X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=lib%2FVMCore%2FVerifier.cpp;h=daf74bff5b33129fccb72e24d4fdc21c58bfa026;hb=607a7ab3da72a2eb53553a520507cbb8068dd1d8;hp=784a66fa09d8ddcb53a39a6b018a42618259ec8d;hpb=9a507cd915e6460bc7dadee2185c53df326274c1;p=oota-llvm.git diff --git a/lib/VMCore/Verifier.cpp b/lib/VMCore/Verifier.cpp index 784a66fa09d..daf74bff5b3 100644 --- a/lib/VMCore/Verifier.cpp +++ b/lib/VMCore/Verifier.cpp @@ -45,30 +45,31 @@ #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" +#include "llvm/Metadata.h" #include "llvm/Module.h" -#include "llvm/ModuleProvider.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" +#include "llvm/TypeSymbolTable.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" +#include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" -#include "llvm/Support/Streams.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" -#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include -#include #include using namespace llvm; namespace { // Anonymous namespace for class - struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass { + struct PreVerifier : public FunctionPass { static char ID; // Pass ID, replacement for typeid PreVerifier() : FunctionPass(&ID) { } @@ -84,15 +85,15 @@ namespace { // Anonymous namespace for class for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { if (I->empty() || !I->back().isTerminator()) { - cerr << "Basic Block does not have terminator!\n"; - WriteAsOperand(*cerr, I, true); - cerr << "\n"; + dbgs() << "Basic Block does not have terminator!\n"; + WriteAsOperand(dbgs(), I, true); + dbgs() << "\n"; Broken = true; } } if (Broken) - abort(); + report_fatal_error("Broken module, no Basic Block terminator!"); return false; } @@ -105,16 +106,66 @@ PreVer("preverify", "Preliminary module verification"); static const PassInfo *const PreVerifyID = &PreVer; namespace { - struct VISIBILITY_HIDDEN - Verifier : public FunctionPass, InstVisitor { + class TypeSet : public AbstractTypeUser { + public: + TypeSet() {} + + /// Insert a type into the set of types. + bool insert(const Type *Ty) { + if (!Types.insert(Ty)) + return false; + if (Ty->isAbstract()) + Ty->addAbstractTypeUser(this); + return true; + } + + // Remove ourselves as abstract type listeners for any types that remain + // abstract when the TypeSet is destroyed. + ~TypeSet() { + for (SmallSetVector::iterator I = Types.begin(), + E = Types.end(); I != E; ++I) { + const Type *Ty = *I; + if (Ty->isAbstract()) + Ty->removeAbstractTypeUser(this); + } + } + + // Abstract type user interface. + + /// Remove types from the set when refined. Do not insert the type it was + /// refined to because that type hasn't been verified yet. + void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { + Types.remove(OldTy); + OldTy->removeAbstractTypeUser(this); + } + + /// Stop listening for changes to a type which is no longer abstract. + void typeBecameConcrete(const DerivedType *AbsTy) { + AbsTy->removeAbstractTypeUser(this); + } + + void dump() const {} + + private: + SmallSetVector Types; + + // Disallow copying. + TypeSet(const TypeSet &); + TypeSet &operator=(const TypeSet &); + }; + + struct Verifier : public FunctionPass, public InstVisitor { static char ID; // Pass ID, replacement for typeid bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? VerifierFailureAction action; // What to do if verification fails. Module *Mod; // Module we are verifying right now - DominatorTree *DT; // Dominator Tree, caution can be null! - std::stringstream msgs; // A stringstream to collect messages + LLVMContext *Context; // Context within which we are verifying + DominatorTree *DT; // Dominator Tree, caution can be null! + + std::string Messages; + raw_string_ostream MessagesStr; /// InstInThisBlock - when verifying a basic block, keep track of all of the /// instructions we have seen so far. This allows us to do efficient @@ -122,27 +173,31 @@ namespace { /// an instruction in the same block. SmallPtrSet InstsInThisBlock; + /// Types - keep track of the types that have been checked already. + TypeSet Types; + Verifier() : FunctionPass(&ID), Broken(false), RealPass(true), action(AbortProcessAction), - DT(0), msgs( std::ios::app | std::ios::out ) {} + Mod(0), Context(0), DT(0), MessagesStr(Messages) {} explicit Verifier(VerifierFailureAction ctn) : FunctionPass(&ID), - Broken(false), RealPass(true), action(ctn), DT(0), - msgs( std::ios::app | std::ios::out ) {} + Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0), + MessagesStr(Messages) {} explicit Verifier(bool AB) : FunctionPass(&ID), Broken(false), RealPass(true), - action( AB ? AbortProcessAction : PrintMessageAction), DT(0), - msgs( std::ios::app | std::ios::out ) {} + action( AB ? AbortProcessAction : PrintMessageAction), Mod(0), + Context(0), DT(0), MessagesStr(Messages) {} explicit Verifier(DominatorTree &dt) : FunctionPass(&ID), - Broken(false), RealPass(false), action(PrintMessageAction), - DT(&dt), msgs( std::ios::app | std::ios::out ) {} + Broken(false), RealPass(false), action(PrintMessageAction), Mod(0), + Context(0), DT(&dt), MessagesStr(Messages) {} bool doInitialization(Module &M) { Mod = &M; + Context = &M.getContext(); verifyTypeSymbolTable(M.getTypeSymbolTable()); // If this is a real pass, in a pass manager, we must abort before @@ -158,6 +213,7 @@ namespace { if (RealPass) DT = &getAnalysis(); Mod = F.getParent(); + if (!Context) Context = &F.getContext(); visit(F); InstsInThisBlock.clear(); @@ -204,20 +260,21 @@ namespace { /// bool abortIfBroken() { if (!Broken) return false; - msgs << "Broken module found, "; + MessagesStr << "Broken module found, "; switch (action) { - default: assert(0 && "Unknown action"); + default: llvm_unreachable("Unknown action"); case AbortProcessAction: - msgs << "compilation aborted!\n"; - cerr << msgs.str(); + MessagesStr << "compilation aborted!\n"; + dbgs() << MessagesStr.str(); + // Client should choose different reaction if abort is not desired abort(); case PrintMessageAction: - msgs << "verification continues.\n"; - cerr << msgs.str(); + MessagesStr << "verification continues.