X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FVerifier.cpp;h=89fd98081fa54387363792ca53fbd0e007de95a1;hb=f26226155e2a49fa453f20b850849c5852c3af58;hp=0165e3b8cb055eb5280481ab4ab58c7ec1c6cfbd;hpb=53997416228333e105b06df22acd400de0505c89;p=oota-llvm.git diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index 0165e3b8cb0..89fd98081fa 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -1,18 +1,25 @@ //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. // -// Note that this does not provide full 'java style' security and verifications, -// instead it just tries to ensure that code is well formed. +// Note that this does not provide full `Java style' security and verifications, +// instead it just tries to ensure that code is well-formed. // -// * Both of a binary operator's parameters are the same type +// * Both of a binary operator's parameters are of the same type // * Verify that the indices of mem access instructions match other operands -// * Verify that arithmetic and other things are only performed on first class +// * Verify that arithmetic and other things are only performed on first-class // types. Verify that shifts & logicals only happen on integrals f.e. -// . All of the constants in a switch statement are of the correct type +// * All of the constants in a switch statement are of the correct type // * The code is in valid SSA form -// . It should be illegal to put a label into any other type (like a structure) +// * It should be illegal to put a label into any other type (like a structure) // or to return one. [except constant arrays!] // * Only phi nodes can be self referential: 'add int %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. @@ -20,11 +27,11 @@ // * PHI nodes must have at least one entry // * All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors -// * All Instructions must be embeded into a basic block -// . Function's cannot take a void typed parameter +// * All Instructions must be embedded into a basic block +// * Functions cannot take a void-typed parameter // * Verify that a function's argument list agrees with it's declared type. // * It is illegal to specify a name for a void value. -// * It is illegal to have a internal global value with no intitalizer +// * It is illegal to have a internal global value with no initializer // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // * Function call argument types match the function prototype @@ -33,44 +40,64 @@ //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/Module.h" +#include "llvm/ModuleProvider.h" #include "llvm/DerivedTypes.h" -#include "llvm/iPHINode.h" -#include "llvm/iTerminators.h" -#include "llvm/iOther.h" -#include "llvm/iOperators.h" -#include "llvm/iMemory.h" -#include "llvm/SymbolTable.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" #include "llvm/PassManager.h" +#include "llvm/SymbolTable.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/InstVisitor.h" -#include "Support/STLExtras.h" +#include "llvm/ADT/STLExtras.h" #include +#include +#include +using namespace llvm; namespace { // Anonymous namespace for class struct Verifier : public FunctionPass, InstVisitor { bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? - bool AbortBroken; // If broken, should it or should it not abort? - - DominatorSet *DS; // Dominator set, caution can be null! - - Verifier() : Broken(false), RealPass(true), AbortBroken(true), DS(0) {} - Verifier(bool AB) : Broken(false), RealPass(true), AbortBroken(AB), DS(0) {} + VerifierFailureAction action; + // What to do if verification fails. + Module *Mod; // Module we are verifying right now + DominatorSet *DS; // Dominator set, caution can be null! + std::stringstream msgs; // A stringstream to collect messages + + /// InstInThisBlock - when verifying a basic block, keep track of all of the + /// instructions we have seen so far. This allows us to do efficient + /// dominance checks for the case when an instruction has an operand that is + /// an instruction in the same block. + std::set InstsInThisBlock; + + Verifier() + : Broken(false), RealPass(true), action(AbortProcessAction), + DS(0), msgs( std::ios::app | std::ios::out ) {} + Verifier( VerifierFailureAction ctn ) + : Broken(false), RealPass(true), action(ctn), DS(0), + msgs( std::ios::app | std::ios::out ) {} + Verifier(bool AB ) + : Broken(false), RealPass(true), + action( AB ? AbortProcessAction : PrintMessageAction), DS(0), + msgs( std::ios::app | std::ios::out ) {} Verifier(DominatorSet &ds) - : Broken(false), RealPass(false), AbortBroken(false), DS(&ds) {} + : Broken(false), RealPass(false), action(PrintMessageAction), + DS(&ds), msgs( std::ios::app | std::ios::out ) {} bool doInitialization(Module &M) { + Mod = &M; verifySymbolTable(M.getSymbolTable()); // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. - // if (RealPass) abortIfBroken(); return false; @@ -80,11 +107,11 @@ namespace { // Anonymous namespace for class // Get dominator information if we are being run by PassManager if (RealPass) DS = &getAnalysis(); visit(F); + InstsInThisBlock.clear(); // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. - // if (RealPass) abortIfBroken(); @@ -93,12 +120,15 @@ namespace { // Anonymous namespace for class bool doFinalization(Module &M) { // Scan through, checking all of the external function's linkage now... - for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { visitGlobalValue(*I); - for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) - if (I->isExternal() && I->hasInternalLinkage()) - CheckFailed("Global Variable is external with internal linkage!", I); + // Check to make sure function prototypes are okay. + if (I->isExternal()) visitFunction(*I); + } + + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) + visitGlobalVariable(*I); // If the module is broken, abort at this time. abortIfBroken(); @@ -111,13 +141,29 @@ namespace { // Anonymous namespace for class AU.addRequired(); } - // abortIfBroken - If the module is broken and we are supposed to abort on - // this condition, do so. - // - void abortIfBroken() const { - if (Broken && AbortBroken) { - std::cerr << "Broken module found, compilation aborted!\n"; - abort(); + /// abortIfBroken - If the module is broken and we are supposed to abort on + /// this condition, do so. + /// + void abortIfBroken() { + if (Broken) + { + msgs << "Broken module found, "; + switch (action) + { + case AbortProcessAction: + msgs << "compilation aborted!\n"; + std::cerr << msgs.str(); + abort(); + case ThrowExceptionAction: + msgs << "verification terminated.\n"; + throw msgs.str(); + case PrintMessageAction: + msgs << "verification continues.\n"; + std::cerr << msgs.str(); + break; + case ReturnStatusAction: + break; + } } } @@ -125,11 +171,14 @@ namespace { // Anonymous namespace for class // Verification methods... void verifySymbolTable(SymbolTable &ST); void visitGlobalValue(GlobalValue &GV); + void visitGlobalVariable(GlobalVariable &GV); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); void visitPHINode(PHINode &PN); void visitBinaryOperator(BinaryOperator &B); void visitShiftInst(ShiftInst &SI); + void visitVANextInst(VANextInst &VAN) { visitInstruction(VAN); } + void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } void visitCallInst(CallInst &CI); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitLoadInst(LoadInst &LI); @@ -137,27 +186,56 @@ namespace { // Anonymous namespace for class void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); void visitReturnInst(ReturnInst &RI); + void visitSwitchInst(SwitchInst &SI); + void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } + void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); + + + void WriteValue(const Value *V) { + if (!V) return; + if (isa(V)) { + msgs << *V; + } else { + WriteAsOperand (msgs, V, true, true, Mod); + msgs << "\n"; + } + } + + void WriteType(const Type* T ) { + if ( !T ) return; + WriteTypeSymbolic(msgs, T, Mod ); + } + // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. - // - inline void CheckFailed(const std::string &Message, - const Value *V1 = 0, const Value *V2 = 0, - const Value *V3 = 0, const Value *V4 = 0) { - std::cerr << Message << "\n"; - if (V1) std::cerr << *V1 << "\n"; - if (V2) std::cerr << *V2 << "\n"; - if (V3) std::cerr << *V3 << "\n"; - if (V4) std::cerr << *V4 << "\n"; + void CheckFailed(const std::string &Message, + const Value *V1 = 0, const Value *V2 = 0, + const Value *V3 = 0, const Value *V4 = 0) { + msgs << Message << "\n"; + WriteValue(V1); + WriteValue(V2); + WriteValue(V3); + WriteValue(V4); + Broken = true; + } + + void CheckFailed( const std::string& Message, const Value* V1, + const Type* T2, const Value* V3 = 0 ) { + msgs << Message << "\n"; + WriteValue(V1); + WriteType(T2); + WriteValue(V3); Broken = true; } }; - RegisterPass X("verify", "Module Verifier"); -} + RegisterOpt X("verify", "Module