X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=utils%2FTableGen%2FDAGISelEmitter.cpp;h=e2e6ab19cba45a96870edb55e179975492852c0d;hb=0e9c68e6bc8768143308b0162e900ba8bd10dc01;hp=80cb5cdf87135fb55d4a8ff2df63e8079f10d1eb;hpb=7c3a96b81a66eadffe54366b1b0952f11f7876f6;p=oota-llvm.git diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp index 80cb5cdf871..e2e6ab19cba 100644 --- a/utils/TableGen/DAGISelEmitter.cpp +++ b/utils/TableGen/DAGISelEmitter.cpp @@ -2,8 +2,8 @@ // // The LLVM Compiler Infrastructure // -// This file was developed by Chris Lattner and is distributed under -// the University of Illinois Open Source License. See LICENSE.TXT for details. +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // @@ -11,2082 +11,54 @@ // //===----------------------------------------------------------------------===// -#include "DAGISelEmitter.h" -#include "Record.h" -#include "llvm/ADT/StringExtras.h" +#include "CodeGenDAGPatterns.h" +#include "DAGISelMatcher.h" #include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include -#include +#include "llvm/TableGen/Record.h" +#include "llvm/TableGen/TableGenBackend.h" using namespace llvm; -//===----------------------------------------------------------------------===// -// Helpers for working with extended types. - -/// FilterVTs - Filter a list of VT's according to a predicate. -/// -template -static std::vector -FilterVTs(const std::vector &InVTs, T Filter) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - if (Filter(InVTs[i])) - Result.push_back(InVTs[i]); - return Result; -} - -template -static std::vector -FilterEVTs(const std::vector &InVTs, T Filter) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - if (Filter((MVT::ValueType)InVTs[i])) - Result.push_back(InVTs[i]); - return Result; -} - -static std::vector -ConvertVTs(const std::vector &InVTs) { - std::vector Result; - for (unsigned i = 0, e = InVTs.size(); i != e; ++i) - Result.push_back(InVTs[i]); - return Result; -} - -static bool LHSIsSubsetOfRHS(const std::vector &LHS, - const std::vector &RHS) { - if (LHS.size() > RHS.size()) return false; - for (unsigned i = 0, e = LHS.size(); i != e; ++i) - if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) - return false; - return true; -} - -/// isExtIntegerVT - Return true if the specified extended value type vector -/// contains isInt or an integer value type. -static bool isExtIntegerInVTs(const std::vector &EVTs) { - assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); - return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); -} - -/// isExtFloatingPointVT - Return true if the specified extended value type -/// vector contains isFP or a FP value type. -static bool isExtFloatingPointInVTs(const std::vector &EVTs) { - assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); - return EVTs[0] == MVT::isFP || - !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); -} - -//===----------------------------------------------------------------------===// -// SDTypeConstraint implementation -// - -SDTypeConstraint::SDTypeConstraint(Record *R) { - OperandNo = R->getValueAsInt("OperandNum"); - - if (R->isSubClassOf("SDTCisVT")) { - ConstraintType = SDTCisVT; - x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); - } else if (R->isSubClassOf("SDTCisPtrTy")) { - ConstraintType = SDTCisPtrTy; - } else if (R->isSubClassOf("SDTCisInt")) { - ConstraintType = SDTCisInt; - } else if (R->isSubClassOf("SDTCisFP")) { - ConstraintType = SDTCisFP; - } else if (R->isSubClassOf("SDTCisSameAs")) { - ConstraintType = SDTCisSameAs; - x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); - } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { - ConstraintType = SDTCisVTSmallerThanOp; - x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = - R->getValueAsInt("OtherOperandNum"); - } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { - ConstraintType = SDTCisOpSmallerThanOp; - x.SDTCisOpSmallerThanOp_Info.BigOperandNum = - R->getValueAsInt("BigOperandNum"); - } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { - ConstraintType = SDTCisIntVectorOfSameSize; - x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = - R->getValueAsInt("OtherOpNum"); - } else { - std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; - exit(1); - } -} - -/// getOperandNum - Return the node corresponding to operand #OpNo in tree -/// N, which has NumResults results. -TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, - TreePatternNode *N, - unsigned NumResults) const { - assert(NumResults <= 1 && - "We only work with nodes with zero or one result so far!"); - - if (OpNo >= (NumResults + N->getNumChildren())) { - std::cerr << "Invalid operand number " << OpNo << " "; - N->dump(); - std::cerr << '\n'; - exit(1); - } - - if (OpNo < NumResults) - return N; // FIXME: need value # - else - return N->getChild(OpNo-NumResults); -} - -/// ApplyTypeConstraint - Given a node in a pattern, apply this type -/// constraint to the nodes operands. This returns true if it makes a -/// change, false otherwise. If a type contradiction is found, throw an -/// exception. -bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, - const SDNodeInfo &NodeInfo, - TreePattern &TP) const { - unsigned NumResults = NodeInfo.getNumResults(); - assert(NumResults <= 1 && - "We only work with nodes with zero or one result so far!"); - - // Check that the number of operands is sane. Negative operands -> varargs. - if (NodeInfo.getNumOperands() >= 0) { - if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) - TP.error(N->getOperator()->getName() + " node requires exactly " + - itostr(NodeInfo.getNumOperands()) + " operands!"); - } - - const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); - - TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); - - switch (ConstraintType) { - default: assert(0 && "Unknown constraint type!"); - case SDTCisVT: - // Operand must be a particular type. - return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); - case SDTCisPtrTy: { - // Operand must be same as target pointer type. - return NodeToApply->UpdateNodeType(MVT::iPTR, TP); - } - case SDTCisInt: { - // If there is only one integer type supported, this must be it. - std::vector IntVTs = - FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); - - // If we found exactly one supported integer type, apply it. - if (IntVTs.size() == 1) - return NodeToApply->UpdateNodeType(IntVTs[0], TP); - return NodeToApply->UpdateNodeType(MVT::isInt, TP); - } - case SDTCisFP: { - // If there is only one FP type supported, this must be it. - std::vector FPVTs = - FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); - - // If we found exactly one supported FP type, apply it. - if (FPVTs.size() == 1) - return NodeToApply->UpdateNodeType(FPVTs[0], TP); - return NodeToApply->UpdateNodeType(MVT::isFP, TP); - } - case SDTCisSameAs: { - TreePatternNode *OtherNode = - getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); - return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | - OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); - } - case SDTCisVTSmallerThanOp: { - // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must - // have an integer type that is smaller than the VT. - if (!NodeToApply->isLeaf() || - !dynamic_cast(NodeToApply->getLeafValue()) || - !static_cast(NodeToApply->getLeafValue())->getDef() - ->isSubClassOf("ValueType")) - TP.error(N->getOperator()->getName() + " expects a VT operand!"); - MVT::ValueType VT = - getValueType(static_cast(NodeToApply->getLeafValue())->getDef()); - if (!MVT::isInteger(VT)) - TP.error(N->getOperator()->getName() + " VT operand must be integer!"); - - TreePatternNode *OtherNode = - getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); - - // It must be integer. - bool MadeChange = false; - MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); - - // This code only handles nodes that have one type set. Assert here so - // that we can change this if we ever need to deal with multiple value - // types at this point. - assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); - if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) - OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. - return false; - } - case SDTCisOpSmallerThanOp: { - TreePatternNode *BigOperand = - getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); - - // Both operands must be integer or FP, but we don't care which. - bool MadeChange = false; - - // This code does not currently handle nodes which have multiple types, - // where some types are integer, and some are fp. Assert that this is not - // the case. - assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && - isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && - !(isExtIntegerInVTs(BigOperand->getExtTypes()) && - isExtFloatingPointInVTs(BigOperand->getExtTypes())) && - "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); - if (isExtIntegerInVTs(NodeToApply->getExtTypes())) - MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); - else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) - MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); - if (isExtIntegerInVTs(BigOperand->getExtTypes())) - MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); - else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) - MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); - - std::vector VTs = CGT.getLegalValueTypes(); - - if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { - VTs = FilterVTs(VTs, MVT::isInteger); - } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { - VTs = FilterVTs(VTs, MVT::isFloatingPoint); - } else { - VTs.clear(); - } - - switch (VTs.size()) { - default: // Too many VT's to pick from. - case 0: break; // No info yet. - case 1: - // Only one VT of this flavor. Cannot ever satisify the constraints. - return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw - case 2: - // If we have exactly two possible types, the little operand must be the - // small one, the big operand should be the big one. Common with - // float/double for example. - assert(VTs[0] < VTs[1] && "Should be sorted!"); - MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); - MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); - break; - } - return MadeChange; - } - case SDTCisIntVectorOfSameSize: { - TreePatternNode *OtherOperand = - getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, - N, NumResults); - if (OtherOperand->hasTypeSet()) { - if (!MVT::isVector(OtherOperand->getTypeNum(0))) - TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); - MVT::ValueType IVT = OtherOperand->getTypeNum(0); - IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); - return NodeToApply->UpdateNodeType(IVT, TP); - } - return false; - } - } - return false; -} - - -//===----------------------------------------------------------------------===// -// SDNodeInfo implementation -// -SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { - EnumName = R->getValueAsString("Opcode"); - SDClassName = R->getValueAsString("SDClass"); - Record *TypeProfile = R->getValueAsDef("TypeProfile"); - NumResults = TypeProfile->getValueAsInt("NumResults"); - NumOperands = TypeProfile->getValueAsInt("NumOperands"); - - // Parse the properties. - Properties = 0; - std::vector PropList = R->getValueAsListOfDefs("Properties"); - for (unsigned i = 0, e = PropList.size(); i != e; ++i) { - if (PropList[i]->getName() == "SDNPCommutative") { - Properties |= 1 << SDNPCommutative; - } else if (PropList[i]->getName() == "SDNPAssociative") { - Properties |= 1 << SDNPAssociative; - } else if (PropList[i]->getName() == "SDNPHasChain") { - Properties |= 1 << SDNPHasChain; - } else if (PropList[i]->getName() == "SDNPOutFlag") { - Properties |= 1 << SDNPOutFlag; - } else if (PropList[i]->getName() == "SDNPInFlag") { - Properties |= 1 << SDNPInFlag; - } else if (PropList[i]->getName() == "SDNPOptInFlag") { - Properties |= 1 << SDNPOptInFlag; - } else { - std::cerr << "Unknown SD Node property '" << PropList[i]->getName() - << "' on node '" << R->getName() << "'!\n"; - exit(1); - } - } - - - // Parse the type constraints. - std::vector ConstraintList = - TypeProfile->getValueAsListOfDefs("Constraints"); - TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); -} - -//===----------------------------------------------------------------------===// -// TreePatternNode implementation -// - -TreePatternNode::~TreePatternNode() { -#if 0 // FIXME: implement refcounted tree nodes! - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - delete getChild(i); -#endif -} - -/// UpdateNodeType - Set the node type of N to VT if VT contains -/// information. If N already contains a conflicting type, then throw an -/// exception. This returns true if any information was updated. -/// -bool TreePatternNode::UpdateNodeType(const std::vector &ExtVTs, - TreePattern &TP) { - assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); - - if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) - return false; - if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { - setTypes(ExtVTs); - return true; - } - - if (getExtTypeNum(0) == MVT::iPTR) { - if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) - return false; - if (isExtIntegerInVTs(ExtVTs)) { - std::vector FVTs = FilterEVTs(ExtVTs, MVT::isInteger); - if (FVTs.size()) { - setTypes(ExtVTs); - return true; - } - } - } - - if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { - assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); - if (getExtTypes() == FVTs) - return false; - setTypes(FVTs); - return true; - } - if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { - //assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); - if (getExtTypes() == FVTs) - return false; - if (FVTs.size()) { - setTypes(FVTs); - return true; - } - } - if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) { - assert(hasTypeSet() && "should be handled above!"); - std::vector FVTs = - FilterEVTs(getExtTypes(), MVT::isFloatingPoint); - if (getExtTypes() == FVTs) - return false; - setTypes(FVTs); - return true; - } - - // If we know this is an int or fp type, and we are told it is a specific one, - // take the advice. - // - // Similarly, we should probably set the type here to the intersection of - // {isInt|isFP} and ExtVTs - if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || - (getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) { - setTypes(ExtVTs); - return true; - } - if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { - setTypes(ExtVTs); - return true; - } - - if (isLeaf()) { - dump(); - std::cerr << " "; - TP.error("Type inference contradiction found in node!"); - } else { - TP.error("Type inference contradiction found in node " + - getOperator()->getName() + "!"); - } - return true; // unreachable -} - - -void TreePatternNode::print(std::ostream &OS) const { - if (isLeaf()) { - OS << *getLeafValue(); - } else { - OS << "(" << getOperator()->getName(); - } - - // FIXME: At some point we should handle printing all the value types for - // nodes that are multiply typed. - switch (getExtTypeNum(0)) { - case MVT::Other: OS << ":Other"; break; - case MVT::isInt: OS << ":isInt"; break; - case MVT::isFP : OS << ":isFP"; break; - case MVT::isUnknown: ; /*OS << ":?";*/ break; - case MVT::iPTR: OS << ":iPTR"; break; - default: { - std::string VTName = llvm::getName(getTypeNum(0)); - // Strip off MVT:: prefix if present. - if (VTName.substr(0,5) == "MVT::") - VTName = VTName.substr(5); - OS << ":" << VTName; - break; - } - } - - if (!isLeaf()) { - if (getNumChildren() != 0) { - OS << " "; - getChild(0)->print(OS); - for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { - OS << ", "; - getChild(i)->print(OS); - } - } - OS << ")"; - } - - if (!PredicateFn.empty()) - OS << "<>"; - if (TransformFn) - OS << "<getName() << ">>"; - if (!getName().empty()) - OS << ":$" << getName(); - -} -void TreePatternNode::dump() const { - print(std::cerr); -} - -/// isIsomorphicTo - Return true if this node is recursively isomorphic to -/// the specified node. For this comparison, all of the state of the node -/// is considered, except for the assigned name. Nodes with differing names -/// that are otherwise identical are considered isomorphic. -bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { - if (N == this) return true; - if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || - getPredicateFn() != N->getPredicateFn() || - getTransformFn() != N->getTransformFn()) - return false; - - if (isLeaf()) { - if (DefInit *DI = dynamic_cast(getLeafValue())) - if (DefInit *NDI = dynamic_cast(N->getLeafValue())) - return DI->getDef() == NDI->getDef(); - return getLeafValue() == N->getLeafValue(); - } - - if (N->getOperator() != getOperator() || - N->getNumChildren() != getNumChildren()) return false; - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - if (!getChild(i)->isIsomorphicTo(N->getChild(i))) - return false; - return true; -} - -/// clone - Make a copy of this tree and all of its children. -/// -TreePatternNode *TreePatternNode::clone() const { - TreePatternNode *New; - if (isLeaf()) { - New = new TreePatternNode(getLeafValue()); - } else { - std::vector CChildren; - CChildren.reserve(Children.size()); - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - CChildren.push_back(getChild(i)->clone()); - New = new TreePatternNode(getOperator(), CChildren); - } - New->setName(getName()); - New->setTypes(getExtTypes()); - New->setPredicateFn(getPredicateFn()); - New->setTransformFn(getTransformFn()); - return New; -} - -/// SubstituteFormalArguments - Replace the formal arguments in this tree -/// with actual values specified by ArgMap. -void TreePatternNode:: -SubstituteFormalArguments(std::map &ArgMap) { - if (isLeaf()) return; - - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { - TreePatternNode *Child = getChild(i); - if (Child->isLeaf()) { - Init *Val = Child->getLeafValue(); - if (dynamic_cast(Val) && - static_cast(Val)->getDef()->getName() == "node") { - // We found a use of a formal argument, replace it with its value. - Child = ArgMap[Child->getName()]; - assert(Child && "Couldn't find formal argument!"); - setChild(i, Child); - } - } else { - getChild(i)->SubstituteFormalArguments(ArgMap); - } - } -} - - -/// InlinePatternFragments - If this pattern refers to any pattern -/// fragments, inline them into place, giving us a pattern without any -/// PatFrag references. -TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { - if (isLeaf()) return this; // nothing to do. - Record *Op = getOperator(); - - if (!Op->isSubClassOf("PatFrag")) { - // Just recursively inline children nodes. - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - setChild(i, getChild(i)->InlinePatternFragments(TP)); - return this; - } - - // Otherwise, we found a reference to a fragment. First, look up its - // TreePattern record. - TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); - - // Verify that we are passing the right number of operands. - if (Frag->getNumArgs() != Children.size()) - TP.error("'" + Op->getName() + "' fragment requires " + - utostr(Frag->getNumArgs()) + " operands!"); - - TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); - - // Resolve formal arguments to their actual value. - if (Frag->getNumArgs()) { - // Compute the map of formal to actual arguments. - std::map ArgMap; - for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) - ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); - - FragTree->SubstituteFormalArguments(ArgMap); - } - - FragTree->setName(getName()); - FragTree->UpdateNodeType(getExtTypes(), TP); - - // Get a new copy of this fragment to stitch into here. - //delete this; // FIXME: implement refcounting! - return FragTree; -} - -/// getImplicitType - Check to see if the specified record has an implicit -/// type which should be applied to it. This infer the type of register -/// references from the register file information, for example. -/// -static std::vector getImplicitType(Record *R, bool NotRegisters, - TreePattern &TP) { - // Some common return values - std::vector Unknown(1, MVT::isUnknown); - std::vector Other(1, MVT::Other); - - // Check to see if this is a register or a register class... - if (R->isSubClassOf("RegisterClass")) { - if (NotRegisters) - return Unknown; - const CodeGenRegisterClass &RC = - TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); - return ConvertVTs(RC.getValueTypes()); - } else if (R->isSubClassOf("PatFrag")) { - // Pattern fragment types will be resolved when they are inlined. - return Unknown; - } else if (R->isSubClassOf("Register")) { - if (NotRegisters) - return Unknown; - const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); - return T.getRegisterVTs(R); - } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { - // Using a VTSDNode or CondCodeSDNode. - return Other; - } else if (R->isSubClassOf("ComplexPattern")) { - if (NotRegisters) - return Unknown; - std::vector - ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); - return ComplexPat; - } else if (R->getName() == "node" || R->getName() == "srcvalue") { - // Placeholder. - return Unknown; - } - - TP.error("Unknown node flavor used in pattern: " + R->getName()); - return Other; -} - -/// ApplyTypeConstraints - Apply all of the type constraints relevent to -/// this node and its children in the tree. This returns true if it makes a -/// change, false otherwise. If a type contradiction is found, throw an -/// exception. -bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { - DAGISelEmitter &ISE = TP.getDAGISelEmitter(); - if (isLeaf()) { - if (DefInit *DI = dynamic_cast(getLeafValue())) { - // If it's a regclass or something else known, include the type. - return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); - } else if (IntInit *II = dynamic_cast(getLeafValue())) { - // Int inits are always integers. :) - bool MadeChange = UpdateNodeType(MVT::isInt, TP); - - if (hasTypeSet()) { - // At some point, it may make sense for this tree pattern to have - // multiple types. Assert here that it does not, so we revisit this - // code when appropriate. - assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); - MVT::ValueType VT = getTypeNum(0); - for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) - assert(getTypeNum(i) == VT && "TreePattern has too many types!"); - - VT = getTypeNum(0); - if (VT != MVT::iPTR) { - unsigned Size = MVT::getSizeInBits(VT); - // Make sure that the value is representable for this type. - if (Size < 32) { - int Val = (II->getValue() << (32-Size)) >> (32-Size); - if (Val != II->getValue()) - TP.error("Sign-extended integer value '" + itostr(II->getValue())+ - "' is out of range for type '" + - getEnumName(getTypeNum(0)) + "'!"); - } - } - } - - return MadeChange; - } - return false; - } - - // special handling for set, which isn't really an SDNode. - if (getOperator()->getName() == "set") { - assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); - bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); - MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); - - // Types of operands must match. - MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); - MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); - MadeChange |= UpdateNodeType(MVT::isVoid, TP); - return MadeChange; - } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || - getOperator() == ISE.get_intrinsic_w_chain_sdnode() || - getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { - unsigned IID = - dynamic_cast(getChild(0)->getLeafValue())->getValue(); - const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); - bool MadeChange = false; - - // Apply the result type to the node. - MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); - - if (getNumChildren() != Int.ArgVTs.size()) - TP.error("Intrinsic '" + Int.Name + "' expects " + - utostr(Int.ArgVTs.size()-1) + " operands, not " + - utostr(getNumChildren()-1) + " operands!"); - - // Apply type info to the intrinsic ID. - MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); - - for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { - MVT::ValueType OpVT = Int.ArgVTs[i]; - MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); - MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); - } - return MadeChange; - } else if (getOperator()->isSubClassOf("SDNode")) { - const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); - - bool MadeChange = NI.ApplyTypeConstraints(this, TP); - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); - // Branch, etc. do not produce results and top-level forms in instr pattern - // must have void types. - if (NI.getNumResults() == 0) - MadeChange |= UpdateNodeType(MVT::isVoid, TP); - - // If this is a vector_shuffle operation, apply types to the build_vector - // operation. The types of the integers don't matter, but this ensures they - // won't get checked. - if (getOperator()->getName() == "vector_shuffle" && - getChild(2)->getOperator()->getName() == "build_vector") { - TreePatternNode *BV = getChild(2); - const std::vector &LegalVTs - = ISE.getTargetInfo().getLegalValueTypes(); - MVT::ValueType LegalIntVT = MVT::Other; - for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) - if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { - LegalIntVT = LegalVTs[i]; - break; - } - assert(LegalIntVT != MVT::Other && "No legal integer VT?"); - - for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) - MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); - } - return MadeChange; - } else if (getOperator()->isSubClassOf("Instruction")) { - const DAGInstruction &Inst = ISE.getInstruction(getOperator()); - bool MadeChange = false; - unsigned NumResults = Inst.getNumResults(); - - assert(NumResults <= 1 && - "Only supports zero or one result instrs!"); - - CodeGenInstruction &InstInfo = - ISE.getTargetInfo().getInstruction(getOperator()->getName()); - // Apply the result type to the node - if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack... - MadeChange = UpdateNodeType(MVT::isVoid, TP); - } else { - Record *ResultNode = Inst.getResult(0); - assert(ResultNode->isSubClassOf("RegisterClass") && - "Operands should be register classes!"); - - const CodeGenRegisterClass &RC = - ISE.getTargetInfo().getRegisterClass(ResultNode); - MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); - } - - unsigned ChildNo = 0; - for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { - Record *OperandNode = Inst.getOperand(i); - - // If the instruction expects a predicate operand, we codegen this by - // setting the predicate to it's "execute always" value. - if (OperandNode->isSubClassOf("PredicateOperand")) - continue; - - // Verify that we didn't run out of provided operands. - if (ChildNo >= getNumChildren()) - TP.error("Instruction '" + getOperator()->getName() + - "' expects more operands than were provided."); - - MVT::ValueType VT; - TreePatternNode *Child = getChild(ChildNo++); - if (OperandNode->isSubClassOf("RegisterClass")) { - const CodeGenRegisterClass &RC = - ISE.getTargetInfo().getRegisterClass(OperandNode); - MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); - } else if (OperandNode->isSubClassOf("Operand")) { - VT = getValueType(OperandNode->getValueAsDef("Type")); - MadeChange |= Child->UpdateNodeType(VT, TP); - } else { - assert(0 && "Unknown operand type!"); - abort(); - } - MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); - } - - if (ChildNo != getNumChildren()) - TP.error("Instruction '" + getOperator()->getName() + - "' was provided too many operands!"); - - return MadeChange; - } else { - assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); - - // Node transforms always take one operand. - if (getNumChildren() != 1) - TP.error("Node transform '" + getOperator()->getName() + - "' requires one operand!"); - - // If either the output or input of the xform does not have exact - // type info. We assume they must be the same. Otherwise, it is perfectly - // legal to transform from one type to a completely different type. - if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { - bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); - MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); - return MadeChange; - } - return false; - } -} - -/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the -/// RHS of a commutative operation, not the on LHS. -static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { - if (!N->isLeaf() && N->getOperator()->getName() == "imm") - return true; - if (N->isLeaf() && dynamic_cast(N->getLeafValue())) - return true; - return false; -} - - -/// canPatternMatch - If it is impossible for this pattern to match on this -/// target, fill in Reason and return false. Otherwise, return true. This is -/// used as a santity check for .td files (to prevent people from writing stuff -/// that can never possibly work), and to prevent the pattern permuter from -/// generating stuff that is useless. -bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ - if (isLeaf()) return true; - - for (unsigned i = 0, e = getNumChildren(); i != e; ++i) - if (!getChild(i)->canPatternMatch(Reason, ISE)) - return false; - - // If this is an intrinsic, handle cases that would make it not match. For - // example, if an operand is required to be an immediate. - if (getOperator()->isSubClassOf("Intrinsic")) { - // TODO: - return true; - } - - // If this node is a commutative operator, check that the LHS isn't an - // immediate. - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); - if (NodeInfo.hasProperty(SDNPCommutative)) { - // Scan all of the operands of the node and make sure that only the last one - // is a constant node, unless the RHS also is. - if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { - for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) - if (OnlyOnRHSOfCommutative(getChild(i))) { - Reason="Immediate value must be on the RHS of commutative operators!"; - return false; - } - } - } - - return true; -} - -//===----------------------------------------------------------------------===// -// TreePattern implementation -// - -TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) - Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); -} - -TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - Trees.push_back(ParseTreePattern(Pat)); -} - -TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, - DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { - isInputPattern = isInput; - Trees.push_back(Pat); -} - - - -void TreePattern::error(const std::string &Msg) const { - dump(); - throw "In " + TheRecord->getName() + ": " + Msg; -} - -TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { - DefInit *OpDef = dynamic_cast(Dag->getOperator()); - if (!OpDef) error("Pattern has unexpected operator type!"); - Record *Operator = OpDef->getDef(); - - if (Operator->isSubClassOf("ValueType")) { - // If the operator is a ValueType, then this must be "type cast" of a leaf - // node. - if (Dag->getNumArgs() != 1) - error("Type cast only takes one operand!"); - - Init *Arg = Dag->getArg(0); - TreePatternNode *New; - if (DefInit *DI = dynamic_cast(Arg)) { - Record *R = DI->getDef(); - if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { - Dag->setArg(0, new DagInit(DI, - std::vector >())); - return ParseTreePattern(Dag); - } - New = new TreePatternNode(DI); - } else if (DagInit *DI = dynamic_cast(Arg)) { - New = ParseTreePattern(DI); - } else if (IntInit *II = dynamic_cast(Arg)) { - New = new TreePatternNode(II); - if (!Dag->getArgName(0).empty()) - error("Constant int argument should not have a name!"); - } else if (BitsInit *BI = dynamic_cast(Arg)) { - // Turn this into an IntInit. - Init *II = BI->convertInitializerTo(new IntRecTy()); - if (II == 0 || !dynamic_cast(II)) - error("Bits value must be constants!"); - - New = new TreePatternNode(dynamic_cast(II)); - if (!Dag->getArgName(0).empty()) - error("Constant int argument should not have a name!"); - } else { - Arg->dump(); - error("Unknown leaf value for tree pattern!"); - return 0; - } - - // Apply the type cast. - New->UpdateNodeType(getValueType(Operator), *this); - New->setName(Dag->getArgName(0)); - return New; - } - - // Verify that this is something that makes sense for an operator. - if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && - !Operator->isSubClassOf("Instruction") && - !Operator->isSubClassOf("SDNodeXForm") && - !Operator->isSubClassOf("Intrinsic") && - Operator->getName() != "set") - error("Unrecognized node '" + Operator->getName() + "'!"); - - // Check to see if this is something that is illegal in an input pattern. - if (isInputPattern && (Operator->isSubClassOf("Instruction") || - Operator->isSubClassOf("SDNodeXForm"))) - error("Cannot use '" + Operator->getName() + "' in an input pattern!"); - - std::vector Children; - - for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { - Init *Arg = Dag->getArg(i); - if (DagInit *DI = dynamic_cast(Arg)) { - Children.push_back(ParseTreePattern(DI)); - if (Children.back()->getName().empty()) - Children.back()->setName(Dag->getArgName(i)); - } else if (DefInit *DefI = dynamic_cast(Arg)) { - Record *R = DefI->getDef(); - // Direct reference to a leaf DagNode or PatFrag? Turn it into a - // TreePatternNode if its own. - if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { - Dag->setArg(i, new DagInit(DefI, - std::vector >())); - --i; // Revisit this node... - } else { - TreePatternNode *Node = new TreePatternNode(DefI); - Node->setName(Dag->getArgName(i)); - Children.push_back(Node); - - // Input argument? - if (R->getName() == "node") { - if (Dag->getArgName(i).empty()) - error("'node' argument requires a name to match with operand list"); - Args.push_back(Dag->getArgName(i)); - } - } - } else if (IntInit *II = dynamic_cast(Arg)) { - TreePatternNode *Node = new TreePatternNode(II); - if (!Dag->getArgName(i).empty()) - error("Constant int argument should not have a name!"); - Children.push_back(Node); - } else if (BitsInit *BI = dynamic_cast(Arg)) { - // Turn this into an IntInit. - Init *II = BI->convertInitializerTo(new IntRecTy()); - if (II == 0 || !dynamic_cast(II)) - error("Bits value must be constants!"); - - TreePatternNode *Node = new TreePatternNode(dynamic_cast(II)); - if (!Dag->getArgName(i).empty()) - error("Constant int argument should not have a name!"); - Children.push_back(Node); - } else { - std::cerr << '"'; - Arg->dump(); - std::cerr << "\": "; - error("Unknown leaf value for tree pattern!"); - } - } - - // If the operator is an intrinsic, then this is just syntactic sugar for for - // (intrinsic_* , ..children..). Pick the right intrinsic node, and - // convert the intrinsic name to a number. - if (Operator->isSubClassOf("Intrinsic")) { - const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); - unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; - - // If this intrinsic returns void, it must have side-effects and thus a - // chain. - if (Int.ArgVTs[0] == MVT::isVoid) { - Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); - } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { - // Has side-effects, requires chain. - Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); - } else { - // Otherwise, no chain. - Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); - } - - TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); - Children.insert(Children.begin(), IIDNode); - } - - return new TreePatternNode(Operator, Children); -} - -/// InferAllTypes - Infer/propagate as many types throughout the expression -/// patterns as possible. Return true if all types are infered, false -/// otherwise. Throw an exception if a type contradiction is found. -bool TreePattern::InferAllTypes() { - bool MadeChange = true; - while (MadeChange) { - MadeChange = false; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) - MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); - } - - bool HasUnresolvedTypes = false; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) - HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); - return !HasUnresolvedTypes; -} - -void TreePattern::print(std::ostream &OS) const { - OS << getRecord()->getName(); - if (!Args.empty()) { - OS << "(" << Args[0]; - for (unsigned i = 1, e = Args.size(); i != e; ++i) - OS << ", " << Args[i]; - OS << ")"; - } - OS << ": "; - - if (Trees.size() > 1) - OS << "[\n"; - for (unsigned i = 0, e = Trees.size(); i != e; ++i) { - OS << "\t"; - Trees[i]->print(OS); - OS << "\n"; - } - - if (Trees.size() > 1) - OS << "]\n"; -} - -void TreePattern::dump() const { print(std::cerr); } - +#define DEBUG_TYPE "dag-isel-emitter" +namespace { +/// DAGISelEmitter - The top-level class which coordinates construction +/// and emission of the instruction selector. +class DAGISelEmitter { + CodeGenDAGPatterns CGP; +public: + explicit DAGISelEmitter(RecordKeeper &R) : CGP(R) {} + void run(raw_ostream &OS); +}; +} // End anonymous namespace //===----------------------------------------------------------------------===// -// DAGISelEmitter implementation +// DAGISelEmitter Helper methods // -// Parse all of the SDNode definitions for the target, populating SDNodes. -void DAGISelEmitter::ParseNodeInfo() { - std::vector Nodes = Records.getAllDerivedDefinitions("SDNode"); - while (!Nodes.empty()) { - SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); - Nodes.pop_back(); - } - - // Get the buildin intrinsic nodes. - intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); - intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); - intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); -} - -/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms -/// map, and emit them to the file as functions. -void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { - OS << "\n// Node transformations.\n"; - std::vector Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); - while (!Xforms.empty()) { - Record *XFormNode = Xforms.back(); - Record *SDNode = XFormNode->getValueAsDef("Opcode"); - std::string Code = XFormNode->getValueAsCode("XFormFunction"); - SDNodeXForms.insert(std::make_pair(XFormNode, - std::make_pair(SDNode, Code))); - - if (!Code.empty()) { - std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); - const char *C2 = ClassName == "SDNode" ? "N" : "inN"; - - OS << "inline SDOperand Transform_" << XFormNode->getName() - << "(SDNode *" << C2 << ") {\n"; - if (ClassName != "SDNode") - OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; - OS << Code << "\n}\n"; - } - - Xforms.pop_back(); - } -} - -void DAGISelEmitter::ParseComplexPatterns() { - std::vector AMs = Records.getAllDerivedDefinitions("ComplexPattern"); - while (!AMs.empty()) { - ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); - AMs.pop_back(); - } -} - - -/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td -/// file, building up the PatternFragments map. After we've collected them all, -/// inline fragments together as necessary, so that there are no references left -/// inside a pattern fragment to a pattern fragment. -/// -/// This also emits all of the predicate functions to the output file. -/// -void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { - std::vector Fragments = Records.getAllDerivedDefinitions("PatFrag"); - - // First step, parse all of the fragments and emit predicate functions. - OS << "\n// Predicate functions.\n"; - for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { - DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); - TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); - PatternFragments[Fragments[i]] = P; - - // Validate the argument list, converting it to map, to discard duplicates. - std::vector &Args = P->getArgList(); - std::set OperandsMap(Args.begin(), Args.end()); - - if (OperandsMap.count("")) - P->error("Cannot have unnamed 'node' values in pattern fragment!"); - - // Parse the operands list. - DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); - DefInit *OpsOp = dynamic_cast(OpsList->getOperator()); - if (!OpsOp || OpsOp->getDef()->getName() != "ops") - P->error("Operands list should start with '(ops ... '!"); - - // Copy over the arguments. - Args.clear(); - for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { - if (!dynamic_cast(OpsList->getArg(j)) || - static_cast(OpsList->getArg(j))-> - getDef()->getName() != "node") - P->error("Operands list should all be 'node' values."); - if (OpsList->getArgName(j).empty()) - P->error("Operands list should have names for each operand!"); - if (!OperandsMap.count(OpsList->getArgName(j))) - P->error("'" + OpsList->getArgName(j) + - "' does not occur in pattern or was multiply specified!"); - OperandsMap.erase(OpsList->getArgName(j)); - Args.push_back(OpsList->getArgName(j)); - } - - if (!OperandsMap.empty()) - P->error("Operands list does not contain an entry for operand '" + - *OperandsMap.begin() + "'!"); - - // If there is a code init for this fragment, emit the predicate code and - // keep track of the fact that this fragment uses it. - std::string Code = Fragments[i]->getValueAsCode("Predicate"); - if (!Code.empty()) { - if (P->getOnlyTree()->isLeaf()) - OS << "inline bool Predicate_" << Fragments[i]->getName() - << "(SDNode *N) {\n"; - else { - std::string ClassName = - getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); - const char *C2 = ClassName == "SDNode" ? "N" : "inN"; - - OS << "inline bool Predicate_" << Fragments[i]->getName() - << "(SDNode *" << C2 << ") {\n"; - if (ClassName != "SDNode") - OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; - } - OS << Code << "\n}\n"; - P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); - } - - // If there is a node transformation corresponding to this, keep track of - // it. - Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); - if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? - P->getOnlyTree()->setTransformFn(Transform); - } - - OS << "\n\n"; - - // Now that we've parsed all of the tree fragments, do a closure on them so - // that there are not references to PatFrags left inside of them. - for (std::map::iterator I = PatternFragments.begin(), - E = PatternFragments.end(); I != E; ++I) { - TreePattern *ThePat = I->second; - ThePat->InlinePatternFragments(); - - // Infer as many types as possible. Don't worry about it if we don't infer - // all of them, some may depend on the inputs of the pattern. - try { - ThePat->InferAllTypes(); - } catch (...) { - // If this pattern fragment is not supported by this target (no types can - // satisfy its constraints), just ignore it. If the bogus pattern is - // actually used by instructions, the type consistency error will be - // reported there. - } - - // If debugging, print out the pattern fragment result. - DEBUG(ThePat->dump()); - } -} - -void DAGISelEmitter::ParsePredicateOperands() { - std::vector PredOps = - Records.getAllDerivedDefinitions("PredicateOperand"); - - // Find some SDNode. - assert(!SDNodes.empty() && "No SDNodes parsed?"); - Init *SomeSDNode = new DefInit(SDNodes.begin()->first); - - for (unsigned i = 0, e = PredOps.size(); i != e; ++i) { - DagInit *AlwaysInfo = PredOps[i]->getValueAsDag("ExecuteAlways"); - - // Clone the AlwaysInfo dag node, changing the operator from 'ops' to - // SomeSDnode so that we can parse this. - std::vector > Ops; - for (unsigned op = 0, e = AlwaysInfo->getNumArgs(); op != e; ++op) - Ops.push_back(std::make_pair(AlwaysInfo->getArg(op), - AlwaysInfo->getArgName(op))); - DagInit *DI = new DagInit(SomeSDNode, Ops); - - // Create a TreePattern to parse this. - TreePattern P(PredOps[i], DI, false, *this); - assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); - - // Copy the operands over into a DAGPredicateOperand. - DAGPredicateOperand PredOpInfo; - - TreePatternNode *T = P.getTree(0); - for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { - TreePatternNode *TPN = T->getChild(op); - while (TPN->ApplyTypeConstraints(P, false)) - /* Resolve all types */; - - if (TPN->ContainsUnresolvedType()) - throw "Value #" + utostr(i) + " of PredicateOperand '" + - PredOps[i]->getName() + "' doesn't have a concrete type!"; - - PredOpInfo.AlwaysOps.push_back(TPN); - } - - // Insert it into the PredicateOperands map so we can find it later. - PredicateOperands[PredOps[i]] = PredOpInfo; - } -} - -/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an -/// instruction input. Return true if this is a real use. -static bool HandleUse(TreePattern *I, TreePatternNode *Pat, - std::map &InstInputs, - std::vector &InstImpInputs) { - // No name -> not interesting. - if (Pat->getName().empty()) { - if (Pat->isLeaf()) { - DefInit *DI = dynamic_cast(Pat->getLeafValue()); - if (DI && DI->getDef()->isSubClassOf("RegisterClass")) - I->error("Input " + DI->getDef()->getName() + " must be named!"); - else if (DI && DI->getDef()->isSubClassOf("Register")) - InstImpInputs.push_back(DI->getDef()); - } - return false; - } - - Record *Rec; - if (Pat->isLeaf()) { - DefInit *DI = dynamic_cast(Pat->getLeafValue()); - if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); - Rec = DI->getDef(); - } else { - assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); - Rec = Pat->getOperator(); - } - - // SRCVALUE nodes are ignored. - if (Rec->getName() == "srcvalue") - return false; - - TreePatternNode *&Slot = InstInputs[Pat->getName()]; - if (!Slot) { - Slot = Pat; - } else { - Record *SlotRec; - if (Slot->isLeaf()) { - SlotRec = dynamic_cast(Slot->getLeafValue())->getDef(); - } else { - assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); - SlotRec = Slot->getOperator(); - } - - // Ensure that the inputs agree if we've already seen this input. - if (Rec != SlotRec) - I->error("All $" + Pat->getName() + " inputs must agree with each other"); - if (Slot->getExtTypes() != Pat->getExtTypes()) - I->error("All $" + Pat->getName() + " inputs must agree with each other"); - } - return true; -} - -/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is -/// part of "I", the instruction), computing the set of inputs and outputs of -/// the pattern. Report errors if we see anything naughty. -void DAGISelEmitter:: -FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, - std::map &InstInputs, - std::map&InstResults, - std::vector &InstImpInputs, - std::vector &InstImpResults) { - if (Pat->isLeaf()) { - bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); - if (!isUse && Pat->getTransformFn()) - I->error("Cannot specify a transform function for a non-input value!"); - return; - } else if (Pat->getOperator()->getName() != "set") { - // If this is not a set, verify that the children nodes are not void typed, - // and recurse. - for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { - if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) - I->error("Cannot have void nodes inside of patterns!"); - FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // If this is a non-leaf node with no children, treat it basically as if - // it were a leaf. This handles nodes like (imm). - bool isUse = false; - if (Pat->getNumChildren() == 0) - isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); - - if (!isUse && Pat->getTransformFn()) - I->error("Cannot specify a transform function for a non-input value!"); - return; - } - - // Otherwise, this is a set, validate and collect instruction results. - if (Pat->getNumChildren() == 0) - I->error("set requires operands!"); - else if (Pat->getNumChildren() & 1) - I->error("set requires an even number of operands"); - - if (Pat->getTransformFn()) - I->error("Cannot specify a transform function on a set node!"); - - // Check the set destinations. - unsigned NumValues = Pat->getNumChildren()/2; - for (unsigned i = 0; i != NumValues; ++i) { - TreePatternNode *Dest = Pat->getChild(i); - if (!Dest->isLeaf()) - I->error("set destination should be a register!"); - - DefInit *Val = dynamic_cast(Dest->getLeafValue()); - if (!Val) - I->error("set destination should be a register!"); - - if (Val->getDef()->isSubClassOf("RegisterClass")) { - if (Dest->getName().empty()) - I->error("set destination must have a name!"); - if (InstResults.count(Dest->getName())) - I->error("cannot set '" + Dest->getName() +"' multiple times"); - InstResults[Dest->getName()] = Dest; - } else if (Val->getDef()->isSubClassOf("Register")) { - InstImpResults.push_back(Val->getDef()); - } else { - I->error("set destination should be a register!"); - } - - // Verify and collect info from the computation. - FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), - InstInputs, InstResults, - InstImpInputs, InstImpResults); - } -} - -/// ParseInstructions - Parse all of the instructions, inlining and resolving -/// any fragments involved. This populates the Instructions list with fully -/// resolved instructions. -void DAGISelEmitter::ParseInstructions() { - std::vector Instrs = Records.getAllDerivedDefinitions("Instruction"); - - for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { - ListInit *LI = 0; - - if (dynamic_cast(Instrs[i]->getValueInit("Pattern"))) - LI = Instrs[i]->getValueAsListInit("Pattern"); - - // If there is no pattern, only collect minimal information about the - // instruction for its operand list. We have to assume that there is one - // result, as we have no detailed info. - if (!LI || LI->getSize() == 0) { - std::vector Results; - std::vector Operands; - - CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); - - if (InstInfo.OperandList.size() != 0) { - // FIXME: temporary hack... - if (InstInfo.noResults) { - // These produce no results - for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); - } else { - // Assume the first operand is the result. - Results.push_back(InstInfo.OperandList[0].Rec); - - // The rest are inputs. - for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) - Operands.push_back(InstInfo.OperandList[j].Rec); - } - } - - // Create and insert the instruction. - std::vector ImpResults; - std::vector ImpOperands; - Instructions.insert(std::make_pair(Instrs[i], - DAGInstruction(0, Results, Operands, ImpResults, - ImpOperands))); - continue; // no pattern. - } - - // Parse the instruction. - TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); - // Inline pattern fragments into it. - I->InlinePatternFragments(); - - // Infer as many types as possible. If we cannot infer all of them, we can - // never do anything with this instruction pattern: report it to the user. - if (!I->InferAllTypes()) - I->error("Could not infer all types in pattern!"); - - // InstInputs - Keep track of all of the inputs of the instruction, along - // with the record they are declared as. - std::map InstInputs; - - // InstResults - Keep track of all the virtual registers that are 'set' - // in the instruction, including what reg class they are. - std::map InstResults; - - std::vector InstImpInputs; - std::vector InstImpResults; - - // Verify that the top-level forms in the instruction are of void type, and - // fill in the InstResults map. - for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { - TreePatternNode *Pat = I->getTree(j); - if (Pat->getExtTypeNum(0) != MVT::isVoid) - I->error("Top-level forms in instruction pattern should have" - " void types"); - - // Find inputs and outputs, and