\n"; + dbgs() << MessagesStr.str(); return false; case ReturnStatusAction: - msgs << "compilation terminated.\n"; - return Broken; + MessagesStr << "compilation terminated.\n"; + return true; } } @@ -230,9 +287,9 @@ namespace { void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); using InstVisitor::visit; - + void visit(Instruction &I); - + void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); @@ -260,13 +317,14 @@ namespace { void visitStoreInst(StoreInst &SI); void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); + void visitBranchInst(BranchInst &BI); void visitReturnInst(ReturnInst &RI); void visitSwitchInst(SwitchInst &SI); void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); - void visitAllocationInst(AllocationInst &AI); + void visitAllocaInst(AllocaInst &AI); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); @@ -275,36 +333,38 @@ namespace { int VT, unsigned ArgNo, std::string &Suffix); void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, unsigned RetNum, unsigned ParamNum, ...); - void VerifyAttrs(Attributes Attrs, const Type *Ty, - bool isReturnValue, const Value *V); + void VerifyFunctionLocalMetadata(MDNode *N, Function *F, + SmallPtrSet &Visited); + void VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V); void VerifyFunctionAttrs(const FunctionType *FT, const AttrListPtr &Attrs, const Value *V); + void VerifyType(const Type *Ty); void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { - msgs << *V; + MessagesStr << *V << '\n'; } else { - WriteAsOperand(msgs, V, true, Mod); - msgs << "\n"; + WriteAsOperand(MessagesStr, V, true, Mod); + MessagesStr << '\n'; } } void WriteType(const Type *T) { if (!T) return; - raw_os_ostream RO(msgs); - RO << ' '; - WriteTypeSymbolic(RO, T, Mod); + MessagesStr << ' '; + WriteTypeSymbolic(MessagesStr, T, Mod); } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. - void CheckFailed(const std::string &Message, + void CheckFailed(const Twine &Message, const Value *V1 = 0, const Value *V2 = 0, const Value *V3 = 0, const Value *V4 = 0) { - msgs << Message << "\n"; + MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); @@ -312,14 +372,23 @@ namespace { Broken = true; } - void CheckFailed( const std::string& Message, const Value* V1, - const Type* T2, const Value* V3 = 0 ) { - msgs << Message << "\n"; + void CheckFailed(const Twine &Message, const Value *V1, + const Type *T2, const Value *V3 = 0) { + MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); Broken = true; } + + void CheckFailed(const Twine &Message, const Type *T1, + const Type *T2 = 0, const Type *T3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteType(T1); + WriteType(T2); + WriteType(T3); + Broken = true; + } }; } // End anonymous namespace @@ -338,7 +407,6 @@ static RegisterPass X("verify", "Module Verifier"); #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) - void Verifier::visit(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) Assert1(I.getOperand(i) != 0, "Operand is null", &I); @@ -348,10 +416,10 @@ void Verifier::visit(Instruction &I) { void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || + GV.isMaterializable() || GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage() || - GV.hasGhostLinkage() || (isa(GV) && (GV.hasLocalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", @@ -359,14 +427,14 @@ void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), "Global is marked as dllimport, but not external", &GV); - + Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { - GlobalVariable &GVar = cast(GV); - Assert1(isa(GVar.getType()->getElementType()), - "Only global arrays can have appending linkage!", &GV); + GlobalVariable *GVar = dyn_cast(&GV); + Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), + "Only global arrays can have appending linkage!", GVar); } } @@ -375,6 +443,15 @@ void Verifier::visitGlobalVariable(GlobalVariable &GV) { Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), "Global variable initializer type does not match global " "variable type!", &GV); + + // If the global has common linkage, it must have a zero initializer and + // cannot be constant. + if (GV.hasCommonLinkage()) { + Assert1(GV.getInitializer()->isNullValue(), + "'common' global must have a zero initializer!", &GV); + Assert1(!GV.isConstant(), "'common' global may not be marked constant!", + &GV); + } } else { Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage(), @@ -397,7 +474,9 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { if (!isa(GA.getAliasee())) { const ConstantExpr *CE = dyn_cast(GA.getAliasee()); - Assert1(CE && CE->getOpcode() == Instruction::BitCast && + Assert1(CE && + (CE->getOpcode() == Instruction::BitCast || + CE->getOpcode() == Instruction::GetElementPtr) && isa(CE->getOperand(0)), "Aliasee should be either GlobalValue or bitcast of GlobalValue", &GA); @@ -411,24 +490,27 @@ void Verifier::visitGlobalAlias(GlobalAlias &GA) { } void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { + for (TypeSymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I) + VerifyType(I->second); } -// VerifyAttrs - Check the given parameter attributes for an argument or return +// VerifyParameterAttrs - Check the given attributes for an argument or return // value of the specified type. The value V is printed in error messages. -void Verifier::VerifyAttrs(Attributes Attrs, const Type *Ty, - bool isReturnValue, const Value *V) { +void Verifier::VerifyParameterAttrs(Attributes Attrs, const Type *Ty, + bool isReturnValue, const Value *V) { if (Attrs == Attribute::None) return; + Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; + Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + + " only applies to the function!", V); + if (isReturnValue) { Attributes RetI = Attrs & Attribute::ParameterOnly; Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + " does not apply to return values!", V); } - Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; - Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + - " only applies to functions!", V); - + for (unsigned i = 0; i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; @@ -471,9 +553,9 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, else if (Attr.Index-1 < FT->getNumParams()) Ty = FT->getParamType(Attr.Index-1); else - break; // VarArgs attributes, don't verify. - - VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); + break; // VarArgs attributes, verified elsewhere. + + VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); if (Attr.Attrs & Attribute::Nest) { Assert1(!SawNest, "More than one parameter has attribute nest!", V); @@ -485,10 +567,10 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, } Attributes FAttrs = Attrs.getFnAttributes(); - Assert1(!