Verifier"); +} // End anonymous namespace + // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ @@ -174,7 +252,7 @@ namespace { // Anonymous namespace for class void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isExternal() || GV.hasExternalLinkage(), - "Global value has Internal Linkage!", &GV); + "Global is external, but doesn't have external linkage!", &GV); Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); @@ -185,24 +263,34 @@ void Verifier::visitGlobalValue(GlobalValue &GV) { } } +void Verifier::visitGlobalVariable(GlobalVariable &GV) { + if (GV.hasInitializer()) + Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), + "Global variable initializer type does not match global " + "variable type!", &GV); + + visitGlobalValue(GV); +} + + // verifySymbolTable - Verify that a function or module symbol table is ok // void Verifier::verifySymbolTable(SymbolTable &ST) { - // Loop over all of the types in the symbol table... - for (SymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) - for (SymbolTable::type_iterator I = TI->second.begin(), - E = TI->second.end(); I != E; ++I) { - Value *V = I->second; + // Loop over all of the values in all type planes in the symbol table. + for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), + PE = ST.plane_end(); PI != PE; ++PI) + for (SymbolTable::value_const_iterator VI = PI->second.begin(), + VE = PI->second.end(); VI != VE; ++VI) { + Value *V = VI->second; // Check that there are no void typed values in the symbol table. Values // with a void type cannot be put into symbol tables because they cannot // have names! Assert1(V->getType() != Type::VoidTy, - "Values with void type are not allowed to have names!", V); + "Values with void type are not allowed to have names!", V); } } - // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { @@ -210,23 +298,29 @@ void Verifier::visitFunction(Function &F) { const FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.getArgumentList().size(); - Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", &F, FT); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); + Assert1(F.getReturnType()->isFirstClassType() || + F.getReturnType() == Type::VoidTy, + "Functions cannot return aggregate values!", &F); // Check that the argument values match the function type for this function... unsigned i = 0; - for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i) + for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { Assert2(I->getType() == FT->getParamType(i), "Argument value does not match function argument type!", I, FT->getParamType(i)); + // Make sure no aggregates are passed by value. + Assert1(I->getType()->isFirstClassType(), + "Functions cannot take aggregates as arguments by value!", I); + } if (!F.isExternal()) { verifySymbolTable(F.getSymbolTable()); // Check the entry node - BasicBlock *Entry = &F.getEntryNode(); + BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); } @@ -236,8 +330,54 @@ void Verifier::visitFunction(Function &F) { // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { + InstsInThisBlock.clear(); + // Ensure that basic blocks have terminators! Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); + + // Check constraints that this basic block imposes on all of the PHI nodes in + // it. + if (isa(BB.front())) { + std::vector Preds(pred_begin(&BB), pred_end(&BB)); + std::sort(Preds.begin(), Preds.end()); + PHINode *PN; + for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { + + // Ensure that PHI nodes have at least one entry! + Assert1(PN->getNumIncomingValues() != 0, + "PHI nodes must have at least one entry. If the block is dead, " + "the PHI should be removed!", PN); + Assert1(PN->getNumIncomingValues() == Preds.size(), + "PHINode should have one entry for each predecessor of its " + "parent basic block!", PN); + + // Get and sort all incoming values in the PHI node... + std::vector > Values; + Values.reserve(PN->getNumIncomingValues()); + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + Values.push_back(std::make_pair(PN->getIncomingBlock(i), + PN->getIncomingValue(i))); + std::sort(Values.begin(), Values.end()); + + for (unsigned i = 0, e = Values.size(); i != e; ++i) { + // Check to make sure that if there is more than one entry for a + // particular basic block in this PHI node, that the incoming values are + // all identical. + // + Assert4(i == 0 || Values[i].first != Values[i-1].first || + Values[i].second == Values[i-1].second, + "PHI node has multiple entries for the same basic block with " + "different incoming values!", PN, Values[i].first, + Values[i].second, Values[i-1].second); + + // Check to make sure that the predecessors and PHI node entries are + // matched up. + Assert3(Values[i].first == Preds[i], + "PHI node entries do not match predecessors!", PN, + Values[i].first, Preds[i]); + } + } + } } void Verifier::visitTerminatorInst(TerminatorInst &I) { @@ -250,88 +390,67 @@ void Verifier::visitTerminatorInst(TerminatorInst &I) { void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); if (RI.getNumOperands() == 0) - Assert1(F->getReturnType() == Type::VoidTy, - "Function returns no value, but ret instruction found that does!", - &RI); + Assert2(F->getReturnType() == Type::VoidTy, + "Found return instr that returns void in Function of non-void " + "return type!", &RI, F->getReturnType()); else Assert2(F->getReturnType() == RI.getOperand(0)->getType(), "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); - // Check to make sure that the return value has neccesary properties for + // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); } -// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of a -// pass, if any exist, it's an error. -// +void Verifier::visitSwitchInst(SwitchInst &SI) { + // Check to make sure that all of the constants in the switch instruction + // have the same type as the switched-on value. + const Type *SwitchTy = SI.getCondition()->getType(); + for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) + Assert1(SI.getCaseValue(i)->getType() == SwitchTy, + "Switch constants must all be same type as switch value!", &SI); + + visitTerminatorInst(SI); +} + +void Verifier::visitSelectInst(SelectInst &SI) { + Assert1(SI.getCondition()->getType() == Type::BoolTy, + "Select condition type must be bool!", &SI); + Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), + "Select values must have identical types!", &SI); + Assert1(SI.getTrueValue()->getType() == SI.getType(), + "Select values must have same type as select instruction!", &SI); + visitInstruction(SI); +} + + +/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of +/// a pass, if any exist, it's an error. +/// void Verifier::visitUserOp1(Instruction &I) { Assert1(0, "User-defined operators should not live outside of a pass!", &I); } -// visitPHINode - Ensure that a PHI node is well formed. +/// visitPHINode - Ensure that a PHI node is well formed. +/// void Verifier::visitPHINode(PHINode &PN) { // Ensure that the PHI nodes are all grouped together at the top of the block. // This can be tested by checking whether the instruction before this is - // either nonexistant (because this is begin()) or is a PHI node. If not, + // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. - Assert2(PN.getPrev() == 0 || isa(PN.getPrev()), + Assert2(&PN.getParent()->front() == &PN || isa(PN.getPrev()), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); - // Ensure that PHI nodes have at least one entry! - Assert1(PN.getNumIncomingValues() != 0, - "PHI nodes must have at least one entry. If the block is dead, " - "the PHI should be removed!", - &PN); - - std::vector Preds(pred_begin(PN.getParent()), - pred_end(PN.getParent())); - // Loop over all of the incoming values, make sure that there are - // predecessors for each one... - // - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { - // Make sure all of the incoming values are the right types... - Assert2(PN.getType() == PN.getIncomingValue(i)->getType(), - "PHI node argument type does not agree with PHI node type!", - &PN, PN.getIncomingValue(i)); - - BasicBlock *BB = PN.getIncomingBlock(i); - std::vector::iterator PI = - find(Preds.begin(), Preds.end(), BB); - Assert2(PI != Preds.end(), "PHI node has entry for basic block that" - " is not a predecessor!", &PN, BB); - Preds.erase(PI); - } - - // There should be no entries left in the predecessor list... - for (std::vector::iterator I = Preds.begin(), - E = Preds.end(); I != E; ++I) - Assert2(0, "PHI node does not have entry for a predecessor basic block!", - &PN, *I); - - // Now we go through and check to make sure that if there is more than one - // entry for a particular basic block in this PHI node, that the incoming - // values are all identical. - // - std::vector > Values; - Values.reserve(PN.getNumIncomingValues()); + // Check that all of the operands of the PHI node have the same type as the + // result. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) - Values.push_back(std::make_pair(PN.getIncomingBlock(i), - PN.getIncomingValue(i))); + Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), + "PHI node operands are not the same type as the result!", &PN); - // Sort the Values vector so that identical basic block entries are adjacent. - std::sort(Values.begin(), Values.end()); - - // Check for identical basic blocks with differing incoming values... - for (unsigned i = 1, e = PN.getNumIncomingValues(); i < e; ++i) - Assert4(Values[i].first != Values[i-1].first || - Values[i].second == Values[i-1].second, - "PHI node has multiple entries for the same basic block with " - "different incoming values!", &PN, Values[i].first, - Values[i].second, Values[i-1].second); + // All other PHI node constraints are checked in the visitBasicBlock method. visitInstruction(PN); } @@ -355,16 +474,20 @@ void Verifier::visitCallInst(CallInst &CI) { // Verify that all arguments to the call match the function type... for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) - Assert2(CI.getOperand(i+1)->getType() == FTy->getParamType(i), + Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i), "Call parameter type does not match function signature!", - CI.getOperand(i+1), FTy->getParamType(i)); + CI.getOperand(i+1), FTy->getParamType(i), &CI); + + if (Function *F = CI.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) + visitIntrinsicFunctionCall(ID, CI); visitInstruction(CI); } -// visitBinaryOperator - Check that both arguments to the binary operator are -// of the same type! -// +/// visitBinaryOperator - Check that both arguments to the binary operator are +/// of the same type! +/// void Verifier::visitBinaryOperator(BinaryOperator &B) { Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), "Both operands to a binary operator are not of the same type!", &B); @@ -386,8 +509,9 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { Assert1(B.getType() == B.getOperand(0)->getType(), "Arithmetic operators must have same type for operands and result!", &B); - Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(), - "Arithmetic operators must have integer or fp type!", &B); + Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || + isa(B.getType()), + "Arithmetic operators must have integer, fp, or packed type!", &B); } visitInstruction(B); @@ -403,8 +527,6 @@ void Verifier::visitShiftInst(ShiftInst &SI) { visitInstruction(SI); } - - void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { const Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), @@ -419,7 +541,7 @@ void Verifier::visitLoadInst(LoadInst &LI) { const Type *ElTy = cast(LI.getOperand(0)->getType())->getElementType(); Assert2(ElTy == LI.getType(), - "Load is not of right type for indices!", &LI, ElTy); + "Load result type does not match pointer operand type!", &LI, ElTy); visitInstruction(LI); } @@ -427,34 +549,22 @@ void Verifier::visitStoreInst(StoreInst &SI) { const Type *ElTy = cast(SI.getOperand(1)->getType())->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value is not of right type for indices!", &SI, ElTy); + "Stored value type does not match pointer operand type!", &SI, ElTy); visitInstruction(SI); } -// verifyInstruction - Verify that an instruction is well formed. -// +/// verifyInstruction - Verify that an instruction is well formed. +/// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); Assert1(BB, "Instruction not embedded in basic block!", &I); - // Check that all uses of the instruction, if they are instructions - // themselves, actually have parent basic blocks. If the use is not an - // instruction, it is an error! - // - for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); - UI != UE; ++UI) { - Assert1(isa(*UI), "Use of instruction is not an instruction!", - *UI); - Instruction *Used = cast(*UI); - Assert2(Used->getParent() != 0, "Instruction referencing instruction not" - " embeded in a basic block!", &I, Used); - } - if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) - Assert1(*UI != (User*)&I, + Assert1(*UI != (User*)&I || + !DS->dominates(&BB->getParent()->getEntryBlock(), BB), "Only PHI nodes may reference their own value!", &I); } @@ -462,34 +572,191 @@ void Verifier::visitInstruction(Instruction &I) { Assert1(I.getType() != Type::VoidTy || !I.hasName(), "Instruction has a name, but provides a void value!", &I); - // Check that a definition dominates