteger()) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not " - "an integer type.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not " - "an integer type.", F); - break; - } - unsigned GotBits = cast(EltTy)->getBitWidth(); - Suffix += "."; - if (EltTy != Ty) - Suffix += "v" + utostr(NumElts); - Suffix += "i" + utostr(GotBits);; - // Check some constraints on various intrinsics. - switch (ID) { - default: break; // Not everything needs to be checked. - case Intrinsic::bswap: - if (GotBits < 16 || GotBits % 16 != 0) - CheckFailed("Intrinsic requires even byte width argument", F); - break; - } - } else if (VT == MVT::fAny) { - if (!EltTy->isFloatingPoint()) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not " - "a floating-point type.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not " - "a floating-point type.", F); - break; - } - Suffix += "."; - if (EltTy != Ty) - Suffix += "v" + utostr(NumElts); - Suffix += MVT::getMVT(EltTy).getMVTString(); - } else if (VT == MVT::iPTR) { - if (!isa(Ty)) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not a " - "pointer and a pointer is required.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a " - "pointer and a pointer is required.", F); - } - } else if (VT == MVT::iPTRAny) { - // Outside of TableGen, we don't distinguish iPTRAny (to any address - // space) and iPTR. In the verifier, we can not distinguish which case - // we have so allow either case to be legal. - if (const PointerType* PTyp = dyn_cast(Ty)) { - Suffix += ".p" + utostr(PTyp->getAddressSpace()) + - MVT::getMVT(PTyp->getElementType()).getMVTString(); - } else { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is not a " - "pointer and a pointer is required.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a " - "pointer and a pointer is required.", F); - break; - } - } else if (MVT((MVT::SimpleValueType)VT).isVector()) { - MVT VVT = MVT((MVT::SimpleValueType)VT); - // If this is a vector argument, verify the number and type of elements. - if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { - CheckFailed("Intrinsic prototype has incorrect vector element type!", - F); - break; - } - if (VVT.getVectorNumElements() != NumElts) { - CheckFailed("Intrinsic prototype has incorrect number of " - "vector elements!",F); - break; - } - } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { - if (ArgNo == 0) - CheckFailed("Intrinsic prototype has incorrect result type!", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F); + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, + Suffix)) break; - } else if (EltTy != Ty) { - if (ArgNo == 0) - CheckFailed("Intrinsic result type is vector " - "and a scalar is required.", F); - else - CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector " - "and a scalar is required.", F); - } } va_end(VA); @@ -1472,7 +1623,7 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, } // Check parameter attributes. - Assert1(F->getParamAttrs() == Intrinsic::getParamAttrs(ID), + Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), "Intrinsic has wrong parameter attributes!", F); } @@ -1491,10 +1642,12 @@ bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); - FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); + ExistingModuleProvider MP(F.getParent()); + FunctionPassManager FPM(&MP); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); + MP.releaseModule(); return V->Broken; }