(FAttrs & (~Attribute::FunctionOnly)), - "Attribute " + Attribute::getAsString(FAttrs) + - " does not apply to function!", V); - + Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); + Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + + " does not apply to the function!", V); + for (unsigned i = 0; i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; @@ -500,16 +582,17 @@ void Verifier::VerifyFunctionAttrs(const FunctionType *FT, static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { if (Attrs.isEmpty()) return true; - + unsigned LastSlot = Attrs.getNumSlots() - 1; unsigned LastIndex = Attrs.getSlot(LastSlot).Index; if (LastIndex <= Params || (LastIndex == (unsigned)~0 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) return true; - + return false; } + // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { @@ -517,15 +600,19 @@ void Verifier::visitFunction(Function &F) { const FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); + Assert1(Context == &F.getContext(), + "Function context does not match Module context!", &F); + + Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); Assert1(F.getReturnType()->isFirstClassType() || - F.getReturnType() == Type::VoidTy || - isa(F.getReturnType()), + F.getReturnType()->isVoidTy() || + F.getReturnType()->isStructTy(), "Functions cannot return aggregate values!", &F); - Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy, + Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), "Invalid struct return type!", &F); const AttrListPtr &Attrs = F.getAttributes(); @@ -549,7 +636,10 @@ void Verifier::visitFunction(Function &F) { "Varargs functions must have C calling conventions!", &F); break; } - + + bool isLLVMdotName = F.getName().size() >= 5 && + F.getName().substr(0, 5) == "llvm."; + // Check that the argument values match the function type for this function... unsigned i = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); @@ -559,27 +649,43 @@ void Verifier::visitFunction(Function &F) { I, FT->getParamType(i)); Assert1(I->getType()->isFirstClassType(), "Function arguments must have first-class types!", I); + if (!isLLVMdotName) + Assert2(!I->getType()->isMetadataTy(), + "Function takes metadata but isn't an intrinsic", I, &F); } - if (F.isDeclaration()) { + if (F.isMaterializable()) { + // Function has a body somewhere we can't see. + } else if (F.isDeclaration()) { Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || - F.hasExternalWeakLinkage() || F.hasGhostLinkage(), + F.hasExternalWeakLinkage(), "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. - if (F.getName().size() >= 5) - Assert1(F.getName().substr(0, 5) != "llvm.", - "llvm intrinsics cannot be defined!", &F); + Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); + + // The address of the entry block cannot be taken, unless it is dead. + if (Entry->hasAddressTaken()) { + Assert1(!BlockAddress::get(Entry)->isConstantUsed(), + "blockaddress may not be used with the entry block!", Entry); + } + } + + // If this function is actually an intrinsic, verify that it is only used in + // direct call/invokes, never having its "address taken". + if (F.getIntrinsicID()) { + const User *U; + if (F.hasAddressTaken(&U)) + Assert1(0, "Invalid user of intrinsic instruction!", U); } } - // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { @@ -596,7 +702,6 @@ void Verifier::visitBasicBlock(BasicBlock &BB) { std::sort(Preds.begin(), Preds.end()); PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { - // Ensure that PHI nodes have at least one entry! Assert1(PN->getNumIncomingValues() != 0, "PHI nodes must have at least one entry. If the block is dead, " @@ -641,10 +746,18 @@ void Verifier::visitTerminatorInst(TerminatorInst &I) { visitInstruction(I); } +void Verifier::visitBranchInst(BranchInst &BI) { + if (BI.isConditional()) { + Assert2(BI.getCondition()->getType()->isIntegerTy(1), + "Branch condition is not 'i1' type!", &BI, BI.getCondition()); + } + visitTerminatorInst(BI); +} + void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); - if (F->getReturnType() == Type::VoidTy) + if (F->getReturnType()->isVoidTy()) Assert2(N == 0, "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); @@ -672,7 +785,7 @@ void Verifier::visitReturnInst(ReturnInst &RI) { CheckFailed("Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); } - + // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); @@ -682,9 +795,13 @@ void Verifier::visitSwitchInst(SwitchInst &SI) { // Check to make sure that all of the constants in the switch instruction // have the same type as the switched-on value. const Type *SwitchTy = SI.getCondition()->getType(); - for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) + SmallPtrSet Constants; + for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) { Assert1(SI.getCaseValue(i)->getType() == SwitchTy, "Switch constants must all be same type as switch value!", &SI); + Assert2(Constants.insert(SI.getCaseValue(i)), + "Duplicate integer as switch case", &SI, SI.getCaseValue(i)); + } visitTerminatorInst(SI); } @@ -699,7 +816,6 @@ void Verifier::visitSelectInst(SelectInst &SI) { visitInstruction(SI); } - /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of /// a pass, if any exist, it's an error. /// @@ -713,12 +829,12 @@ void Verifier::visitTruncInst(TruncInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); @@ -731,12 +847,12 @@ void Verifier::visitZExtInst(ZExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "zext