all of its uses. - // + // Check that the return value of the instruction is either void or a legal + // value type. + Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(), + "Instruction returns a non-scalar type!", &I); + + // Check that all uses of the instruction, if they are instructions + // themselves, actually have parent basic blocks. If the use is not an + // instruction, it is an error! for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { - Instruction *Use = cast(*UI); - - // PHI nodes are more difficult than other nodes because they actually - // "use" the value in the predecessor basic blocks they correspond to. - if (PHINode *PN = dyn_cast(Use)) { - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (&I == PN->getIncomingValue(i)) { - // Make sure that I dominates the end of pred(i) - BasicBlock *Pred = PN->getIncomingBlock(i); - - // Use must be dominated by by definition unless use is unreachable! - Assert2(DS->dominates(BB, Pred) || - !DS->dominates(&BB->getParent()->getEntryNode(), Pred), - "Instruction does not dominate all uses!", - &I, PN); + Assert1(isa(*UI), "Use of instruction is not an instruction!", + *UI); + Instruction *Used = cast(*UI); + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embeded in a basic block!", &I, Used); + } + + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { + // Check to make sure that the "address of" an intrinsic function is never + // taken. + Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); + if (Function *F = dyn_cast(I.getOperand(i))) { + Assert1(!F->isIntrinsic() || (i == 0 && isa(I)), + "Cannot take the address of an intrinsic!", &I); + } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { + Assert1(OpBB->getParent() == BB->getParent(), + "Referring to a basic block in another function!", &I); + } else if (Argument *OpArg = dyn_cast(I.getOperand(i))) { + Assert1(OpArg->getParent() == BB->getParent(), + "Referring to an argument in another function!", &I); + } else if (Instruction *Op = dyn_cast(I.getOperand(i))) { + BasicBlock *OpBlock = Op->getParent(); + + // Check that a definition dominates all of its uses. + if (!isa(I)) { + // Invoke results are only usable in the normal destination, not in the + // exceptional destination. + if (InvokeInst *II = dyn_cast(Op)) + OpBlock = II->getNormalDest(); + else if (OpBlock == BB) { + // If they are in the same basic block, make sure that the definition + // comes before the use. + Assert2(InstsInThisBlock.count(Op) || + !DS->dominates(&BB->getParent()->getEntryBlock(), BB), + "Instruction does not dominate all uses!", Op, &I); } - } else { - // Use must be dominated by by definition unless use is unreachable! - Assert2(DS->dominates(&I, Use) || - !DS->dominates(&BB->getParent()->getEntryNode(),Use->getParent()), - "Instruction does not dominate all uses!", &I, Use); + // Definition must dominate use unless use is unreachable! + Assert2(DS->dominates(OpBlock, BB) || + !DS->dominates(&BB->getParent()->getEntryBlock(), BB), + "Instruction does not dominate all uses!", Op, &I); + } else { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = cast(I.getOperand(i+1)); + Assert2(DS->dominates(OpBlock, PredBB) || + !DS->dominates(&BB->getParent()->getEntryBlock(), PredBB), + "Instruction does not dominate all uses!", Op, &I); + } } } + InstsInThisBlock.insert(&I); +} + +/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. +/// +void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { + Function *IF = CI.getCalledFunction(); + const FunctionType *FT = IF->getFunctionType(); + Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF); + unsigned NumArgs = 0; + + // FIXME: this should check the return type of each intrinsic as well, also + // arguments! + switch (ID) { + case Intrinsic::vastart: + Assert1(CI.getParent()->getParent()->getFunctionType()->isVarArg(), + "llvm.va_start intrinsic may only occur in function with variable" + " args!", &CI); + NumArgs = 0; + break; + case Intrinsic::vaend: NumArgs = 1; break; + case Intrinsic::vacopy: NumArgs = 1; break; + + case Intrinsic::returnaddress: + case Intrinsic::frameaddress: + Assert1(isa(FT->getReturnType()), + "llvm.(frame|return)address must return pointers", IF); + Assert1(FT->getNumParams() == 1 && isa(CI.getOperand(1)), + "llvm.