verify the structure of the uses/defs. - FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // Now that we have inputs and outputs of the pattern, inspect the operands - // list for the instruction. This determines the order that operands are - // added to the machine instruction the node corresponds to. - unsigned NumResults = InstResults.size(); - - // Parse the operands list from the (ops) list, validating it. - std::vector &Args = I->getArgList(); - assert(Args.empty() && "Args list should still be empty here!"); - CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); - - // Check that all of the results occur first in the list. - std::vector Results; - TreePatternNode *Res0Node = NULL; - for (unsigned i = 0; i != NumResults; ++i) { - if (i == CGI.OperandList.size()) - I->error("'" + InstResults.begin()->first + - "' set but does not appear in operand list!"); - const std::string &OpName = CGI.OperandList[i].Name; - - // Check that it exists in InstResults. - TreePatternNode *RNode = InstResults[OpName]; - if (RNode == 0) - I->error("Operand $" + OpName + " does not exist in operand list!"); - - if (i == 0) - Res0Node = RNode; - Record *R = dynamic_cast(RNode->getLeafValue())->getDef(); - if (R == 0) - I->error("Operand $" + OpName + " should be a set destination: all " - "outputs must occur before inputs in operand list!"); - - if (CGI.OperandList[i].Rec != R) - I->error("Operand $" + OpName + " class mismatch!"); - - // Remember the return type. - Results.push_back(CGI.OperandList[i].Rec); - - // Okay, this one checks out. - InstResults.erase(OpName); - } - - // Loop over the inputs next. Make a copy of InstInputs so we can destroy - // the copy while we're checking the inputs. - std::map InstInputsCheck(InstInputs); - - std::vector ResultNodeOperands; - std::vector Operands; - for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { - CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; - const std::string &OpName = Op.Name; - if (OpName.empty()) - I->error("Operand #" + utostr(i) + " in operands list has no name!"); - - if (!InstInputsCheck.count(OpName)) { - // If this is an predicate operand with an ExecuteAlways set filled in, - // we can ignore this. When we codegen it, we will do so as always - // executed. - if (Op.Rec->isSubClassOf("PredicateOperand")) { - // Does it have a non-empty ExecuteAlways field? If so, ignore this - // operand. - if (!getPredicateOperand(Op.Rec).AlwaysOps.empty()) - continue; - } - I->error("Operand $" + OpName + - " does not appear in the instruction pattern"); - } - TreePatternNode *InVal = InstInputsCheck[OpName]; - InstInputsCheck.erase(OpName); // It occurred, remove from map. - - if (InVal->isLeaf() && - dynamic_cast(InVal->getLeafValue())) { - Record *InRec = static_cast(InVal->getLeafValue())->getDef(); - if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) - I->error("Operand $" + OpName + "'s register class disagrees" - " between the operand and pattern"); - } - Operands.push_back(Op.Rec); - - // Construct the result for the dest-pattern operand list. - TreePatternNode *OpNode = InVal->clone(); - - // No predicate is useful on the result. - OpNode->setPredicateFn(""); - - // Promote the xform function to be an explicit node if set. - if (Record *Xform = OpNode->getTransformFn()) { - OpNode->setTransformFn(0); - std::vector Children; - Children.push_back(OpNode); - OpNode = new TreePatternNode(Xform, Children); - } - - ResultNodeOperands.push_back(OpNode); - } - - if (!InstInputsCheck.empty()) - I->error("Input operand $" + InstInputsCheck.begin()->first + - " occurs in pattern but not in operands list!"); - - TreePatternNode *ResultPattern = - new TreePatternNode(I->getRecord(), ResultNodeOperands); - // Copy fully inferred output node type to instruction result pattern. - if (NumResults > 0) - ResultPattern->setTypes(Res0Node->getExtTypes()); - - // Create and insert the instruction. - DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); - Instructions.insert(std::make_pair(I->getRecord(), TheInst)); - - // Use a temporary tree pattern to infer all types and make sure that the - // constructed result is correct. This depends on the instruction already - // being inserted into the Instructions map. - TreePattern Temp(I->getRecord(), ResultPattern, false, *this); - Temp.InferAllTypes(); - - DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; - TheInsertedInst.setResultPattern(Temp.getOnlyTree()); - - DEBUG(I->dump()); - } - - // If we can, convert the instructions to be patterns that are matched! - for (std::map::iterator II = Instructions.begin(), - E = Instructions.end(); II != E; ++II) { - DAGInstruction &TheInst = II->second; - TreePattern *I = TheInst.getPattern(); - if (I == 0) continue; // No pattern. - - if (I->getNumTrees() != 1) { - std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; - continue; - } - TreePatternNode *Pattern = I->getTree(0); - TreePatternNode *SrcPattern; - if (Pattern->getOperator()->getName() == "set") { - if (Pattern->getNumChildren() != 2) - continue; // Not a set of a single value (not handled so far) - - SrcPattern = Pattern->getChild(1)->clone(); - } else{ - // Not a set (store or something?) - SrcPattern = Pattern; - } - - std::string Reason; - if (!SrcPattern->canPatternMatch(Reason, *this)) - I->error("Instruction can never match: " + Reason); - - Record *Instr = II->first; - TreePatternNode *DstPattern = TheInst.getResultPattern(); - PatternsToMatch. - push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), - SrcPattern, DstPattern, - Instr->getValueAsInt("AddedComplexity"))); - } -} - -void DAGISelEmitter::ParsePatterns() { - std::vector Patterns = Records.getAllDerivedDefinitions("Pattern"); - - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); - TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); - - // Inline pattern fragments into it. - Pattern->InlinePatternFragments(); - - ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); - if (LI->getSize() == 0) continue; // no pattern. - - // Parse the instruction. - TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); - - // Inline pattern fragments into it. - Result->InlinePatternFragments(); - - if (Result->getNumTrees() != 1) - Result->error("Cannot handle instructions producing instructions " - "with temporaries yet!"); - - bool IterateInference; - bool InferredAllPatternTypes, InferredAllResultTypes; - do { - // Infer as many types as possible. If we cannot infer all of them, we - // can never do anything with this pattern: report it to the user. - InferredAllPatternTypes = Pattern->InferAllTypes(); - - // Infer as many types as possible. If we cannot infer all of them, we - // can never do anything with this pattern: report it to the user. - InferredAllResultTypes = Result->InferAllTypes(); - - // Apply the type of the result to the source pattern. This helps us - // resolve cases where the input type is known to be a pointer type (which - // is considered resolved), but the result knows it needs to be 32- or - // 64-bits. Infer the other way for good measure. - IterateInference = Pattern->getOnlyTree()-> - UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); - IterateInference |= Result->getOnlyTree()-> - UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); - } while (IterateInference); - - // Verify that we inferred enough types that we can do something with the - // pattern and result. If these fire the user has to add type casts. - if (!InferredAllPatternTypes) - Pattern->error("Could not infer all types in pattern!"); - if (!InferredAllResultTypes) - Result->error("Could not infer all types in pattern result!"); - - // Validate that the input pattern is correct. - { - std::map InstInputs; - std::map InstResults; - std::vector InstImpInputs; - std::vector InstImpResults; - FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), - InstInputs, InstResults, - InstImpInputs, InstImpResults); - } - - // Promote the xform function to be an explicit node if set. - std::vector ResultNodeOperands; - TreePatternNode *DstPattern = Result->getOnlyTree(); - for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { - TreePatternNode *OpNode = DstPattern->getChild(ii); - if (Record *Xform = OpNode->getTransformFn()) { - OpNode->setTransformFn(0); - std::vector Children; - Children.push_back(OpNode); - OpNode = new TreePatternNode(Xform, Children); - } - ResultNodeOperands.push_back(OpNode); - } - DstPattern = Result->getOnlyTree(); - if (!DstPattern->isLeaf()) - DstPattern = new TreePatternNode(DstPattern->getOperator(), - ResultNodeOperands); - DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); - TreePattern Temp(Result->getRecord(), DstPattern, false, *this); - Temp.InferAllTypes(); - - std::string Reason; - if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) - Pattern->error("Pattern can never match: " + Reason); - - PatternsToMatch. - push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), - Pattern->getOnlyTree(), - Temp.getOnlyTree(), - Patterns[i]->getValueAsInt("AddedComplexity"))); - } -} - -/// CombineChildVariants - Given a bunch of permutations of each child of the -/// 'operator' node, put them together in all possible ways. -static void CombineChildVariants(TreePatternNode *Orig, - const std::vector > &ChildVariants, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - // Make sure that each operand has at least one variant to choose from. - for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) - if (ChildVariants[i].empty()) - return; - - // The end result is an all-pairs construction of the resultant pattern. - std::vector Idxs; - Idxs.resize(ChildVariants.size()); - bool NotDone = true; - while (NotDone) { - // Create the variant and add it to the output list. - std::vector NewChildren; - for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) - NewChildren.push_back(ChildVariants[i][Idxs[i]]); - TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); - - // Copy over properties. - R->setName(Orig->getName()); - R->setPredicateFn(Orig->getPredicateFn()); - R->setTransformFn(Orig->getTransformFn()); - R->setTypes(Orig->getExtTypes()); - - // If this pattern cannot every match, do not include it as a variant. - std::string ErrString; - if (!R->canPatternMatch(ErrString, ISE)) { - delete R; - } else { - bool AlreadyExists = false; - - // Scan to see if this pattern has already been emitted. We can get - // duplication due to things like commuting: - // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) - // which are the same pattern. Ignore the dups. - for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) - if (R->isIsomorphicTo(OutVariants[i])) { - AlreadyExists = true; - break; - } - - if (AlreadyExists) - delete R; - else - OutVariants.push_back(R); - } - - // Increment indices to the next permutation. - NotDone = false; - // Look for something we can increment without causing a wrap-around. - for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { - if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { - NotDone = true; // Found something to increment. - break; - } - Idxs[IdxsIdx] = 0; - } - } -} - -/// CombineChildVariants - A helper function for binary operators. -/// -static void CombineChildVariants(TreePatternNode *Orig, - const std::vector &LHS, - const std::vector &RHS, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - std::vector > ChildVariants; - ChildVariants.push_back(LHS); - ChildVariants.push_back(RHS); - CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); -} - - -static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, - std::vector &Children) { - assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); - Record *Operator = N->getOperator(); - - // Only permit raw nodes. - if (!N->getName().empty() || !N->getPredicateFn().empty() || - N->getTransformFn()) { - Children.push_back(N); - return; - } - - if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) - Children.push_back(N->getChild(0)); - else - GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); - - if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) - Children.push_back(N->getChild(1)); - else - GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); -} - -/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of -/// the (potentially recursive) pattern by using algebraic laws. -/// -static void GenerateVariantsOf(TreePatternNode *N, - std::vector &OutVariants, - DAGISelEmitter &ISE) { - // We cannot permute leaves. - if (N->isLeaf()) { - OutVariants.push_back(N); - return; - } - - // Look up interesting info about the node. - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); - - // If this node is associative, reassociate. - if (NodeInfo.hasProperty(SDNPAssociative)) { - // Reassociate by pulling together all of the linked operators - std::vector MaximalChildren; - GatherChildrenOfAssociativeOpcode(N, MaximalChildren); - - // Only handle child sizes of 3. Otherwise we'll end up trying too many - // permutations. - if (MaximalChildren.size() == 3) { - // Find the variants of all of our maximal children. - std::vector AVariants, BVariants, CVariants; - GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); - GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); - GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); - - // There are only two ways we can permute the tree: - // (A op B) op C and A op (B op C) - // Within these forms, we can also permute A/B/C. - - // Generate legal pair permutations of A/B/C. - std::vector ABVariants; - std::vector BAVariants; - std::vector ACVariants; - std::vector CAVariants; - std::vector BCVariants; - std::vector CBVariants; - CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); - CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); - CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); - CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); - CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); - CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); - - // Combine those into the result: (x op x) op x - CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); - CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); - CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); - CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); - CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); - CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); - - // Combine those into the result: x op (x op x) - CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); - CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); - CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); - CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); - CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); - CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); - return; - } - } - - // Compute permutations of all children. - std::vector > ChildVariants; - ChildVariants.resize(N->getNumChildren()); - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) - GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); - - // Build all permutations based on how the children were formed. - CombineChildVariants(N, ChildVariants, OutVariants, ISE); - - // If this node is commutative, consider the commuted order. - if (NodeInfo.hasProperty(SDNPCommutative)) { - assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); - // Don't count children which are actually register references. - unsigned NC = 0; - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { - TreePatternNode *Child = N->getChild(i); - if (Child->isLeaf()) - if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { - Record *RR = DI->getDef(); - if (RR->isSubClassOf("Register")) - continue; - } - NC++; - } - // Consider the commuted order. - if (NC == 2) - CombineChildVariants(N, ChildVariants[1], ChildVariants[0], - OutVariants, ISE); - } -} - - -// GenerateVariants - Generate variants. For example, commutative patterns can -// match multiple ways. Add them to PatternsToMatch as well. -void DAGISelEmitter::GenerateVariants() { - - DEBUG(std::cerr << "Generating instruction variants.\n"); - - // Loop over all of the patterns we've collected, checking to see if we can - // generate variants of the instruction, through the exploitation of - // identities. This permits the target to provide agressive matching without - // the .td file having to contain tons of variants of instructions. - // - // Note that this loop adds new patterns to the PatternsToMatch list, but we - // intentionally do not reconsider these. Any variants of added patterns have - // already been added. - // - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - std::vector Variants; - GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); - - assert(!Variants.empty() && "Must create at least original variant!"); - Variants.erase(Variants.begin()); // Remove the original pattern. - - if (Variants.empty()) // No variants for this pattern. - continue; - - DEBUG(std::cerr << "FOUND VARIANTS OF: "; - PatternsToMatch[i].getSrcPattern()->dump(); - std::cerr << "\n"); - - for (unsigned v = 0, e = Variants.size(); v != e; ++v) { - TreePatternNode *Variant = Variants[v]; - - DEBUG(std::cerr << " VAR#" << v << ": "; - Variant->dump(); - std::cerr << "\n"); - - // Scan to see if an instruction or explicit pattern already matches this. - bool AlreadyExists = false; - for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { - // Check to see if this variant already exists. - if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { - DEBUG(std::cerr << " *** ALREADY EXISTS, ignoring variant.