source and destination must both be a vector or neither", &I); - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); @@ -749,12 +865,12 @@ void Verifier::visitSExtInst(SExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I); - Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); + Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); @@ -766,12 +882,12 @@ void Verifier::visitFPTruncInst(FPTruncInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I); - Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); @@ -784,12 +900,12 @@ void Verifier::visitFPExtInst(FPExtInst &I) { const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later - unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); + unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); + unsigned DestBitSize = DestTy->getScalarSizeInBits(); - Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I); - Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I); - Assert1(isa(SrcTy) == isa(DestTy), + Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); + Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); + Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); @@ -801,14 +917,14 @@ void Verifier::visitUIToFPInst(UIToFPInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "UIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVector(), + Assert1(SrcTy->isIntOrIntVectorTy(), "UIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVector(), + Assert1(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) @@ -824,14 +940,14 @@ void Verifier::visitSIToFPInst(SIToFPInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID; - bool DstVec = DestTy->getTypeID() == Type::VectorTyID; + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "SIToFP source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isIntOrIntVector(), + Assert1(SrcTy->isIntOrIntVectorTy(), "SIToFP source must be integer or integer vector", &I); - Assert1(DestTy->isFPOrFPVector(), + Assert1(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) @@ -847,13 +963,14 @@ void Verifier::visitFPToUIInst(FPToUIInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToUI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVector(), + Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", + &I); + Assert1(DestTy->isIntOrIntVectorTy(), "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) @@ -869,14 +986,14 @@ void Verifier::visitFPToSIInst(FPToSIInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - bool SrcVec = isa(SrcTy); - bool DstVec = isa(DestTy); + bool SrcVec = SrcTy->isVectorTy(); + bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToSI source and dest must both be vector or scalar", &I); - Assert1(SrcTy->isFPOrFPVector(), + Assert1(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); - Assert1(DestTy->isIntOrIntVector(), + Assert1(DestTy->isIntOrIntVectorTy(), "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) @@ -892,8 +1009,8 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - Assert1(isa(SrcTy), "PtrToInt source must be pointer", &I); - Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); + Assert1(SrcTy->isPointerTy(), "PtrToInt source must be pointer", &I); + Assert1(DestTy->isIntegerTy(), "PtrToInt result must be integral", &I); visitInstruction(I); } @@ -903,8 +1020,8 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) { const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); - Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); - Assert1(isa(DestTy), "IntToPtr result must be a pointer",&I); + Assert1(SrcTy->isIntegerTy(), "IntToPtr source must be an integral", &I); + Assert1(DestTy->isPointerTy(), "IntToPtr result must be a pointer",&I); visitInstruction(I); } @@ -920,9 +1037,9 @@ void Verifier::visitBitCastInst(BitCastInst &I) { // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. - Assert1(isa(DestTy) == isa(DestTy), + Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(), "Bitcast requires both operands to be pointer or neither", &I); - Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); + Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I); // Disallow aggregates. Assert1(!SrcTy->isAggregateType(), @@ -945,11 +1062,15 @@ void Verifier::visitPHINode(PHINode &PN) { "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); - // Check that all of the operands of the PHI node have the same type as the - // result. - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + // Check that all of the values of the PHI node have the same type as the + // result, and that the incoming blocks are really basic blocks. + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), "PHI node operands are not the same type as the result!", &PN); + Assert1(isa(PN.getOperand( + PHINode::getOperandNumForIncomingBlock(i))), + "PHI node incoming block is not a BasicBlock!", &PN); + } // All other PHI node constraints are checked in the visitBasicBlock method. @@ -959,12 +1080,12 @@ void Verifier::visitPHINode(PHINode &PN) { void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); - Assert1(isa(CS.getCalledValue()->getType()), + Assert1(CS.getCalledValue()->getType()->isPointerTy(), "Called function must be a pointer!", I); const PointerType *FPTy = cast(CS.getCalledValue()->getType()); - Assert1(isa(FPTy->getElementType()), - "Called function is not pointer to function type!", I); + Assert1(FPTy->getElementType()->isFunctionTy(), + "Called function is not pointer to function type!", I); const FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed @@ -994,13 +1115,22 @@ void Verifier::VerifyCallSite(CallSite CS) { for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { Attributes Attr = Attrs.getParamAttributes(Idx); - VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); + VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); Attributes VArgI = Attr & Attribute::VarArgsIncompatible; Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + " cannot be used for vararg call arguments!", I); } + // Verify that there's no metadata unless it's a direct call to an intrinsic. + if (!CS.getCalledFunction() || CS.getCalledFunction()->getName().size() < 5 || + CS.getCalledFunction()->getName().substr(0, 5) != "llvm.") { + for (FunctionType::param_iterator PI = FTy->param_begin(), + PE = FTy->param_end(); PI != PE; ++PI) + Assert1(!PI->get()->isMetadataTy(), + "Function has metadata parameter but isn't an intrinsic", I); + } + visitInstruction(*I); } @@ -1024,13 +1154,40 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { + // Check that integer arithmetic operators are only used with + // integral operands. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + Assert1(B.getType()->isIntOrIntVectorTy(), + "Integer arithmetic operators only work with integral types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Integer arithmetic operators must have same type " + "for operands and result!", &B); + break; + // Check that floating-point arithmetic operators are only used with + // floating-point operands. + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: + case Instruction::FDiv: + case Instruction::FRem: + Assert1(B.getType()->isFPOrFPVectorTy(), + "Floating-point arithmetic operators only work with " + "floating-point types!", &B); + Assert1(B.getType() == B.getOperand(0)->getType(), + "Floating-point arithmetic operators must have same type " + "for operands and result!", &B); + break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: - Assert1(B.getType()->isInteger() || - (isa(B.getType()) && - cast(B.getType())->getElementType()->isInteger()), + Assert1(B.getType()->isIntOrIntVectorTy(), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", @@ -1039,22 +1196,13 @@ void Verifier::visitBinaryOperator(BinaryOperator &B) { case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: - Assert1(B.getType()->isInteger() || - (isa(B.getType()) && - cast(B.getType())->getElementType()->isInteger()), + Assert1(B.getType()->isIntOrIntVectorTy(), "Shifts only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); - /* FALL THROUGH */ - default: - // Arithmetic operators only work on integer or fp values - Assert1(B.getType() == B.getOperand(0)->getType(), - "Arithmetic operators must have same type for operands and result!", - &B); - Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || - isa(B.getType()), - "Arithmetic operators must have integer, fp, or vector type!", &B); break; + default: + llvm_unreachable("Unknown BinaryOperator opcode!"); } visitInstruction(B); @@ -1067,8 +1215,9 @@ void Verifier::visitICmpInst(ICmpInst& IC) { Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert1(Op0Ty->isIntOrIntVector() || isa(Op0Ty), + Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPointerTy(), "Invalid operand types for ICmp instruction", &IC); + visitInstruction(IC); } @@ -1079,7 +1228,7 @@ void Verifier::visitFCmpInst(FCmpInst& FC) { Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type - Assert1(Op0Ty->isFPOrFPVector(), + Assert1(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", &FC); visitInstruction(FC); } @@ -1133,35 +1282,40 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), Idxs.begin(), Idxs.end()); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); - Assert2(isa(GEP.getType()) && + Assert2(GEP.getType()->isPointerTy() && cast(GEP.getType())->getElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); visitInstruction(GEP); } void Verifier::visitLoadInst(LoadInst &LI) { - const Type *ElTy = - cast(LI.getOperand(0)->getType())->getElementType(); + const PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); + Assert1(PTy, "Load operand must be a pointer.", &LI); + const Type *ElTy = PTy->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); visitInstruction(LI); } void Verifier::visitStoreInst(StoreInst &SI) { - const Type *ElTy = - cast(SI.getOperand(1)->getType())->getElementType(); + const PointerType *PTy = dyn_cast(SI.getOperand(1)->getType()); + Assert1(PTy, "Load operand must be a pointer.", &SI); + const Type *ElTy = PTy->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), - "Stored value type does not match pointer operand type!", &SI, ElTy); + "Stored value type does not match pointer operand type!", + &SI, ElTy); visitInstruction(SI); } -void Verifier::visitAllocationInst(AllocationInst &AI) { +void Verifier::visitAllocaInst(AllocaInst &AI) { const PointerType *PTy = AI.getType(); Assert1(PTy->getAddressSpace() == 0, "Allocation instruction pointer not in the generic address space!", &AI); Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", &AI); + Assert1(AI.getArraySize()->getType()->isIntegerTy(32), + "Alloca array size must be i32", &AI); visitInstruction(AI); } @@ -1192,37 +1346,42 @@ void Verifier::visitInstruction(Instruction &I) { if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) - Assert1(*UI != (User*)&I || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), + Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), "Only PHI nodes may reference their own value!", &I); } - + // Verify that if this is a terminator that it is at the end of the block. if (isa(I)) Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I); - // Check that void typed values don't have names - Assert1(I.getType() != Type::VoidTy || !I.hasName(), + Assert1(!I.getType()->isVoidTy() || !I.hasName(), "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. - Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType() - || ((isa(I) || isa(I)) - && isa(I.getType())), + Assert1(I.getType()->isVoidTy() || + I.getType()->isFirstClassType(), "Instruction returns a non-scalar type!", &I); + // Check that the instruction doesn't produce metadata. Calls are already + // checked against the callee type. + Assert1(!I.getType()->isMetadataTy() || + isa(I) || isa(I), + "Invalid use of metadata!", &I); + // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { - Assert1(isa(*UI), "Use of instruction is not an instruction!", - *UI); - Instruction *Used = cast(*UI); - Assert2(Used->getParent() != 0, "Instruction referencing instruction not" - " embeded in a basic block!", &I, Used); + if (Instruction *Used = dyn_cast(*UI)) + Assert2(Used->getParent() != 0, "Instruction referencing