X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=utils%2FTableGen%2FDAGISelMatcherGen.cpp;h=9663b71d6620da06b69e4bfd3e03f81a7c7188d5;hb=47f0e3f434e2e43f951c3a826c40906cb15b7285;hp=f0f8706489338e80d0436a1ba283efd1e02c31ae;hpb=9414ae52911f1d62cabd5108e0381b9d17476157;p=oota-llvm.git diff --git a/utils/TableGen/DAGISelMatcherGen.cpp b/utils/TableGen/DAGISelMatcherGen.cpp index f0f87064893..9663b71d662 100644 --- a/utils/TableGen/DAGISelMatcherGen.cpp +++ b/utils/TableGen/DAGISelMatcherGen.cpp @@ -9,9 +9,12 @@ #include "DAGISelMatcher.h" #include "CodeGenDAGPatterns.h" -#include "Record.h" +#include "CodeGenRegisters.h" +#include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" +#include "llvm/TableGen/Error.h" +#include "llvm/TableGen/Record.h" #include using namespace llvm; @@ -23,14 +26,12 @@ static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; - const std::vector &RCs = T.getRegisterClasses(); - std::vector::const_iterator Element; - - for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) { - const CodeGenRegisterClass &RC = RCs[rc]; - if (!std::count(RC.Elements.begin(), RC.Elements.end(), R)) + const CodeGenRegister *Reg = T.getRegBank().getReg(R); + + for (const auto &RC : T.getRegBank().getRegClasses()) { + if (!RC.contains(Reg)) continue; - + if (!FoundRC) { FoundRC = true; VT = RC.getValueTypeNum(0); @@ -48,71 +49,80 @@ namespace { class MatcherGen { const PatternToMatch &Pattern; const CodeGenDAGPatterns &CGP; - + /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts /// out with all of the types removed. This allows us to insert type checks /// as we scan the tree. TreePatternNode *PatWithNoTypes; - + /// VariableMap - A map from variable names ('$dst') to the recorded operand /// number that they were captured as. These are biased by 1 to make /// insertion easier. StringMap VariableMap; - + + /// This maintains the recorded operand number that OPC_CheckComplexPattern + /// drops each sub-operand into. We don't want to insert these into + /// VariableMap because that leads to identity checking if they are + /// encountered multiple times. Biased by 1 like VariableMap for + /// consistency. + StringMap NamedComplexPatternOperands; + /// NextRecordedOperandNo - As we emit opcodes to record matched values in /// the RecordedNodes array, this keeps track of which slot will be next to /// record into. unsigned NextRecordedOperandNo; - + /// MatchedChainNodes - This maintains the position in the recorded nodes /// array of all of the recorded input nodes that have chains. SmallVector MatchedChainNodes; - /// MatchedFlagResultNodes - This maintains the position in the recorded - /// nodes array of all of the recorded input nodes that have flag results. - SmallVector MatchedFlagResultNodes; - + /// MatchedGlueResultNodes - This maintains the position in the recorded + /// nodes array of all of the recorded input nodes that have glue results. + SmallVector MatchedGlueResultNodes; + /// MatchedComplexPatterns - This maintains a list of all of the - /// ComplexPatterns that we need to check. The patterns are known to have - /// names which were recorded. The second element of each pair is the first - /// slot number that the OPC_CheckComplexPat opcode drops the matched - /// results into. + /// ComplexPatterns that we need to check. The second element of each pair + /// is the recorded operand number of the input node. SmallVector, 2> MatchedComplexPatterns; - + /// PhysRegInputs - List list has an entry for each explicitly specified /// physreg input to the pattern. The first elt is the Register node, the /// second is the recorded slot number the input pattern match saved it in. SmallVector, 2> PhysRegInputs; - + /// Matcher - This is the top level of the generated matcher, the result. Matcher *TheMatcher; - + /// CurPredicate - As we emit matcher nodes, this points to the latest check /// which should have future checks stuck into its Next position. Matcher *CurPredicate; public: MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); - + ~MatcherGen() { delete PatWithNoTypes; } - + bool EmitMatcherCode(unsigned Variant); void EmitResultCode(); - + Matcher *GetMatcher() const { return TheMatcher; } - Matcher *GetCurPredicate() const { return CurPredicate; } private: void AddMatcher(Matcher *NewNode); void InferPossibleTypes(); - + // Matcher Generation. void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); void EmitLeafMatchCode(const TreePatternNode *N); void EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); - + + /// If this is the first time a node with unique identifier Name has been + /// seen, record it. Otherwise, emit a check to make sure this is the same + /// node. Returns true if this is the first encounter. + bool recordUniqueNode(std::string Name); + // Result Code Generation. unsigned getNamedArgumentSlot(StringRef Name) { unsigned VarMapEntry = VariableMap[Name]; @@ -124,7 +134,7 @@ namespace { /// GetInstPatternNode - Get the pattern for an instruction. const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, const TreePatternNode *N); - + void EmitResultOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); void EmitResultOfNamedOperand(const TreePatternNode *N, @@ -136,13 +146,13 @@ namespace { void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps); }; - + } // end anon namespace. MatcherGen::MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp) : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), - TheMatcher(0), CurPredicate(0) { + TheMatcher(nullptr), CurPredicate(nullptr) { // We need to produce the matcher tree for the patterns source pattern. To do // this we need to match the structure as well as the types. To do the type // matching, we want to figure out the fewest number of type checks we need to @@ -157,7 +167,7 @@ MatcherGen::MatcherGen(const PatternToMatch &pattern, // PatWithNoTypes = Pattern.getSrcPattern()->clone(); PatWithNoTypes->RemoveAllTypes(); - + // If there are types that are manifestly known, infer them. InferPossibleTypes(); } @@ -170,22 +180,17 @@ void MatcherGen::InferPossibleTypes() { // TP - Get *SOME* tree pattern, we don't care which. It is only used for // diagnostics, which we know are impossible at this point. TreePattern &TP = *CGP.pf_begin()->second; - - try { - bool MadeChange = true; - while (MadeChange) - MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, - true/*Ignore reg constraints*/); - } catch (...) { - errs() << "Type constraint application shouldn't fail!"; - abort(); - } + + bool MadeChange = true; + while (MadeChange) + MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, + true/*Ignore reg constraints*/); } -/// AddMatcher - Add a matcher node to the current graph we're building. +/// AddMatcher - Add a matcher node to the current graph we're building. void MatcherGen::AddMatcher(Matcher *NewNode) { - if (CurPredicate != 0) + if (CurPredicate) CurPredicate->setNext(NewNode); else TheMatcher = NewNode; @@ -200,9 +205,9 @@ void MatcherGen::AddMatcher(Matcher *NewNode) { /// EmitLeafMatchCode - Generate matching code for leaf nodes. void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { assert(N->isLeaf() && "Not a leaf?"); - + // Direct match against an integer constant. - if (IntInit *II = dynamic_cast(N->getLeafValue())) { + if (IntInit *II = dyn_cast(N->getLeafValue())) { // If this is the root of the dag we're matching, we emit a redundant opcode // check to ensure that this gets folded into the normal top-level // OpcodeSwitch. @@ -213,50 +218,69 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { return AddMatcher(new CheckIntegerMatcher(II->getValue())); } - - DefInit *DI = dynamic_cast(N->getLeafValue()); - if (DI == 0) { - errs() << "Unknown leaf kind: " << *DI << "\n"; + + // An UnsetInit represents a named node without any constraints. + if (isa(N->getLeafValue())) { + assert(N->hasName() && "Unnamed ? leaf"); + return; + } + + DefInit *DI = dyn_cast(N->getLeafValue()); + if (!DI) { + errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } - + Record *LeafRec = DI->getDef(); + + // A ValueType leaf node can represent a register when named, or itself when + // unnamed. + if (LeafRec->isSubClassOf("ValueType")) { + // A named ValueType leaf always matches: (add i32:$a, i32:$b). + if (N->hasName()) + return; + // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). + return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); + } + if (// Handle register references. Nothing to do here, they always match. - LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterClass") || + LeafRec->isSubClassOf("RegisterOperand") || LeafRec->isSubClassOf("PointerLikeRegClass") || + LeafRec->isSubClassOf("SubRegIndex") || // Place holder for SRCVALUE nodes. Nothing to do here. LeafRec->getName() == "srcvalue") return; // If we have a physreg reference like (mul gpr:$src, EAX) then we need to - // record the register + // record the register if (LeafRec->isSubClassOf("Register")) { AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), NextRecordedOperandNo)); PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); return; } - - if (LeafRec->isSubClassOf("ValueType")) - return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); - + if (LeafRec->isSubClassOf("CondCode")) return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); - + if (LeafRec->isSubClassOf("ComplexPattern")) { // We can't model ComplexPattern uses that don't have their name taken yet. // The OPC_CheckComplexPattern operation implicitly records the results. if (N->getName().empty()) { - errs() << "We expect complex pattern uses to have names: " << *N << "\n"; - exit(1); + std::string S; + raw_string_ostream OS(S); + OS << "We expect complex pattern uses to have names: " << *N; + PrintFatalError(OS.str()); } // Remember this ComplexPattern so that we can emit it after all the other // structural matches are done. - MatchedComplexPatterns.push_back(std::make_pair(N, 0)); + unsigned InputOperand = VariableMap[N->getName()] - 1; + MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); return; } - + errs() << "Unknown leaf kind: " << *N << "\n"; abort(); } @@ -264,8 +288,27 @@ void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { assert(!N->isLeaf() && "Not an operator?"); + + if (N->getOperator()->isSubClassOf("ComplexPattern")) { + // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is + // "MY_PAT:op1:op2". We should already have validated that the uses are + // consistent. + std::string PatternName = N->getOperator()->getName(); + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + PatternName += ":"; + PatternName += N->getChild(i)->getName(); + } + + if (recordUniqueNode(PatternName)) { + auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); + MatchedComplexPatterns.push_back(NodeAndOpNum); + } + + return; + } + const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); - + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special @@ -276,11 +319,11 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. - if ((N->getOperator()->getName() == "and" || + if ((N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && N->getPredicateFns().empty()) { - if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { + if (IntInit *II = dyn_cast(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. // If this is at the root of the pattern, we emit a redundant // CheckOpcode so that the following checks get factored properly under @@ -302,15 +345,15 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, } } } - + // Check that the current opcode lines up. AddMatcher(new CheckOpcodeMatcher(CInfo)); - + // If this node has memory references (i.e. is a load or store), tell the // interpreter to capture them in the memref array. if (N->NodeHasProperty(SDNPMemOperand, CGP)) AddMatcher(new RecordMemRefMatcher()); - + // If this node has a chain, then the chain is operand #0 is the SDNode, and // the child numbers of the node are all offset by one. unsigned OpNo = 0; @@ -321,7 +364,7 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, NextRecordedOperandNo)); // Remember all of the input chains our pattern will match. MatchedChainNodes.push_back(NextRecordedOperandNo++); - + // Don't look at the input chain when matching the tree pattern to the // SDNode. OpNo = 1; @@ -352,11 +395,11 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, // If there is a node between the root and this node, then we definitely // need to emit the check. bool NeedCheck = !Root->hasChild(N); - + // If it *is* an immediate child of the root, we can still need a check if // the root SDNode has multiple inputs. For us, this means that it is an // intrinsic, has multiple operands, or has other inputs like chain or - // flag). + // glue). if (!NeedCheck) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); NeedCheck = @@ -365,34 +408,34 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || - PInfo.hasProperty(SDNPInFlag) || - PInfo.hasProperty(SDNPOptInFlag); + PInfo.hasProperty(SDNPInGlue) || + PInfo.hasProperty(SDNPOptInGlue); } - + if (NeedCheck) AddMatcher(new CheckFoldableChainNodeMatcher()); } } - // If this node has an output flag and isn't the root, remember it. - if (N->NodeHasProperty(SDNPOutFlag, CGP) && + // If this node has an output glue and isn't the root, remember it. + if (N->NodeHasProperty(SDNPOutGlue, CGP) && N != Pattern.getSrcPattern()) { - // TODO: This redundantly records nodes with both flags and chains. - + // TODO: This redundantly records nodes with both glues and chains. + // Record the node and remember it in our chained nodes list. AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + - "' flag output node", + "' glue output node", NextRecordedOperandNo)); - // Remember all of the nodes with output flags our pattern will match. - MatchedFlagResultNodes.push_back(NextRecordedOperandNo++); + // Remember all of the nodes with output glue our pattern will match. + MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); } - - // If this node is known to have an input flag or if it *might* have an input - // flag, capture it as the flag input of the pattern. - if (N->NodeHasProperty(SDNPOptInFlag, CGP) || - N->NodeHasProperty(SDNPInFlag, CGP)) - AddMatcher(new CaptureFlagInputMatcher()); - + + // If this node is known to have an input glue or if it *might* have an input + // glue, capture it as the glue input of the pattern. + if (N->NodeHasProperty(SDNPOptInGlue, CGP) || + N->NodeHasProperty(SDNPInGlue, CGP)) + AddMatcher(new CaptureGlueInputMatcher()); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { // Get the code suitable for matching this child. Move to the child, check // it then move back to the parent. @@ -402,48 +445,52 @@ void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, } } +bool MatcherGen::recordUniqueNode(std::string Name) { + unsigned &VarMapEntry = VariableMap[Name]; + if (VarMapEntry == 0) { + // If it is a named node, we must emit a 'Record' opcode. + AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); + VarMapEntry = ++NextRecordedOperandNo; + return true; + } + + // If we get here, this is a second reference to a specific name. Since + // we already have checked that the first reference is valid, we don't + // have to recursively match it, just check that it's the same as the + // previously named thing. + AddMatcher(new CheckSameMatcher(VarMapEntry-1)); + return false; +} void MatcherGen::EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes) { // If N and NodeNoTypes don't agree on a type, then this is a case where we - // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and + // need to do a type check. Emit the check, apply the type to NodeNoTypes and // reinfer any correlated types. SmallVector ResultsToTypeCheck; - + for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; NodeNoTypes->setType(i, N->getExtType(i)); InferPossibleTypes(); ResultsToTypeCheck.push_back(i); } - + // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. - if (!N->getName().empty()) { - unsigned &VarMapEntry = VariableMap[N->getName()]; - if (VarMapEntry == 0) { - // If it is a named node, we must emit a 'Record' opcode. - AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo)); - VarMapEntry = ++NextRecordedOperandNo; - } else { - // If we get here, this is a second reference to a specific name. Since - // we already have checked that the first reference is valid, we don't - // have to recursively match it, just check that it's the same as the - // previously named thing. - AddMatcher(new CheckSameMatcher(VarMapEntry-1)); + if (!N->getName().empty()) + if (!recordUniqueNode(N->getName())) return; - } - } - + if (N->isLeaf()) EmitLeafMatchCode(N); else EmitOperatorMatchCode(N, NodeNoTypes); - + // If there are node predicates for this node, generate their checks. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); - + for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), ResultsToTypeCheck[i])); @@ -462,44 +509,48 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { const std::vector &OpNodes = CP->getRootNodes(); assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); if (Variant >= OpNodes.size()) return true; - + AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); } else { if (Variant != 0) return true; } - + // Emit the matcher for the pattern structure and types. EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); - + // If the pattern has a predicate on it (e.g. only enabled when a subtarget // feature is around, do the check). if (!Pattern.getPredicateCheck().empty()) AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); - + // Now that we've completed the structural type match, emit any ComplexPattern // checks (e.g. addrmode matches). We emit this after the structural match // because they are generally more