\n"); - AlreadyExists = true; - break; - } - } - // If we already have it, ignore the variant. - if (AlreadyExists) continue; - - // Otherwise, add it to the list of patterns we have. - PatternsToMatch. - push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), - Variant, PatternsToMatch[i].getDstPattern(), - PatternsToMatch[i].getAddedComplexity())); - } - - DEBUG(std::cerr << "\n"); - } -} - -// NodeIsComplexPattern - return true if N is a leaf node and a subclass of -// ComplexPattern. -static bool NodeIsComplexPattern(TreePatternNode *N) -{ - return (N->isLeaf() && - dynamic_cast(N->getLeafValue()) && - static_cast(N->getLeafValue())->getDef()-> - isSubClassOf("ComplexPattern")); -} - -// NodeGetComplexPattern - return the pointer to the ComplexPattern if N -// is a leaf node and a subclass of ComplexPattern, else it returns NULL. -static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, - DAGISelEmitter &ISE) -{ - if (N->isLeaf() && - dynamic_cast(N->getLeafValue()) && - static_cast(N->getLeafValue())->getDef()-> - isSubClassOf("ComplexPattern")) { - return &ISE.getComplexPattern(static_cast(N->getLeafValue()) - ->getDef()); - } - return NULL; -} - -/// getPatternSize - Return the 'size' of this pattern. We want to match large -/// patterns before small ones. This is used to determine the size of a -/// pattern. -static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { - assert((isExtIntegerInVTs(P->getExtTypes()) || - isExtFloatingPointInVTs(P->getExtTypes()) || - P->getExtTypeNum(0) == MVT::isVoid || - P->getExtTypeNum(0) == MVT::Flag || - P->getExtTypeNum(0) == MVT::iPTR) && - "Not a valid pattern node to size!"); - unsigned Size = 3; // The node itself. - // If the root node is a ConstantSDNode, increases its size. - // e.g. (set R32:$dst, 0). - if (P->isLeaf() && dynamic_cast(P->getLeafValue())) - Size += 2; - - // FIXME: This is a hack to statically increase the priority of patterns - // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. - // Later we can allow complexity / cost for each pattern to be (optionally) - // specified. To get best possible pattern match we'll need to dynamically - // calculate the complexity of all patterns a dag can potentially map to. - const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); - if (AM) - Size += AM->getNumOperands() * 3; - - // If this node has some predicate function that must match, it adds to the - // complexity of this node. - if (!P->getPredicateFn().empty()) - ++Size; - - // Count children in the count if they are also nodes. - for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { - TreePatternNode *Child = P->getChild(i); - if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) - Size += getPatternSize(Child, ISE); - else if (Child->isLeaf()) { - if (dynamic_cast(Child->getLeafValue())) - Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). - else if (NodeIsComplexPattern(Child)) - Size += getPatternSize(Child, ISE); - else if (!Child->getPredicateFn().empty()) - ++Size; - } - } - - return Size; -} - /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. -static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { +static unsigned getResultPatternCost(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; - + unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; - CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); - if (II.usesCustomDAGSchedInserter) + CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op); + if (II.usesCustomInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) - Cost += getResultPatternCost(P->getChild(i), ISE); + Cost += getResultPatternCost(P->getChild(i), CGP); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. -static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { +static unsigned getResultPatternSize(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; @@ -2095,1818 +67,108 @@ static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) - Cost += getResultPatternSize(P->getChild(i), ISE); + Cost += getResultPatternSize(P->getChild(i), CGP); return Cost; } +namespace { // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { - PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; - DAGISelEmitter &ISE; - - bool operator()(PatternToMatch *LHS, - PatternToMatch *RHS) { - unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); - unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); - LHSSize += LHS->getAddedComplexity(); - RHSSize += RHS->getAddedComplexity(); + PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} + CodeGenDAGPatterns &CGP; + + bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) { + const TreePatternNode *LHSSrc = LHS->getSrcPattern(); + const TreePatternNode *RHSSrc = RHS->getSrcPattern(); + + MVT LHSVT = (LHSSrc->getNumTypes() != 0 ? LHSSrc->getType(0) : MVT::Other); + MVT RHSVT = (RHSSrc->getNumTypes() != 0 ? RHSSrc->getType(0) : MVT::Other); + if (LHSVT.isVector() != RHSVT.isVector()) + return RHSVT.isVector(); + + if (LHSVT.isFloatingPoint() != RHSVT.isFloatingPoint()) + return RHSVT.isFloatingPoint(); + + // Otherwise, if the patterns might both match, sort based on complexity, + // which means that we prefer to match patterns that cover more nodes in the + // input over nodes that cover fewer. + int LHSSize = LHS->getPatternComplexity(CGP); + int RHSSize = RHS->getPatternComplexity(CGP); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; - + // If the patterns have equal complexity, compare generated instruction cost - unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE); - unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE); + unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); + unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; - return getResultPatternSize(LHS->getDstPattern(), ISE) < - getResultPatternSize(RHS->getDstPattern(), ISE); - } -}; - -/// getRegisterValueType - Look up and return the first ValueType of specified -/// RegisterClass record -static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { - if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) - return RC->getValueTypeNum(0); - return MVT::Other; -} - - -/// RemoveAllTypes - A quick recursive walk over a pattern which removes all -/// type information from it. -static void RemoveAllTypes(TreePatternNode *N) { - N->removeTypes(); - if (!N->isLeaf()) - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) - RemoveAllTypes(N->getChild(i)); -} - -Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { - Record *N = Records.getDef(Name); - if (!N || !N->isSubClassOf("SDNode")) { - std::cerr << "Error getting SDNode '" << Name << "'!\n"; - exit(1); - } - return N; -} - -/// NodeHasProperty - return true if TreePatternNode has the specified -/// property. -static bool NodeHasProperty(TreePatternNode *N, SDNP Property, - DAGISelEmitter &ISE) -{ - if (N->isLeaf()) { - const ComplexPattern *CP = NodeGetComplexPattern(N, ISE); - if (CP) - return CP->hasProperty(Property); - return false; - } - Record *Operator = N->getOperator(); - if (!Operator->isSubClassOf("SDNode")) return false; - - const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); - return NodeInfo.hasProperty(Property); -} - -static bool PatternHasProperty(TreePatternNode *N, SDNP Property, - DAGISelEmitter &ISE) -{ - if (NodeHasProperty(N, Property, ISE)) - return true; - - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { - TreePatternNode *Child = N->getChild(i); - if (PatternHasProperty(Child, Property, ISE)) - return true; - } - - return false; -} - -class PatternCodeEmitter { -private: - DAGISelEmitter &ISE; - - // Predicates. - ListInit *Predicates; - // Pattern cost. - unsigned Cost; - // Instruction selector pattern. - TreePatternNode *Pattern; - // Matched instruction. - TreePatternNode *Instruction; - - // Node to name mapping - std::map VariableMap; - // Node to operator mapping - std::map OperatorMap; - // Names of all the folded nodes which produce chains. - std::vector > FoldedChains; - // Original input chain(s). - std::vector > OrigChains; - std::set Duplicates; - - /// GeneratedCode - This is the buffer that we emit code to. The first int - /// indicates whether this is an exit predicate (something that should be - /// tested, and if true, the match fails) [when 1], or normal code to emit - /// [when 0], or initialization code to emit [when 2]. - std::vector > &GeneratedCode; - /// GeneratedDecl - This is the set of all SDOperand declarations needed for - /// the set of patterns for each top-level opcode. - std::set &GeneratedDecl; - /// TargetOpcodes - The target specific opcodes used by the resulting - /// instructions. - std::vector &TargetOpcodes; - std::vector &TargetVTs; - - std::string ChainName; - unsigned TmpNo; - unsigned OpcNo; - unsigned VTNo; - - void emitCheck(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(1, S)); - } - void emitCode(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(0, S)); - } - void emitInit(const std::string &S) { - if (!S.empty()) - GeneratedCode.push_back(std::make_pair(2, S)); - } - void emitDecl(const std::string &S) { - assert(!S.empty() && "Invalid declaration"); - GeneratedDecl.insert(S); - } - void emitOpcode(const std::string &Opc) { - TargetOpcodes.push_back(Opc); - OpcNo++; - } - void emitVT(const std::string &VT) { - TargetVTs.push_back(VT); - VTNo++; - } -public: - PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, - TreePatternNode *pattern, TreePatternNode *instr, - std::vector > &gc, - std::set &gd, - std::vector &to, - std::vector &tv) - : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), - GeneratedCode(gc), GeneratedDecl(gd), - TargetOpcodes(to), TargetVTs(tv), - TmpNo(0), OpcNo(0), VTNo(0) {} - - /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo - /// if the match fails. At this point, we already know that the opcode for N - /// matches, and the SDNode for the result has the RootName specified name. - void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, - const std::string &RootName, const std::string &ChainSuffix, - bool &FoundChain) { - bool isRoot = (P == NULL); - // Emit instruction predicates. Each predicate is just a string for now. - if (isRoot) { - std::string PredicateCheck; - for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { - if (DefInit *Pred = dynamic_cast(Predicates->getElement(i))) { - Record *Def = Pred->getDef(); - if (!Def->isSubClassOf("Predicate")) { -#ifndef NDEBUG - Def->dump(); -#endif - assert(0 && "Unknown predicate type!"); - } - if (!PredicateCheck.empty()) - PredicateCheck += " && "; - PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; - } - } - - emitCheck(PredicateCheck); - } - - if (N->isLeaf()) { - if (IntInit *II = dynamic_cast(N->getLeafValue())) { - emitCheck("cast(" + RootName + - ")->getSignExtended() == " + itostr(II->getValue())); - return; - } else if (!NodeIsComplexPattern(N)) { - assert(0 && "Cannot match this as a leaf value!"); - abort(); - } - } - - // If this node has a name associated with it, capture it in VariableMap. If - // we already saw this in the pattern, emit code to verify dagness. - if (!N->getName().empty()) { - std::string &VarMapEntry = VariableMap[N->getName()]; - if (VarMapEntry.empty()) { - VarMapEntry = RootName; - } else { - // If we get here, this is a second reference to a specific name. Since - // we already have checked that the first reference is valid, we don't - // have to recursively match it, just check that it's the same as the - // previously named thing. - emitCheck(VarMapEntry + " == " + RootName); - return; - } - - if (!N->isLeaf()) - OperatorMap[N->getName()] = N->getOperator(); - } - - - // Emit code to load the child nodes and match their contents recursively. - unsigned OpNo = 0; - bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE); - bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE); - bool EmittedUseCheck = false; - if (HasChain) { - if (NodeHasChain) - OpNo = 1; - if (!isRoot) { - // Multiple uses of actual result? - emitCheck(RootName + ".hasOneUse()"); - EmittedUseCheck = true; - if (NodeHasChain) { - // If the immediate use can somehow reach this node through another - // path, then can't fold it either or it will create a cycle. - // e.g. In the following diagram, XX can reach ld through YY. If - // ld is folded into XX, then YY is both a predecessor and a successor - // of XX. - // - // [ld] - // ^ ^ - // | | - // / \--- - // / [YY] - // | ^ - // [XX]-------| - bool NeedCheck = false; - if (P != Pattern) - NeedCheck = true; - else { - const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); - NeedCheck = - P->getOperator() == ISE.get_intrinsic_void_sdnode() || - P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() || - P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() || - PInfo.getNumOperands() > 1 || - PInfo.hasProperty(SDNPHasChain) || - PInfo.hasProperty(SDNPInFlag) || - PInfo.hasProperty(SDNPOptInFlag); - } - - if (NeedCheck) { - std::string ParentName(RootName.begin(), RootName.end()-1); - emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName + - ".Val, N.Val)"); - } - } - } - - if (NodeHasChain) { - if (FoundChain) { - emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || " - "IsChainCompatible(" + ChainName + ".Val, " + - RootName + ".Val))"); - OrigChains.push_back(std::make_pair(ChainName, RootName)); - } else - FoundChain = true; - ChainName = "Chain" + ChainSuffix; - emitInit("SDOperand " + ChainName + " = " + RootName + - ".getOperand(0);"); - } - } - - // Don't fold any node which reads or writes a flag and has multiple uses. - // FIXME: We really need to separate the concepts of flag and "glue". Those - // real flag results, e.g. X86CMP output, can have multiple uses. - // FIXME: If the optional incoming flag does not exist. Then it is ok to - // fold it. - if (!isRoot && - (PatternHasProperty(N, SDNPInFlag, ISE) || - PatternHasProperty(N, SDNPOptInFlag, ISE) || - PatternHasProperty(N, SDNPOutFlag, ISE))) { - if (!EmittedUseCheck) { - // Multiple uses of actual result? - emitCheck(RootName + ".hasOneUse()"); - } - } - - // If there is a node predicate for this, emit the call. - if (!N->getPredicateFn().empty()) - emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); + unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP); + unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP); + if (LHSPatSize < RHSPatSize) return true; + if (LHSPatSize > RHSPatSize) return false; - - // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is - // a constant without a predicate fn that has more that one bit set, handle - // this as a special case. This is usually for targets that have special - // handling of certain large constants (e.g. alpha with it's 8/16/32-bit - // handling stuff). Using these instructions is often far more efficient - // than materializing the constant. Unfortunately, both the instcombiner - // and the dag combiner can often infer that bits are dead, and thus drop - // them from the mask in the dag. For example, it might turn 'AND X, 255' - // into 'AND X, 254' if it knows the low bit is set. Emit code that checks - // to handle this. - if (!N->isLeaf() && - (N->getOperator()->getName() == "and" || - N->getOperator()->getName() == "or") && - N->getChild(1)->isLeaf() && - N->getChild(1)->getPredicateFn().empty()) { - if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { - if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. - emitInit("SDOperand " + RootName + "0" + " = " + - RootName + ".getOperand(" + utostr(0) + ");"); - emitInit("SDOperand " + RootName + "1" + " = " + - RootName + ".getOperand(" + utostr(1) + ");"); - - emitCheck("isa(" + RootName + "1)"); - const char *MaskPredicate = N->getOperator()->getName() == "or" - ? "CheckOrMask(" : "CheckAndMask("; - emitCheck(MaskPredicate + RootName + "0, cast(" + - RootName + "1), " + itostr(II->getValue()) + ")"); - - EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), - ChainSuffix + utostr(0), FoundChain); - return; - } - } - } - - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { - emitInit("SDOperand " + RootName + utostr(OpNo) + " = " + - RootName + ".getOperand(" +utostr(OpNo) + ");"); - - EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), - ChainSuffix + utostr(OpNo), FoundChain); - } - - // Handle cases when root is a complex pattern. - const ComplexPattern *CP; - if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { - std::string Fn = CP->getSelectFunc(); - unsigned NumOps = CP->getNumOperands(); - for (unsigned i = 0; i < NumOps; ++i) { - emitDecl("CPTmp" + utostr(i)); - emitCode("SDOperand CPTmp" + utostr(i) + ";"); - } - if (CP->hasProperty(SDNPHasChain)) { - emitDecl("CPInChain"); - emitDecl("Chain" + ChainSuffix); - emitCode("SDOperand CPInChain;"); - emitCode("SDOperand Chain" + ChainSuffix + ";"); - } - - std::string Code = Fn + "(" + RootName + ", " + RootName; - for (unsigned i = 0; i < NumOps; i++) - Code += ", CPTmp" + utostr(i); - if (CP->hasProperty(SDNPHasChain)) { - ChainName = "Chain" + ChainSuffix; - Code += ", CPInChain, Chain" + ChainSuffix; - } - emitCheck(Code + ")"); - } + // Sort based on the UID of the pattern, giving us a deterministic ordering + // if all other sorting conditions fail. + assert(LHS == RHS || LHS->ID != RHS->ID); + return LHS->ID < RHS->ID; } +}; +} // End anonymous namespace - void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, - const std::string &RootName, - const std::string &ChainSuffix, bool &FoundChain) { - if (!Child->isLeaf()) { - // If it's not a leaf, recursively match. - const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); - emitCheck(RootName + ".getOpcode() == " + - CInfo.getEnumName()); - EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); - if (NodeHasProperty(Child, SDNPHasChain, ISE)) - FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); - } else { - // If this child has a name associated with it, capture it in VarMap. If - // we already saw this in the pattern, emit code to verify dagness. - if (!Child->getName().empty()) { - std::string &VarMapEntry = VariableMap[Child->getName()]; - if (VarMapEntry.empty()) { - VarMapEntry = RootName; - } else { - // If we get here, this is a second reference to a specific name. - // Since we already have checked that the first reference is valid, - // we don't have to recursively match it, just check that it's the - // same as the previously named thing. - emitCheck(VarMapEntry + " == " + RootName); - Duplicates.insert(RootName); - return; - } - } - - // Handle leaves of various types. - if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { - Record *LeafRec = DI->getDef(); - if (LeafRec->isSubClassOf("RegisterClass")) { - // Handle register references. Nothing to do here. - } else if (LeafRec->isSubClassOf("Register")) { - // Handle register references. - } else if (LeafRec->isSubClassOf("ComplexPattern")) { - // Handle complex pattern. - const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE); - std::string Fn = CP->getSelectFunc(); - unsigned NumOps = CP->getNumOperands(); - for (unsigned i = 0; i < NumOps; ++i) { - emitDecl("CPTmp" + utostr(i)); - emitCode("SDOperand CPTmp" + utostr(i) + ";"); - } - if (CP->hasProperty(SDNPHasChain)) { - const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator()); - FoldedChains.push_back(std::make_pair("CPInChain", - PInfo.getNumResults())); - ChainName = "Chain" + ChainSuffix; - emitDecl("CPInChain"); - emitDecl(ChainName); - emitCode("SDOperand CPInChain;"); - emitCode("SDOperand " + ChainName + ";"); - } - - std::string Code = Fn + "(N, "; - if (CP->hasProperty(SDNPHasChain)) { - std::string ParentName(RootName.begin(), RootName.end()-1); - Code += ParentName + ", "; - } - Code += RootName; - for (unsigned i = 0; i < NumOps; i++) - Code += ", CPTmp" + utostr(i); - if (CP->hasProperty(SDNPHasChain)) - Code += ", CPInChain, Chain" + ChainSuffix; - emitCheck(Code + ")"); - } else if (LeafRec->getName() == "srcvalue") { - // Place holder for SRCVALUE nodes. Nothing to do here. - } else if (LeafRec->isSubClassOf("ValueType")) { - // Make sure this is the specified value type. - emitCheck("cast(" + RootName + - ")->getVT() == MVT::" + LeafRec->getName()); - } else if (LeafRec->isSubClassOf("CondCode")) { - // Make sure this is the specified cond code. - emitCheck("cast(" + RootName + - ")->get() == ISD::" + LeafRec->getName()); - } else { -#ifndef NDEBUG - Child->dump(); - std::cerr << " "; -#endif - assert(0 && "Unknown leaf type!"); - } - - // If there is a node predicate for this, emit the call. - if (!Child->getPredicateFn().empty()) - emitCheck(Child->getPredicateFn() + "(" + RootName + - ".Val)"); - } else if (IntInit *II = - dynamic_cast(Child->getLeafValue())) { - emitCheck("isa(" + RootName + ")"); - unsigned CTmp = TmpNo++; - emitCode("int64_t CN"+utostr(CTmp)+" = cast("+ - RootName + ")->getSignExtended();"); - - emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); - } else { -#ifndef NDEBUG - Child->dump(); -#endif - assert(0 && "Unknown leaf type!"); - } - } - } - - /// EmitResultCode - Emit the action for a pattern. Now that it has matched - /// we actually have to build a DAG! - std::vector - EmitResultCode(TreePatternNode *N, bool RetSelected, - bool InFlagDecled, bool ResNodeDecled, - bool LikeLeaf = false, bool isRoot = false) { - // List of arguments of getTargetNode() or SelectNodeTo(). - std::vector NodeOps; - // This is something selected from the pattern we matched. - if (!N->getName().empty()) { - std::string &Val = VariableMap[N->getName()]; - assert(!Val.empty() && - "Variable referenced but not defined and not caught earlier!"); - if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { - // Already selected this operand, just return the tmpval. - NodeOps.push_back(Val); - return NodeOps; - } - - const ComplexPattern *CP; - unsigned ResNo = TmpNo++; - if (!N->isLeaf() && N->getOperator()->getName() == "imm") { - assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - std::string CastType; - switch (N->getTypeNum(0)) { - default: assert(0 && "Unknown type for constant node!"); - case MVT::i1: CastType = "bool"; break; - case MVT::i8: CastType = "unsigned char"; break; - case MVT::i16: CastType = "unsigned short"; break; - case MVT::i32: CastType = "unsigned"; break; - case MVT::i64: CastType = "uint64_t"; break; - } - emitCode("SDOperand Tmp" + utostr(ResNo) + - " = CurDAG->getTargetConstant(((" + CastType + - ") cast(" + Val + ")->getValue()), " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - // Add Tmp to VariableMap, so that we don't multiply select this - // value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ - Record *Op = OperatorMap[N->getName()]; - // Transform ExternalSymbol to TargetExternalSymbol - if (Op && Op->getName() == "externalsym") { - emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" - "ExternalSymbol(cast(" + - Val + ")->getSymbol(), " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - // Add Tmp to VariableMap, so that we don't multiply select - // this value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - } else { - NodeOps.push_back(Val); - } - } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") { - Record *Op = OperatorMap[N->getName()]; - // Transform GlobalAddress to TargetGlobalAddress - if (Op && Op->getName() == "globaladdr") { - emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget" - "GlobalAddress(cast(" + Val + - ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + - ");"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - // Add Tmp to VariableMap, so that we don't multiply select - // this value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - } else { - NodeOps.push_back(Val); - } - } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ - NodeOps.push_back(Val); - // Add Tmp to VariableMap, so that we don't multiply select this - // value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { - NodeOps.push_back(Val); - // Add Tmp to VariableMap, so that we don't multiply select this - // value if used multiple times by this pattern result. - Val = "Tmp"+utostr(ResNo); - } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { - for (unsigned i = 0; i < CP->getNumOperands(); ++i) { - emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");"); - NodeOps.push_back("CPTmp" + utostr(i)); - } - } else { - // This node, probably wrapped in a SDNodeXForm, behaves like a leaf - // node even if it isn't one. Don't select it. - if (!LikeLeaf) { - emitCode("AddToISelQueue(" + Val + ");"); - if (isRoot && N->isLeaf()) { - emitCode("ReplaceUses(N, " + Val + ");"); - emitCode("return NULL;"); - } - } - NodeOps.push_back(Val); - } - return NodeOps; - } - if (N->isLeaf()) { - // If this is an explicit register reference, handle it. - if (DefInit *DI = dynamic_cast(N->getLeafValue())) { - unsigned ResNo = TmpNo++; - if (DI->getDef()->isSubClassOf("Register")) { - emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + - ISE.getQualifiedName(DI->getDef()) + ", " + - getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - return NodeOps; - } - } else if (IntInit *II = dynamic_cast(N->getLeafValue())) { - unsigned ResNo = TmpNo++; - assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); - emitCode("SDOperand Tmp" + utostr(ResNo) + - " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + - ", " + getEnumName(N->getTypeNum(0)) + ");"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - return NodeOps; - } - -#ifndef NDEBUG - N->dump(); -#endif - assert(0 && "Unknown leaf type!"); - return NodeOps; - } - - Record *Op = N->getOperator(); - if (Op->isSubClassOf("Instruction")) { - const CodeGenTarget &CGT = ISE.getTargetInfo(); - CodeGenInstruction &II = CGT.getInstruction(Op->getName()); - const DAGInstruction &Inst = ISE.getInstruction(Op); - TreePattern *InstPat = Inst.getPattern(); - TreePatternNode *InstPatNode = - isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) - : (InstPat ? InstPat->getOnlyTree() : NULL); - if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { - InstPatNode = InstPatNode->getChild(1); - } - bool HasVarOps = isRoot && II.hasVariableNumberOfOperands; - bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; - bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; - bool NodeHasOptInFlag = isRoot && - PatternHasProperty(Pattern, SDNPOptInFlag, ISE); - bool NodeHasInFlag = isRoot && - PatternHasProperty(Pattern, SDNPInFlag, ISE); - bool NodeHasOutFlag = HasImpResults || (isRoot && - PatternHasProperty(Pattern, SDNPOutFlag, ISE)); - bool NodeHasChain = InstPatNode && - PatternHasProperty(InstPatNode, SDNPHasChain, ISE); - bool InputHasChain = isRoot && - NodeHasProperty(Pattern, SDNPHasChain, ISE); - unsigned NumResults = Inst.getNumResults(); - - if (NodeHasOptInFlag) { - emitCode("bool HasInFlag = " - "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); - } - if (HasVarOps) - emitCode("SmallVector Ops" + utostr(OpcNo) + ";"); - - // How many results is this pattern expected to produce? - unsigned PatResults = 0; - for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { - MVT::ValueType VT = Pattern->getTypeNum(i); - if (VT != MVT::isVoid && VT != MVT::Flag) - PatResults++; - } - - if (OrigChains.size() > 0) { - // The original input chain is being ignored. If it is not just - // pointing to the op that's being folded, we should create a - // TokenFactor with it and the chain of the folded op as the new chain. - // We could potentially be doing multiple levels of folding, in that - // case, the TokenFactor can have more operands. - emitCode("SmallVector InChains;"); - for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { - emitCode("if (" + OrigChains[i].first + ".Val != " + - OrigChains[i].second + ".Val) {"); - emitCode(" AddToISelQueue(" + OrigChains[i].first + ");"); - emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); - emitCode("}"); - } - emitCode("AddToISelQueue(" + ChainName + ");"); - emitCode("InChains.push_back(" + ChainName + ");"); - emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, " - "&InChains[0], InChains.size());"); - } - - // Loop over all of the operands of the instruction pattern, emitting code - // to fill them all in. The node 'N' usually has number children equal to - // the number of input operands of the instruction. However, in cases - // where there are predicate operands for an instruction, we need to fill - // in the 'execute always' values. Match up the node operands to the - // instruction operands to do this. - std::vector AllOps; - for (unsigned ChildNo = 0, InstOpNo = NumResults; - InstOpNo != II.OperandList.size(); ++InstOpNo) { - std::vector Ops; - - // If this is a normal operand, emit it. - if (!II.OperandList[InstOpNo].Rec->isSubClassOf("PredicateOperand")) { - Ops = EmitResultCode(N->getChild(ChildNo), RetSelected, - InFlagDecled, ResNodeDecled); - AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); - ++ChildNo; - } else { - // Otherwise, this is a predicate operand, emit the 'execute always' - // operands. - const DAGPredicateOperand &Pred = - ISE.getPredicateOperand(II.OperandList[InstOpNo].Rec); - for (unsigned i = 0, e = Pred.AlwaysOps.size(); i != e; ++i) { - Ops = EmitResultCode(Pred.AlwaysOps[i], RetSelected, - InFlagDecled, ResNodeDecled); - AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); - } - } - } - - // Emit all the chain and CopyToReg stuff. - bool ChainEmitted = NodeHasChain; - if (NodeHasChain) - emitCode("AddToISelQueue(" + ChainName + ");"); - if (NodeHasInFlag || HasImpInputs) - EmitInFlagSelectCode(Pattern, "N", ChainEmitted, - InFlagDecled, ResNodeDecled, true); - if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { - if (!InFlagDecled) { - emitCode("SDOperand InFlag(0, 0);"); - InFlagDecled = true; - } - if (NodeHasOptInFlag) { - emitCode("if (HasInFlag) {"); - emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); - emitCode(" AddToISelQueue(InFlag);"); - emitCode("}"); - } - } - - unsigned ResNo = TmpNo++; - if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || - NodeHasOptInFlag) { - std::string Code; - std::string Code2; - std::string NodeName; - if (!isRoot) { - NodeName = "Tmp" + utostr(ResNo); - Code2 = "SDOperand " + NodeName + " = SDOperand("; - } else { - NodeName = "ResNode"; - if (!ResNodeDecled) - Code2 = "SDNode *" + NodeName + " = "; - else - Code2 = NodeName + " = "; - } - - Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo); - unsigned OpsNo = OpcNo; - emitOpcode(II.Namespace + "::" + II.TheDef->getName()); - - // Output order: results, chain, flags - // Result types. - if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { - Code += ", VT" + utostr(VTNo); - emitVT(getEnumName(N->getTypeNum(0))); - } - if (NodeHasChain) - Code += ", MVT::Other"; - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - - // Figure out how many fixed inputs the node has. This is important to - // know which inputs are the variable ones if present. - unsigned NumInputs = AllOps.size(); - NumInputs += NodeHasChain; - - // Inputs. - if (HasVarOps) { - for (unsigned i = 0, e = AllOps.size(); i != e; ++i) - emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); - AllOps.clear(); - } - - if (HasVarOps) { - // Figure out whether any operands at the end of the op list are not - // part of the variable section. - std::string EndAdjust; - if (NodeHasInFlag || HasImpInputs) - EndAdjust = "-1"; // Always has one flag. - else if (NodeHasOptInFlag) - EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. - - emitCode("for (unsigned i = " + utostr(NumInputs) + - ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); - - emitCode(" AddToISelQueue(N.getOperand(i));"); - emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); - emitCode("}"); - } - - if (NodeHasChain) { - if (HasVarOps) - emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); - else - AllOps.push_back(ChainName); - } - - if (HasVarOps) { - if (NodeHasInFlag || HasImpInputs) - emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); - else if (NodeHasOptInFlag) { - emitCode("if (HasInFlag)"); - emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); - } - Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + - ".size()"; - } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) - AllOps.push_back("InFlag"); - - unsigned NumOps = AllOps.size(); - if (NumOps) { - if (!NodeHasOptInFlag && NumOps < 4) { - for (unsigned i = 0; i != NumOps; ++i) - Code += ", " + AllOps[i]; - } else { - std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { "; - for (unsigned i = 0; i != NumOps; ++i) { - OpsCode += AllOps[i]; - if (i != NumOps-1) - OpsCode += ", "; - } - emitCode(OpsCode + " };"); - Code += ", Ops" + utostr(OpsNo) + ", "; - if (NodeHasOptInFlag) { - Code += "HasInFlag ? "; - Code += utostr(NumOps) + " : " + utostr(NumOps-1); - } else - Code += utostr(NumOps); - } - } - - if (!isRoot) - Code += "), 0"; - emitCode(Code2 + Code + ");"); - - if (NodeHasChain) - // Remember which op produces the chain. - if (!isRoot) - emitCode(ChainName + " = SDOperand(" + NodeName + - ".Val, " + utostr(PatResults) + ");"); - else - emitCode(ChainName + " = SDOperand(" + NodeName + - ", " + utostr(PatResults) + ");"); - - if (!isRoot) { - NodeOps.push_back("Tmp" + utostr(ResNo)); - return NodeOps; - } - - bool NeedReplace = false; - if (NodeHasOutFlag) { - if (!InFlagDecled) { - emitCode("SDOperand InFlag = SDOperand(ResNode, " + - utostr(NumResults + (unsigned)NodeHasChain) + ");"); - InFlagDecled = true; - } else - emitCode("InFlag = SDOperand(ResNode, " + - utostr(NumResults + (unsigned)NodeHasChain) + ");"); - } - - if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) { - emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));"); - NumResults = 1; - } - - if (FoldedChains.size() > 0) { - std::string Code; - for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) - emitCode("ReplaceUses(SDOperand(" + - FoldedChains[j].first + ".Val, " + - utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " + - utostr(NumResults) + "));"); - NeedReplace = true; - } - - if (NodeHasOutFlag) { - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);"); - NeedReplace = true; - } - - if (NeedReplace) { - for (unsigned i = 0; i < NumResults; i++) - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));"); - if (InputHasChain) - emitCode("ReplaceUses(SDOperand(N.Val, " + - utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, " - + ChainName + ".ResNo" + "));"); - } else - RetSelected = true; - - // User does not expect the instruction would produce a chain! - if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { - ; - } else if (InputHasChain && !NodeHasChain) { - // One of the inner node produces a chain. - if (NodeHasOutFlag) - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) + - "), SDOperand(ResNode, N.ResNo-1));"); - for (unsigned i = 0; i < PatResults; ++i) - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) + - "), SDOperand(ResNode, " + utostr(i) + "));"); - emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) + - "), " + ChainName + ");"); - RetSelected = false; - } - - if (RetSelected) - emitCode("return ResNode;"); - else - emitCode("return NULL;"); - } else { - std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" + - utostr(OpcNo); - if (N->getTypeNum(0) != MVT::isVoid) - Code += ", VT" + utostr(VTNo); - if (NodeHasOutFlag) - Code += ", MVT::Flag"; - - if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) - AllOps.push_back("InFlag"); - - unsigned NumOps = AllOps.size(); - if (NumOps) { - if (!NodeHasOptInFlag && NumOps < 4) { - for (unsigned i = 0; i != NumOps; ++i) - Code += ", " + AllOps[i]; - } else { - std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { "; - for (unsigned i = 0; i != NumOps; ++i) { - OpsCode += AllOps[i]; - if (i != NumOps-1) - OpsCode += ", "; - } - emitCode(OpsCode + " };"); - Code += ", Ops" + utostr(OpcNo) + ", "; - Code += utostr(NumOps); - } - } - emitCode(Code + ");"); - emitOpcode(II.Namespace + "::" + II.TheDef->getName()); - if (N->getTypeNum(0) != MVT::isVoid) - emitVT(getEnumName(N->getTypeNum(0))); - } - - return NodeOps; - } else if (Op->isSubClassOf("SDNodeXForm")) { - assert(N->getNumChildren() == 1 && "node xform should have one child!"); - // PatLeaf node - the operand may or may not be a leaf node. But it should - // behave like one. - std::vector Ops = - EmitResultCode(N->getChild(0), RetSelected, InFlagDecled, - ResNodeDecled, true); - unsigned ResNo = TmpNo++; - emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() - + "(" + Ops.back() + ".Val);"); - NodeOps.push_back("Tmp" + utostr(ResNo)); - if (isRoot) - emitCode("return Tmp" + utostr(ResNo) + ".Val;"); - return NodeOps; - } else { - N->dump(); - std::cerr << "\n"; - throw std::string("Unknown node in result pattern!"); - } - } - - /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' - /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that - /// 'Pat' may be missing types. If we find an unresolved type to add a check - /// for, this returns true otherwise false if Pat has all types. - bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, - const std::string &Prefix, bool isRoot = false) { - // Did we find one? - if (Pat->getExtTypes() != Other->getExtTypes()) { - // Move a type over from 'other' to 'pat'. - Pat->setTypes(Other->getExtTypes()); - // The top level node type is checked outside of the select function. - if (!isRoot) - emitCheck(Prefix + ".Val->getValueType(0) == " + - getName(Pat->getTypeNum(0))); - return true; - } - - unsigned OpNo = - (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE); - for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) - if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), - Prefix + utostr(OpNo))) - return true; - return false; - } - -private: - /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is - /// being built. - void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, - bool &ChainEmitted, bool &InFlagDecled, - bool &ResNodeDecled, bool isRoot = false) { - const CodeGenTarget &T = ISE.getTargetInfo(); - unsigned OpNo = - (unsigned) NodeHasProperty(N, SDNPHasChain, ISE); - bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE); - for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { - TreePatternNode *Child = N->getChild(i); - if (!Child->isLeaf()) { - EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, - InFlagDecled, ResNodeDecled); - } else { - if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { - if (!Child->getName().empty()) { - std::string Name = RootName + utostr(OpNo); - if (Duplicates.find(Name) != Duplicates.end()) - // A duplicate! Do not emit a copy for this node. - continue; - } - - Record *RR = DI->getDef(); - if (RR->isSubClassOf("Register")) { - MVT::ValueType RVT = getRegisterValueType(RR, T); - if (RVT == MVT::Flag) { - if (!InFlagDecled) { - emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";"); - InFlagDecled = true; - } else - emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); - emitCode("AddToISelQueue(InFlag);"); - } else { - if (!ChainEmitted) { - emitCode("SDOperand Chain = CurDAG->getEntryNode();"); - ChainName = "Chain"; - ChainEmitted = true; - } - emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");"); - if (!InFlagDecled) { - emitCode("SDOperand InFlag(0, 0);"); - InFlagDecled = true; - } - std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; - emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + - ", " + ISE.getQualifiedName(RR) + - ", " + RootName + utostr(OpNo) + ", InFlag).Val;"); - ResNodeDecled = true; - emitCode(ChainName + " = SDOperand(ResNode, 0);"); - emitCode("InFlag = SDOperand(ResNode, 1);"); - } - } - } - } - } - - if (HasInFlag) { - if (!InFlagDecled) { - emitCode("SDOperand InFlag = " + RootName + - ".getOperand(" + utostr(OpNo) + ");"); - InFlagDecled = true; - } else - emitCode("InFlag = " + RootName + - ".getOperand(" + utostr(OpNo) + ");"); - emitCode("AddToISelQueue(InFlag);"); - } - } - /// EmitCopyFromRegs - Emit code to copy result to physical registers - /// as specified by the instruction. It returns true if any copy is - /// emitted. - bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled, - bool &ChainEmitted) { - bool RetVal = false; - Record *Op = N->getOperator(); - if (Op->isSubClassOf("Instruction")) { - const DAGInstruction &Inst = ISE.getInstruction(Op); - const CodeGenTarget &CGT = ISE.getTargetInfo(); - unsigned NumImpResults = Inst.getNumImpResults(); - for (unsigned i = 0; i < NumImpResults; i++) { - Record *RR = Inst.getImpResult(i); - if (RR->isSubClassOf("Register")) { - MVT::ValueType RVT = getRegisterValueType(RR, CGT); - if (RVT != MVT::Flag) { - if (!ChainEmitted) { - emitCode("SDOperand Chain = CurDAG->getEntryNode();"); - ChainEmitted = true; - ChainName = "Chain"; - } - std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; - emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName + - ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + - ", InFlag).Val;"); - ResNodeDecled = true; - emitCode(ChainName + " = SDOperand(ResNode, 1);"); - emitCode("InFlag = SDOperand(ResNode, 2);"); - RetVal = true; - } - } - } - } - return RetVal; - } -}; +void DAGISelEmitter::run(raw_ostream &OS) { + emitSourceFileHeader("DAG Instruction Selector for the " + + CGP.getTargetInfo().getName() + " target", OS); -/// EmitCodeForPattern - Given a pattern to match, emit code to the specified -/// stream to match the pattern, and generate the code for the match if it -/// succeeds. Returns true if the pattern is not guaranteed to match. -void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, - std::vector > &GeneratedCode, - std::set &GeneratedDecl, - std::vector &TargetOpcodes, - std::vector &TargetVTs) { - PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), - Pattern.getSrcPattern(), Pattern.getDstPattern(), - GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs); + OS << "// *** NOTE: This file is #included into the middle of the target\n" + << "// *** instruction selector class. These functions are really " + << "methods.\n\n"; - // Emit the matcher, capturing named arguments in VariableMap. - bool FoundChain = false; - Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); + DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"; + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), + E = CGP.ptm_end(); I != E; ++I) { + errs() << "PATTERN: "; I->getSrcPattern()->dump(); + errs() << "\nRESULT: "; I->getDstPattern()->dump(); + errs() << "\n"; + }); - // TP - Get *SOME* tree pattern, we don't care which. - TreePattern &TP = *PatternFragments.begin()->second; - - // At this point, we know that we structurally match the pattern, but the - // types of the nodes may not match. Figure out the fewest number of type - // comparisons we need to emit. For example, if there is only one integer - // type supported by a target, there should be no type comparisons at all for - // integer patterns! - // - // To figure out the fewest number of type checks needed, clone the pattern, - // remove the types, then perform type inference on the pattern as a whole. - // If there are unresolved types, emit an explicit check for those types, - // apply the type to the tree, then rerun type inference. Iterate until all - // types are resolved. - // - TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); - RemoveAllTypes(Pat); - - do { - // Resolve/propagate as many types as possible. - try { - bool MadeChange = true; - while (MadeChange) - MadeChange = Pat->ApplyTypeConstraints(TP, - true/*Ignore reg constraints*/); - } catch (...) { - assert(0 && "Error: could not find consistent types for something we" - " already decided was ok!"); - abort(); - } + // Add all the patterns to a temporary list so we can sort them. + std::vector Patterns; + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); + I != E; ++I) + Patterns.push_back(&*I); - // Insert a check for an unresolved type and add it to the tree. If we find - // an unresolved type to add a check for, this returns true and we iterate, - // otherwise we are done. - } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); + // We want to process the matches in order of minimal cost. Sort the patterns + // so the least cost one is at the start. + std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP)); - Emitter.EmitResultCode(Pattern.getDstPattern(), - false, false, false, false, true); - delete Pat; -} -/// EraseCodeLine - Erase one code line from all of the patterns. If removing -/// a line causes any of them to be empty, remove them and return true when -/// done. -static bool EraseCodeLine(std::vector > > > - &Patterns) { - bool ErasedPatterns = false; + // Convert each variant of each pattern into a Matcher. + std::vector PatternMatchers; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - Patterns[i].second.pop_back(); - if (Patterns[i].second.empty()) { - Patterns.erase(Patterns.begin()+i); - --i; --e; - ErasedPatterns = true; - } - } - return ErasedPatterns; -} - -/// EmitPatterns - Emit code for at least one pattern, but try to group common -/// code together between the patterns. -void DAGISelEmitter::EmitPatterns(std::vector > > > - &Patterns, unsigned Indent, - std::ostream &OS) { - typedef std::pair CodeLine; - typedef std::vector CodeList; - typedef std::vector > PatternList; - - if (Patterns.empty()) return; - - // Figure out how many patterns share the next code line. Explicitly copy - // FirstCodeLine so that we don't invalidate a reference when changing - // Patterns. - const CodeLine FirstCodeLine = Patterns.back().second.back(); - unsigned LastMatch = Patterns.size()-1; - while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) - --LastMatch; - - // If not all patterns share this line, split the list into two pieces. The - // first chunk will use this line, the second chunk won't. - if (LastMatch != 0) { - PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); - PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); - - // FIXME: Emit braces? - if (Shared.size() == 1) { - PatternToMatch &Pattern = *Shared.back().first; - OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; - Pattern.getSrcPattern()->print(OS); - OS << "\n" << std::string(Indent, ' ') << "// Emits: "; - Pattern.getDstPattern()->print(OS); - OS << "\n"; - unsigned AddedComplexity = Pattern.getAddedComplexity(); - OS << std::string(Indent, ' ') << "// Pattern complexity = " - << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity - << " cost = " - << getResultPatternCost(Pattern.getDstPattern(), *this) - << " size = " - << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; - } - if (FirstCodeLine.first != 1) { - OS << std::string(Indent, ' ') << "{\n"; - Indent += 2; - } - EmitPatterns(Shared, Indent, OS); - if (FirstCodeLine.first != 1) { - Indent -= 2; - OS << std::string(Indent, ' ') << "}\n"; - } - - if (Other.size() == 1) { - PatternToMatch &Pattern = *Other.back().first; - OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; - Pattern.getSrcPattern()->print(OS); - OS << "\n" << std::string(Indent, ' ') << "// Emits: "; - Pattern.getDstPattern()->print(OS); - OS << "\n"; - unsigned AddedComplexity = Pattern.getAddedComplexity(); - OS << std::string(Indent, ' ') << "// Pattern complexity = " - << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity - << " cost = " - << getResultPatternCost(Pattern.getDstPattern(), *this) - << " size = " - << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n"; - } - EmitPatterns(Other, Indent, OS); - return; - } - - // Remove this code from all of the patterns that share it. - bool ErasedPatterns = EraseCodeLine(Patterns); - - bool isPredicate = FirstCodeLine.first == 1; - - // Otherwise, every pattern in the list has this line. Emit it. - if (!isPredicate) { - // Normal code. - OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; - } else { - OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; - - // If the next code line is another predicate, and if all of the pattern - // in this group share the same next line, emit it inline now. Do this - // until we run out of common predicates. - while (!ErasedPatterns && Patterns.back().second.back().first == 1) { - // Check that all of fhe patterns in Patterns end with the same predicate. - bool AllEndWithSamePredicate = true; - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) - if (Patterns[i].second.back() != Patterns.back().second.back()) { - AllEndWithSamePredicate = false; - break; - } - // If all of the predicates aren't the same, we can't share them. - if (!AllEndWithSamePredicate) break; - - // Otherwise we can. Emit it shared now. - OS << " &&\n" << std::string(Indent+4, ' ') - << Patterns.back().second.back().second; - ErasedPatterns = EraseCodeLine(Patterns); + for (unsigned Variant = 0; ; ++Variant) { + if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP)) + PatternMatchers.push_back(M); + else + break; } - - OS << ") {\n"; - Indent += 2; } - - EmitPatterns(Patterns, Indent, OS); - - if (isPredicate) - OS << std::string(Indent-2, ' ') << "}\n"; -} -static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) { - const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op); - return OpcodeInfo.getEnumName(); -} + Matcher *TheMatcher = new ScopeMatcher(PatternMatchers); -static std::string getLegalCName(std::string OpName) { - std::string::size_type pos = OpName.find("::"); - if (pos != std::string::npos) - OpName.replace(pos, 2, "_"); - return OpName; + TheMatcher = OptimizeMatcher(TheMatcher, CGP); + //Matcher->dump(); + EmitMatcherTable(TheMatcher, CGP, OS); + delete TheMatcher; } -void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { - std::string InstNS = Target.inst_begin()->second.Namespace; - if (!InstNS.empty()) InstNS += "::"; - - // Group the patterns by their top-level opcodes. - std::map > PatternsByOpcode; - // All unique target node emission functions. - std::map EmitFunctions; - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); - if (!Node->isLeaf()) { - PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)]. - push_back(&PatternsToMatch[i]); - } else { - const ComplexPattern *CP; - if (dynamic_cast(Node->getLeafValue())) { - PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)]. - push_back(&PatternsToMatch[i]); - } else if ((CP = NodeGetComplexPattern(Node, *this))) { - std::vector OpNodes = CP->getRootNodes(); - for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { - PatternsByOpcode[getOpcodeName(OpNodes[j], *this)] - .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(), - &PatternsToMatch[i]); - } - } else { - std::cerr << "Unrecognized opcode '"; - Node->dump(); - std::cerr << "' on tree pattern '"; - std::cerr << - PatternsToMatch[i].getDstPattern()->getOperator()->getName(); - std::cerr << "'!