instruction not" + " embedded in a basic block!", &I, Used); + else { + CheckFailed("Use of instruction is not an instruction!", *UI); + return; + } } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { @@ -1233,7 +1392,7 @@ void Verifier::visitInstruction(Instruction &I) { if (!I.getOperand(i)->getType()->isFirstClassType()) { Assert1(0, "Instruction operands must be first-class values!", &I); } - + if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. @@ -1254,75 +1413,176 @@ void Verifier::visitInstruction(Instruction &I) { BasicBlock *OpBlock = Op->getParent(); // Check that a definition dominates all of its uses. - if (!isa(I)) { + if (InvokeInst *II = dyn_cast(Op)) { // Invoke results are only usable in the normal destination, not in the // exceptional destination. - if (InvokeInst *II = dyn_cast(Op)) { - OpBlock = II->getNormalDest(); - - Assert2(OpBlock != II->getUnwindDest(), - "No uses of invoke possible due to dominance structure!", - Op, II); - + BasicBlock *NormalDest = II->getNormalDest(); + + Assert2(NormalDest != II->getUnwindDest(), + "No uses of invoke possible due to dominance structure!", + Op, &I); + + // PHI nodes differ from other nodes because they actually "use" the + // value in the predecessor basic blocks they correspond to. + BasicBlock *UseBlock = BB; + if (isa(I)) + UseBlock = dyn_cast(I.getOperand(i+1)); + Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB", + Op, &I); + + if (isa(I) && UseBlock == OpBlock) { + // Special case of a phi node in the normal destination or the unwind + // destination. + Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), + "Invoke result not available in the unwind destination!", + Op, &I); + } else { + Assert2(DT->dominates(NormalDest, UseBlock) || + !DT->isReachableFromEntry(UseBlock), + "Invoke result does not dominate all uses!", Op, &I); + // If the normal successor of an invoke instruction has multiple - // predecessors, then the normal edge from the invoke is critical, so - // the invoke value can only be live if the destination block - // dominates all of it's predecessors (other than the invoke) or if - // the invoke value is only used by a phi in the successor. - if (!OpBlock->getSinglePredecessor() && - DT->dominates(&BB->getParent()->getEntryBlock(), BB)) { - // The first case we allow is if the use is a PHI operand in the - // normal block, and if that PHI operand corresponds to the invoke's - // block. - bool Bad = true; - if (PHINode *PN = dyn_cast(&I)) - if (PN->getParent() == OpBlock && - PN->getIncomingBlock(i/2) == Op->getParent()) - Bad = false; - + // predecessors, then the normal edge from the invoke is critical, + // so the invoke value can only be live if the destination block + // dominates all of it's predecessors (other than the invoke). + if (!NormalDest->getSinglePredecessor() && + DT->isReachableFromEntry(UseBlock)) // If it is used by something non-phi, then the other case is that - // 'OpBlock' dominates all of its predecessors other than the + // 'NormalDest' dominates all of its predecessors other than the // invoke. In this case, the invoke value can still be used. - if (Bad) { - Bad = false; - for (pred_iterator PI = pred_begin(OpBlock), - E = pred_end(OpBlock); PI != E; ++PI) { - if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) { - Bad = true; - break; - } + for (pred_iterator PI = pred_begin(NormalDest), + E = pred_end(NormalDest); PI != E; ++PI) + if (*PI != II->getParent() && !DT->dominates(NormalDest, *PI) && + DT->isReachableFromEntry(*PI)) { + CheckFailed("Invoke result does not dominate all uses!", Op,&I); + return; } - } - Assert2(!Bad, - "Invoke value defined on critical edge but not dead!", &I, - Op); - } - } else if (OpBlock == BB) { + } + } else if (isa(I)) { + // PHI nodes are more difficult than other nodes because they actually + // "use" the value in the predecessor basic blocks they correspond to. + BasicBlock *PredBB = dyn_cast(I.getOperand(i+1)); + Assert2(PredBB && (DT->dominates(OpBlock, PredBB) || + !DT->isReachableFromEntry(PredBB)), + "Instruction does not dominate all uses!", Op, &I); + } else { + if (OpBlock == BB) { // If they are in the same basic block, make sure that the definition // comes before the use. - Assert2(InstsInThisBlock.count(Op) || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), + Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB), "Instruction does not dominate all uses!", Op, &I); } // Definition must dominate use unless use is unreachable! Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) || - !DT->dominates(&BB->getParent()->getEntryBlock(), BB), - "Instruction does not dominate all uses!", Op, &I); - } else { - // PHI nodes are more difficult than other nodes because they actually - // "use" the value in the predecessor basic blocks they correspond to. - BasicBlock *PredBB = cast(I.getOperand(i+1)); - Assert2(DT->dominates(OpBlock, PredBB) || - !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB), + !DT->isReachableFromEntry(BB), "Instruction does not dominate all uses!", Op, &I); } } else if (isa(I.getOperand(i))) { - Assert1(i == 0 && (isa(I) || isa(I)), + Assert1((i == 0 && isa(I)) || (i + 3 == e && isa(I)), "Cannot take the address of an inline asm!", &I); } } InstsInThisBlock.insert(&I); + + VerifyType(I.getType()); +} + +/// VerifyType - Verify that a type is well formed. +/// +void Verifier::VerifyType(const Type *Ty) { + if (!Types.insert(Ty)) return; + + Assert1(Context == &Ty->getContext(), + "Type context does not match Module context!", Ty); + + switch (Ty->getTypeID()) { + case Type::FunctionTyID: { + const FunctionType *FTy = cast(Ty); + + const Type *RetTy = FTy->getReturnType(); + Assert2(FunctionType::isValidReturnType(RetTy), + "Function type with invalid return type", RetTy, FTy); + VerifyType(RetTy); + + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + const Type *ElTy = FTy->getParamType(i); + Assert2(FunctionType::isValidArgumentType(ElTy), + "Function type with invalid parameter type", ElTy, FTy); + VerifyType(ElTy); + } + } break; + case Type::StructTyID: { + const StructType *STy = cast(Ty); + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + const Type *ElTy = STy->getElementType(i); + Assert2(StructType::isValidElementType(ElTy), + "Structure type with invalid element type", ElTy, STy); + VerifyType(ElTy); + } + } break; + case Type::UnionTyID: { + const UnionType *UTy = cast(Ty); + for (unsigned i = 0, e = UTy->getNumElements(); i != e; ++i) { + const Type *ElTy = UTy->getElementType(i); + Assert2(UnionType::isValidElementType(ElTy), + "Union type with invalid element type", ElTy, UTy); + VerifyType(ElTy); + } + } break; + case Type::ArrayTyID: { + const ArrayType *ATy = cast(Ty); + Assert1(ArrayType::isValidElementType(ATy->getElementType()), + "Array type with invalid element type", ATy); + VerifyType(ATy->getElementType()); + } break; + case Type::PointerTyID: { + const PointerType *PTy = cast(Ty); + Assert1(PointerType::isValidElementType(PTy->getElementType()), + "Pointer type with invalid element type", PTy); + VerifyType(PTy->getElementType()); + } break; + case Type::VectorTyID: { + const VectorType *VTy = cast(Ty); + Assert1(VectorType::isValidElementType(VTy->getElementType()), + "Vector type with invalid element type", VTy); + VerifyType(VTy->getElementType()); + } break; + default: + break; + } +} + +/// VerifyFunctionLocalMetadata - Verify that the specified MDNode is local to +/// specified Function. +void Verifier::VerifyFunctionLocalMetadata(MDNode *N, Function *F, + SmallPtrSet &Visited) { + assert(N->isFunctionLocal() && "Should only be called on function-local MD"); + + // Only visit each node once. + if (!Visited.insert(N)) + return; + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + Value *V = N->getOperand(i); + if (!V) continue; + + Function *ActualF = 0; + if (Instruction *I = dyn_cast(V)) + ActualF = I->getParent()->getParent(); + else if (BasicBlock *BB = dyn_cast(V)) + ActualF = BB->getParent(); + else if (Argument *A = dyn_cast(V)) + ActualF = A->getParent(); + else if (MDNode *MD = dyn_cast(V)) + if (MD->isFunctionLocal()) + VerifyFunctionLocalMetadata(MD, F, Visited); + + // If this was an instruction, bb, or argument, verify that it is in the + // function that we expect. + Assert1(ActualF == 0 || ActualF == F, + "function-local metadata used in wrong function", N); + } } // Flags used by TableGen to mark intrinsic parameters with the @@ -1336,19 +1596,30 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF); - + #define GET_INTRINSIC_VERIFIER #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_VERIFIER - + + // If the intrinsic takes MDNode arguments, verify that they are either global + // or are local to *this* function. + for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) + if (MDNode *MD = dyn_cast(CI.getOperand(i))) { + if (!MD->isFunctionLocal()) continue; + SmallPtrSet Visited; + VerifyFunctionLocalMetadata(MD, CI.getParent()->getParent(), Visited); + } + switch (ID) { default: break; - case Intrinsic::dbg_declare: // llvm.dbg.declare - if (Constant *C = dyn_cast(CI.getOperand(1))) - Assert1(C && !isa(C), - "invalid llvm.dbg.declare intrinsic call", &CI); - break; + case Intrinsic::dbg_declare: { // llvm.dbg.declare + Assert1(CI.getOperand(1) && isa(CI.getOperand(1)), + "invalid llvm.dbg.declare intrinsic call 1", &CI); + MDNode *MD = cast(CI.getOperand(1)); + Assert1(MD->getNumOperands() == 1, + "invalid llvm.dbg.declare intrinsic call 2", &CI); + } break; case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: @@ -1362,12 +1633,12 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { if (ID == Intrinsic::gcroot) { AllocaInst *AI = dyn_cast(CI.getOperand(1)->stripPointerCasts()); - Assert1(AI && isa(AI->getType()->getElementType()), + Assert1(AI && AI->getType()->getElementType()->isPointerTy(), "llvm.gcroot parameter #1 must be a pointer alloca.", &CI); Assert1(isa(CI.getOperand(2)), "llvm.gcroot parameter #2 must be a constant.", &CI); } - + Assert1(CI.getParent()->getParent()->hasGC(), "Enclosing function does not use GC.", &CI); break; @@ -1389,6 +1660,17 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::invariant_start: + Assert1(isa(CI.getOperand(1)), + "size argument of memory use markers must be a constant integer", + &CI); + break; + case Intrinsic::invariant_end: + Assert1(isa(CI.getOperand(2)), + "llvm.invariant.end parameter #2 must be a constant integer", &CI); + break; } } @@ -1397,13 +1679,11 @@ void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { /// parameters beginning with NumRets. /// static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { - if (ArgNo < NumRets) { - if (NumRets == 1) - return "Intrinsic result type"; - else - return "Intrinsic result type #" + utostr(ArgNo); - } else + if (ArgNo >= NumRets) return "Intrinsic parameter #" + utostr(ArgNo - NumRets); + if (NumRets == 1) + return "Intrinsic result type"; + return "Intrinsic result type #" + utostr(ArgNo); } bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, @@ -1420,9 +1700,13 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, const Type *RetTy = FTy->getReturnType(); const StructType *ST = dyn_cast(RetTy); - unsigned NumRets = 1; - if (ST) - NumRets = ST->getNumElements(); + unsigned NumRetVals; + if (RetTy->isVoidTy()) + NumRetVals = 0; + else if (ST) + NumRetVals = ST->getNumElements(); + else + NumRetVals = 1; if (VT < 0) { int Match = ~VT; @@ -1434,7 +1718,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, TruncatedElementVectorType)) != 0) { const IntegerType *IEltTy = dyn_cast(EltTy); if (!VTy || !IEltTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integral vector type.", F); return false; } @@ -1442,7 +1726,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, // the type being matched against. if ((Match & ExtendedElementVectorType) != 0) { if ((IEltTy->getBitWidth() & 1) != 0) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " vector " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector " "element bit-width is odd.", F); return false; } @@ -1452,25 +1736,25 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); } - if (Match <= static_cast(NumRets - 1)) { + if (Match <= static_cast(NumRetVals - 1)) { if (ST) RetTy = ST->getElementType(Match); if (Ty != RetTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " "match return type.", F); return false; } } else { - if (Ty != FTy->getParamType(Match - 1)) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " does not " - "match parameter %" + utostr(Match - 1) + ".", F); + if (Ty != FTy->getParamType(Match - NumRetVals)) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " + "match parameter %" + utostr(Match - NumRetVals) + ".", F); return false; } } } else if (VT == MVT::iAny) { - if (!EltTy->isInteger()) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + if (!EltTy->isIntegerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integer type.", F); return false; } @@ -1481,7 +1765,7 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, if (EltTy != Ty) Suffix += "v" + utostr(NumElts); - Suffix += "i" + utostr(GotBits);; + Suffix += "i" + utostr(GotBits); // Check some constraints on various intrinsics. switch (ID) { @@ -1494,8 +1778,8 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, break; } } else if (VT == MVT::fAny) { - if (!EltTy->isFloatingPoint()) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not " + if (!EltTy->isFloatingPointTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "a floating-point type.", F); return false; } @@ -1505,10 +1789,17 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, if (EltTy != Ty) Suffix += "v" + utostr(NumElts); - Suffix += MVT::getMVT(EltTy).getMVTString(); + Suffix += EVT::getEVT(EltTy).getEVTString(); + } else if (VT == MVT::vAny) { + if (!VTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.", + F); + return false; + } + Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString(); } else if (VT == MVT::iPTR) { - if (!isa(Ty)) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + if (!Ty->isPointerTy()) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } @@ -1518,17 +1809,17 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, // allow either case to be legal. if (const PointerType* PTyp = dyn_cast(Ty)) { Suffix += ".p" + utostr(PTyp->getAddressSpace()) + - MVT::getMVT(PTyp->getElementType()).getMVTString(); + EVT::getEVT(PTyp->getElementType()).getEVTString(); } else { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is not a " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } - } else if (MVT((MVT::SimpleValueType)VT).isVector()) { - MVT VVT = MVT((MVT::SimpleValueType)VT); + } else if (EVT((MVT::SimpleValueType)VT).isVector()) { + EVT VVT = EVT((MVT::SimpleValueType)VT); // If this is a vector argument, verify the number and type of elements. - if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) { + if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) { CheckFailed("Intrinsic prototype has incorrect vector element type!", F); return false; } @@ -1538,11 +1829,12 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, "vector elements!", F); return false; } - } else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is wrong!", F); + } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != + EltTy) { + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F); return false; } else if (EltTy != Ty) { - CheckFailed(IntrinsicParam(ArgNo, NumRets) + " is a vector " + CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector " "and a scalar is required.", F); return false; } @@ -1554,18 +1846,18 @@ bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, const Type *Ty, /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, - unsigned RetNum, - unsigned ParamNum, ...) { + unsigned NumRetVals, + unsigned NumParams, ...) { va_list VA; - va_start(VA, ParamNum); + va_start(VA, NumParams); const FunctionType *FTy = F->getFunctionType(); - + // For overloaded intrinsics, the Suffix of the function name must match the // types of the arguments. This variable keeps track of the expected // suffix, to be checked at the end. std::string Suffix; - if (FTy->getNumParams() + FTy->isVarArg() != ParamNum) { + if (FTy->getNumParams() + FTy->isVarArg() != NumParams) { CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); return; } @@ -1573,23 +1865,27 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, const Type *Ty = FTy->getReturnType(); const StructType *ST = dyn_cast(Ty); + if (NumRetVals == 0 && !Ty->isVoidTy()) { + CheckFailed("Intrinsic should return void", F); + return; + } + // Verify the return types. - if (ST && ST->getNumElements() != RetNum) { + if (ST && ST->getNumElements() != NumRetVals) { CheckFailed("Intrinsic prototype has incorrect number of return types!", F); return; } - - for (unsigned ArgNo = 0; ArgNo < RetNum; ++ArgNo) { + + for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (ST) Ty = ST->getElementType(ArgNo); - if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) break; } // Verify the parameter types. - for (unsigned ArgNo = 0; ArgNo < ParamNum; ++ArgNo) { + for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (VT == MVT::isVoid && ArgNo > 0) { @@ -1598,8 +1894,8 @@ void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, break; } - if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + RetNum, - Suffix)) + if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, + ArgNo + NumRetVals, Suffix)) break; } @@ -1637,17 +1933,17 @@ FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { } -// verifyFunction - Create +/// verifyFunction - Check a function for errors, printing messages on stderr. +/// Return true if the function is corrupt. +/// bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); - ExistingModuleProvider MP(F.getParent()); - FunctionPassManager FPM(&MP); + FunctionPassManager FPM(F.getParent()); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); - MP.releaseModule(); return V->Broken; } @@ -1660,10 +1956,8 @@ bool llvm::verifyModule(const Module &M, VerifierFailureAction action, Verifier *V = new Verifier(action); PM.add(V); PM.run(const_cast(M)); - + if (ErrorInfo && V->Broken) - *ErrorInfo = V->msgs.str(); + *ErrorInfo = V->MessagesStr.str(); return V->Broken; } - -// vim: sw=2