(frame|return)address require a single constant integer argument", + &CI); + NumArgs = 1; + break; + + // Verify that read and write port have integral parameters of the correct + // signed-ness. + case Intrinsic::writeport: + Assert1(FT->getNumParams() == 2, + "Illegal # arguments for intrinsic function!", IF); + Assert1(FT->getParamType(0)->isIntegral(), + "First argument not unsigned int!", IF); + Assert1(FT->getParamType(1)->isUnsigned(), + "First argument not unsigned int!", IF); + NumArgs = 2; + break; + + case Intrinsic::writeio: + Assert1(FT->getNumParams() == 2, + "Illegal # arguments for intrinsic function!", IF); + Assert1(FT->getParamType(0)->isFirstClassType(), + "First argument not a first class type!", IF); + Assert1(isa(FT->getParamType(1)), + "Second argument not a pointer!", IF); + NumArgs = 2; + break; + + case Intrinsic::readport: + Assert1(FT->getNumParams() == 1, + "Illegal # arguments for intrinsic function!", IF); + Assert1(FT->getReturnType()->isFirstClassType(), + "Return type is not a first class type!", IF); + Assert1(FT->getParamType(0)->isUnsigned(), + "First argument not unsigned int!", IF); + NumArgs = 1; + break; + + case Intrinsic::readio: { + const PointerType *ParamType = dyn_cast(FT->getParamType(0)); + const Type *ReturnType = FT->getReturnType(); + + Assert1(FT->getNumParams() == 1, + "Illegal # arguments for intrinsic function!", IF); + Assert1(ParamType, "First argument not a pointer!", IF); + Assert1(ParamType->getElementType() == ReturnType, + "Pointer type doesn't match return type!", IF); + NumArgs = 1; + break; + } + + case Intrinsic::isunordered: + Assert1(FT->getNumParams() == 2, + "Illegal # arguments for intrinsic function!", IF); + Assert1(FT->getReturnType() == Type::BoolTy, + "Return type is not bool!", IF); + Assert1(FT->getParamType(0) == FT->getParamType(1), + "Arguments must be of the same type!", IF); + Assert1(FT->getParamType(0)->isFloatingPoint(), + "Argument is not a floating point type!", IF); + NumArgs = 2; + break; + + case Intrinsic::setjmp: NumArgs = 1; break; + case Intrinsic::longjmp: NumArgs = 2; break; + case Intrinsic::sigsetjmp: NumArgs = 2; break; + case Intrinsic::siglongjmp: NumArgs = 2; break; + + case Intrinsic::gcroot: + Assert1(FT->getNumParams() == 2, + "Illegal # arguments for intrinsic function!", IF); + Assert1(isa(CI.getOperand(2)), + "Second argument to llvm.gcroot must be a constant!", &CI); + NumArgs = 2; + break; + case Intrinsic::gcread: NumArgs = 2; break; + case Intrinsic::gcwrite: NumArgs = 3; break; + + case Intrinsic::dbg_stoppoint: NumArgs = 4; break; + case Intrinsic::dbg_region_start:NumArgs = 1; break; + case Intrinsic::dbg_region_end: NumArgs = 1; break; + case Intrinsic::dbg_func_start: NumArgs = 1; break; + case Intrinsic::dbg_declare: NumArgs = 1; break; + + case Intrinsic::memcpy: NumArgs = 4; break; + case Intrinsic::memmove: NumArgs = 4; break; + case Intrinsic::memset: NumArgs = 4; break; + + case Intrinsic::prefetch: NumArgs = 3; break; + + case Intrinsic::not_intrinsic: + assert(0 && "Invalid intrinsic!"); NumArgs = 0; break; + } + + Assert1(FT->getNumParams() == NumArgs || (FT->getNumParams() < NumArgs && + FT->isVarArg()), + "Illegal # arguments for intrinsic function!", IF); } @@ -497,35 +764,32 @@ void Verifier::visitInstruction(Instruction &I) { // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// -Pass *createVerifierPass() { - return new Verifier(); +FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { + return new Verifier(action); } // verifyFunction - Create -bool verifyFunction(const Function &f) { - Function &F = (Function&)f; +bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { + Function &F = const_cast(f); assert(!F.isExternal() && "Cannot verify external functions"); - - DominatorSet DS; - DS.doInitialization(*F.getParent()); - DS.runOnFunction(F); - - Verifier V(DS); - V.runOnFunction(F); - - DS.doFinalization(*F.getParent()); - - return V.Broken; + + FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); + Verifier *V = new Verifier(action); + FPM.add(V); + FPM.run(F); + return V->Broken; } -// verifyModule - Check a module for errors, printing messages on stderr. -// Return true if the module is corrupt. -// -bool verifyModule(const Module &M) { +/// verifyModule - Check a module for errors, printing messages on stderr. +/// Return true if the module is corrupt. +/// +bool llvm::verifyModule(const Module &M, VerifierFailureAction action) { PassManager PM; - Verifier *V = new Verifier(); + Verifier *V = new Verifier(action); PM.add(V); PM.run((Module&)M); return V->Broken; } + +// vim: sw=2