\n"; - exit(1); - } - } - } - - // For each opcode, there might be multiple select functions, one per - // ValueType of the node (or its first operand if it doesn't produce a - // non-chain result. - std::map > OpcodeVTMap; - - // Emit one Select_* method for each top-level opcode. We do this instead of - // emitting one giant switch statement to support compilers where this will - // result in the recursive functions taking less stack space. - for (std::map >::iterator - PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); - PBOI != E; ++PBOI) { - const std::string &OpName = PBOI->first; - std::vector &PatternsOfOp = PBOI->second; - assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); - - // We want to emit all of the matching code now. However, we want to emit - // the matches in order of minimal cost. Sort the patterns so the least - // cost one is at the start. - std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), - PatternSortingPredicate(*this)); - - // Split them into groups by type. - std::map > PatternsByType; - for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { - PatternToMatch *Pat = PatternsOfOp[i]; - TreePatternNode *SrcPat = Pat->getSrcPattern(); - MVT::ValueType VT = SrcPat->getTypeNum(0); - std::map >::iterator TI = - PatternsByType.find(VT); - if (TI != PatternsByType.end()) - TI->second.push_back(Pat); - else { - std::vector PVec; - PVec.push_back(Pat); - PatternsByType.insert(std::make_pair(VT, PVec)); - } - } - - for (std::map >::iterator - II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; - ++II) { - MVT::ValueType OpVT = II->first; - std::vector &Patterns = II->second; - typedef std::vector > CodeList; - typedef std::vector >::iterator CodeListI; - - std::vector > CodeForPatterns; - std::vector > PatternOpcodes; - std::vector > PatternVTs; - std::vector > PatternDecls; - for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { - CodeList GeneratedCode; - std::set GeneratedDecl; - std::vector TargetOpcodes; - std::vector TargetVTs; - GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, - TargetOpcodes, TargetVTs); - CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); - PatternDecls.push_back(GeneratedDecl); - PatternOpcodes.push_back(TargetOpcodes); - PatternVTs.push_back(TargetVTs); - } - - // Scan the code to see if all of the patterns are reachable and if it is - // possible that the last one might not match. - bool mightNotMatch = true; - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - mightNotMatch = false; - - for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { - if (GeneratedCode[j].first == 1) { // predicate. - mightNotMatch = true; - break; - } - } - - // If this pattern definitely matches, and if it isn't the last one, the - // patterns after it CANNOT ever match. Error out. - if (mightNotMatch == false && i != CodeForPatterns.size()-1) { - std::cerr << "Pattern '"; - CodeForPatterns[i].first->getSrcPattern()->print(std::cerr); - std::cerr << "' is impossible to select!\n"; - exit(1); - } - } - - // Factor target node emission code (emitted by EmitResultCode) into - // separate functions. Uniquing and share them among all instruction - // selection routines. - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - std::vector &TargetOpcodes = PatternOpcodes[i]; - std::vector &TargetVTs = PatternVTs[i]; - std::set Decls = PatternDecls[i]; - std::vector AddedInits; - int CodeSize = (int)GeneratedCode.size(); - int LastPred = -1; - for (int j = CodeSize-1; j >= 0; --j) { - if (LastPred == -1 && GeneratedCode[j].first == 1) - LastPred = j; - else if (LastPred != -1 && GeneratedCode[j].first == 2) - AddedInits.push_back(GeneratedCode[j].second); - } - - std::string CalleeCode = "(const SDOperand &N"; - std::string CallerCode = "(N"; - for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { - CalleeCode += ", unsigned Opc" + utostr(j); - CallerCode += ", " + TargetOpcodes[j]; - } - for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { - CalleeCode += ", MVT::ValueType VT" + utostr(j); - CallerCode += ", " + TargetVTs[j]; - } - for (std::set::iterator - I = Decls.begin(), E = Decls.end(); I != E; ++I) { - std::string Name = *I; - CalleeCode += ", SDOperand &" + Name; - CallerCode += ", " + Name; - } - CallerCode += ");"; - CalleeCode += ") "; - // Prevent emission routines from being inlined to reduce selection - // routines stack frame sizes. - CalleeCode += "DISABLE_INLINE "; - CalleeCode += "{\n"; +namespace llvm { - for (std::vector::const_reverse_iterator - I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) - CalleeCode += " " + *I + "\n"; - - for (int j = LastPred+1; j < CodeSize; ++j) - CalleeCode += " " + GeneratedCode[j].second + "\n"; - for (int j = LastPred+1; j < CodeSize; ++j) - GeneratedCode.pop_back(); - CalleeCode += "}\n"; - - // Uniquing the emission routines. - unsigned EmitFuncNum; - std::map::iterator EFI = - EmitFunctions.find(CalleeCode); - if (EFI != EmitFunctions.end()) { - EmitFuncNum = EFI->second; - } else { - EmitFuncNum = EmitFunctions.size(); - EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); - OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; - } - - // Replace the emission code within selection routines with calls to the - // emission functions. - CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; - GeneratedCode.push_back(std::make_pair(false, CallerCode)); - } - - // Print function. - std::string OpVTStr = (OpVT != MVT::isVoid && OpVT != MVT::iPTR) - ? getEnumName(OpVT).substr(5) : "" ; - std::map >::iterator OpVTI = - OpcodeVTMap.find(OpName); - if (OpVTI == OpcodeVTMap.end()) { - std::vector VTSet; - VTSet.push_back(OpVTStr); - OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); - } else - OpVTI->second.push_back(OpVTStr); - - OS << "SDNode *Select_" << getLegalCName(OpName) - << (OpVTStr != "" ? "_" : "") - << OpVTStr << "(const SDOperand &N) {\n"; - - // Loop through and reverse all of the CodeList vectors, as we will be - // accessing them from their logical front, but accessing the end of a - // vector is more efficient. - for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { - CodeList &GeneratedCode = CodeForPatterns[i].second; - std::reverse(GeneratedCode.begin(), GeneratedCode.end()); - } - - // Next, reverse the list of patterns itself for the same reason. - std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); - - // Emit all of the patterns now, grouped together to share code. - EmitPatterns(CodeForPatterns, 2, OS); - - // If the last pattern has predicates (which could fail) emit code to - // catch the case where nothing handles a pattern. - if (mightNotMatch) { - OS << " std::cerr << \"Cannot yet select: \";\n"; - if (OpName != "ISD::INTRINSIC_W_CHAIN" && - OpName != "ISD::INTRINSIC_WO_CHAIN" && - OpName != "ISD::INTRINSIC_VOID") { - OS << " N.Val->dump(CurDAG);\n"; - } else { - OS << " unsigned iid = cast(N.getOperand(" - "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" - << " std::cerr << \"intrinsic %\"<< " - "Intrinsic::getName((Intrinsic::ID)iid);\n"; - } - OS << " std::cerr << '\\n';\n" - << " abort();\n" - << " return NULL;\n"; - } - OS << "}\n\n"; - } - } - - // Emit boilerplate. - OS << "SDNode *Select_INLINEASM(SDOperand N) {\n" - << " std::vector Ops(N.Val->op_begin(), N.Val->op_end());\n" - << " AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n" - << " // Select the flag operand.\n" - << " if (Ops.back().getValueType() == MVT::Flag)\n" - << " AddToISelQueue(Ops.back());\n" - << " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n" - << " std::vector VTs;\n" - << " VTs.push_back(MVT::Other);\n" - << " VTs.push_back(MVT::Flag);\n" - << " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " - "Ops.size());\n" - << " return New.Val;\n" - << "}\n\n"; - - OS << "// The main instruction selector code.\n" - << "SDNode *SelectCode(SDOperand N) {\n" - << " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" - << " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS - << "INSTRUCTION_LIST_END)) {\n" - << " return NULL; // Already selected.\n" - << " }\n\n" - << " MVT::ValueType NVT = N.Val->getValueType(0);\n" - << " switch (N.getOpcode()) {\n" - << " default: break;\n" - << " case ISD::EntryToken: // These leaves remain the same.\n" - << " case ISD::BasicBlock:\n" - << " case ISD::Register:\n" - << " case ISD::HANDLENODE:\n" - << " case ISD::TargetConstant:\n" - << " case ISD::TargetConstantPool:\n" - << " case ISD::TargetFrameIndex:\n" - << " case ISD::TargetJumpTable:\n" - << " case ISD::TargetGlobalAddress: {\n" - << " return NULL;\n" - << " }\n" - << " case ISD::AssertSext:\n" - << " case ISD::AssertZext: {\n" - << " AddToISelQueue(N.getOperand(0));\n" - << " ReplaceUses(N, N.getOperand(0));\n" - << " return NULL;\n" - << " }\n" - << " case ISD::TokenFactor:\n" - << " case ISD::CopyFromReg:\n" - << " case ISD::CopyToReg: {\n" - << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" - << " AddToISelQueue(N.getOperand(i));\n" - << " return NULL;\n" - << " }\n" - << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"; - - - // Loop over all of the case statements, emiting a call to each method we - // emitted above. - for (std::map >::iterator - PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); - PBOI != E; ++PBOI) { - const std::string &OpName = PBOI->first; - // Potentially multiple versions of select for this opcode. One for each - // ValueType of the node (or its first true operand if it doesn't produce a - // result. - std::map >::iterator OpVTI = - OpcodeVTMap.find(OpName); - std::vector &OpVTs = OpVTI->second; - OS << " case " << OpName << ": {\n"; - if (OpVTs.size() == 1) { - std::string &VTStr = OpVTs[0]; - OS << " return Select_" << getLegalCName(OpName) - << (VTStr != "" ? "_" : "") << VTStr << "(N);\n"; - } else { - int Default = -1; - OS << " switch (NVT) {\n"; - for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { - std::string &VTStr = OpVTs[i]; - if (VTStr == "") { - Default = i; - continue; - } - OS << " case MVT::" << VTStr << ":\n" - << " return Select_" << getLegalCName(OpName) - << "_" << VTStr << "(N);\n"; - } - OS << " default:\n"; - if (Default != -1) - OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; - else - OS << " break;\n"; - OS << " }\n"; - OS << " break;\n"; - } - OS << " }\n"; - } - - OS << " } // end of big switch.\n\n" - << " std::cerr << \"Cannot yet select: \";\n" - << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" - << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" - << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" - << " N.Val->dump(CurDAG);\n" - << " } else {\n" - << " unsigned iid = cast(N.getOperand(" - "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" - << " std::cerr << \"intrinsic %\"<< " - "Intrinsic::getName((Intrinsic::ID)iid);\n" - << " }\n" - << " std::cerr << '\\n';\n" - << " abort();\n" - << " return NULL;\n" - << "}\n"; +void EmitDAGISel(RecordKeeper &RK, raw_ostream &OS) { + DAGISelEmitter(RK).run(OS); } -void DAGISelEmitter::run(std::ostream &OS) { - EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + - " target", OS); - - OS << "// *** NOTE: This file is #included into the middle of the target\n" - << "// *** instruction selector class. These functions are really " - << "methods.\n\n"; - - OS << "#include \"llvm/Support/Compiler.h\"\n"; - - OS << "// Instruction selector priority queue:\n" - << "std::vector ISelQueue;\n"; - OS << "/// Keep track of nodes which have already been added to queue.\n" - << "unsigned char *ISelQueued;\n"; - OS << "/// Keep track of nodes which have already been selected.\n" - << "unsigned char *ISelSelected;\n"; - OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n" - << "std::vector ISelKilled;\n\n"; - - OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n"; - OS << "/// not reach Op.\n"; - OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n"; - OS << " if (Chain->getOpcode() == ISD::EntryToken)\n"; - OS << " return true;\n"; - OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n"; - OS << " return false;\n"; - OS << " else if (Chain->getNumOperands() > 0) {\n"; - OS << " SDOperand C0 = Chain->getOperand(0);\n"; - OS << " if (C0.getValueType() == MVT::Other)\n"; - OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n"; - OS << " }\n"; - OS << " return true;\n"; - OS << "}\n"; - - OS << "/// Sorting functions for the selection queue.\n" - << "struct isel_sort : public std::binary_function" - << " {\n" - << " bool operator()(const SDNode* left, const SDNode* right) " - << "const {\n" - << " return (left->getNodeId() > right->getNodeId());\n" - << " }\n" - << "};\n\n"; - - OS << "inline void setQueued(int Id) {\n"; - OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n"; - OS << "}\n"; - OS << "inline bool isQueued(int Id) {\n"; - OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n"; - OS << "}\n"; - OS << "inline void setSelected(int Id) {\n"; - OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n"; - OS << "}\n"; - OS << "inline bool isSelected(int Id) {\n"; - OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n"; - OS << "}\n\n"; - - OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n"; - OS << " int Id = N.Val->getNodeId();\n"; - OS << " if (Id != -1 && !isQueued(Id)) {\n"; - OS << " ISelQueue.push_back(N.Val);\n"; - OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " setQueued(Id);\n"; - OS << " }\n"; - OS << "}\n\n"; - - OS << "inline void RemoveKilled() {\n"; -OS << " unsigned NumKilled = ISelKilled.size();\n"; - OS << " if (NumKilled) {\n"; - OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n"; - OS << " SDNode *Temp = ISelKilled[i];\n"; - OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), " - << "Temp), ISelQueue.end());\n"; - OS << " };\n"; - OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " ISelKilled.clear();\n"; - OS << " }\n"; - OS << "}\n\n"; - - OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n"; - OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n"; - OS << " setSelected(F.Val->getNodeId());\n"; - OS << " RemoveKilled();\n"; - OS << "}\n"; - OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n"; - OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n"; - OS << " setSelected(F->getNodeId());\n"; - OS << " RemoveKilled();\n"; - OS << "}\n\n"; - - OS << "// SelectRoot - Top level entry to DAG isel.\n"; - OS << "SDOperand SelectRoot(SDOperand Root) {\n"; - OS << " SelectRootInit();\n"; - OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n"; - OS << " ISelQueued = new unsigned char[NumBytes];\n"; - OS << " ISelSelected = new unsigned char[NumBytes];\n"; - OS << " memset(ISelQueued, 0, NumBytes);\n"; - OS << " memset(ISelSelected, 0, NumBytes);\n"; - OS << "\n"; - OS << " // Create a dummy node (which is not added to allnodes), that adds\n" - << " // a reference to the root node, preventing it from being deleted,\n" - << " // and tracking any changes of the root.\n" - << " HandleSDNode Dummy(CurDAG->getRoot());\n" - << " ISelQueue.push_back(CurDAG->getRoot().Val);\n"; - OS << " while (!ISelQueue.empty()) {\n"; - OS << " SDNode *Node = ISelQueue.front();\n"; - OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n"; - OS << " ISelQueue.pop_back();\n"; - OS << " if (!isSelected(Node->getNodeId())) {\n"; - OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n"; - OS << " if (ResNode != Node) {\n"; - OS << " if (ResNode)\n"; - OS << " ReplaceUses(Node, ResNode);\n"; - OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n"; - OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n"; - OS << " RemoveKilled();\n"; - OS << " }\n"; - OS << " }\n"; - OS << " }\n"; - OS << " }\n"; - OS << "\n"; - OS << " delete[] ISelQueued;\n"; - OS << " ISelQueued = NULL;\n"; - OS << " delete[] ISelSelected;\n"; - OS << " ISelSelected = NULL;\n"; - OS << " return Dummy.getValue();\n"; - OS << "}\n"; - - Intrinsics = LoadIntrinsics(Records); - ParseNodeInfo(); - ParseNodeTransforms(OS); - ParseComplexPatterns(); - ParsePatternFragments(OS); - ParsePredicateOperands(); - ParseInstructions(); - ParsePatterns(); - - // Generate variants. For example, commutative patterns can match - // multiple ways. Add them to PatternsToMatch as well. - GenerateVariants(); - - - DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; - for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { - std::cerr << "PATTERN: "; PatternsToMatch[i].getSrcPattern()->dump(); - std::cerr << "\nRESULT: ";PatternsToMatch[i].getDstPattern()->dump(); - std::cerr << "\n"; - }); - - // At this point, we have full information about the 'Patterns' we need to - // parse, both implicitly from instructions as well as from explicit pattern - // definitions. Emit the resultant instruction selector. - EmitInstructionSelector(OS); - - for (std::map::iterator I = PatternFragments.begin(), - E = PatternFragments.end(); I != E; ++I) - delete I->second; - PatternFragments.clear(); - - Instructions.clear(); -} +} // End llvm namespace