expensive to evaluate and more difficult to // factor. for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { const TreePatternNode *N = MatchedComplexPatterns[i].first; - + // Remember where the results of this match get stuck. - MatchedComplexPatterns[i].second = NextRecordedOperandNo; + if (N->isLeaf()) { + NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; + } else { + unsigned CurOp = NextRecordedOperandNo; + for (unsigned i = 0; i < N->getNumChildren(); ++i) { + NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; + CurOp += N->getChild(i)->getNumMIResults(CGP); + } + } // Get the slot we recorded the value in from the name on the node. - unsigned RecNodeEntry = VariableMap[N->getName()]; - assert(!N->getName().empty() && RecNodeEntry && - "Complex pattern should have a name and slot"); - --RecNodeEntry; // Entries in VariableMap are biased. - - const ComplexPattern &CP = - CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef()); - + unsigned RecNodeEntry = MatchedComplexPatterns[i].second; + + const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); + // Emit a CheckComplexPat operation, which does the match (aborting if it // fails) and pushes the matched operands onto the recorded nodes list. AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, N->getName(), NextRecordedOperandNo)); - + // Record the right number of operands. NextRecordedOperandNo += CP.getNumOperands(); if (CP.hasProperty(SDNPHasChain)) { @@ -507,17 +558,17 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { // fact that we just recorded a chain input. The chain input will be // matched as the last operand of the predicate if it was successful. ++NextRecordedOperandNo; // Chained node operand. - + // It is the last operand recorded. assert(NextRecordedOperandNo > 1 && "Should have recorded input/result chains at least!"); MatchedChainNodes.push_back(NextRecordedOperandNo-1); } - - // TODO: Complex patterns can't have output flags, if they did, we'd want + + // TODO: Complex patterns can't have output glues, if they did, we'd want // to record them. } - + return false; } @@ -529,22 +580,13 @@ bool MatcherGen::EmitMatcherCode(unsigned Variant) { void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps){ assert(!N->getName().empty() && "Operand not named!"); - - // A reference to a complex pattern gets all of the results of the complex - // pattern's match. - if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) { - unsigned SlotNo = 0; - for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) - if (MatchedComplexPatterns[i].first->getName() == N->getName()) { - SlotNo = MatchedComplexPatterns[i].second; - break; - } - assert(SlotNo != 0 && "Didn't get a slot number assigned?"); - - // The first slot entry is the node itself, the subsequent entries are the - // matched values. - for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) - ResultOps.push_back(SlotNo+i); + + if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { + // Complex operands have already been completely selected, just find the + // right slot ant add the arguments directly. + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo - 1 + i); + return; } @@ -561,54 +603,68 @@ void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, return; } } - - ResultOps.push_back(SlotNo); + + for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) + ResultOps.push_back(SlotNo + i); } void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, SmallVectorImpl &ResultOps) { assert(N->isLeaf() && "Must be a leaf"); - - if (IntInit *II = dynamic_cast(N->getLeafValue())) { + + if (IntInit *II = dyn_cast(N->getLeafValue())) { AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } - + // If this is an explicit register reference, handle it. - if (DefInit *DI = dynamic_cast(N->getLeafValue())) { - if (DI->getDef()->isSubClassOf("Register")) { - AddMatcher(new EmitRegisterMatcher(DI->getDef(), N->getType(0))); + if (DefInit *DI = dyn_cast(N->getLeafValue())) { + Record *Def = DI->getDef(); + if (Def->isSubClassOf("Register")) { + const CodeGenRegister *Reg = + CGP.getTargetInfo().getRegBank().getReg(Def); + AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } - - if (DI->getDef()->getName() == "zero_reg") { - AddMatcher(new EmitRegisterMatcher(0, N->getType(0))); + + if (Def->getName() == "zero_reg") { + AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0))); ResultOps.push_back(NextRecordedOperandNo++); return; } - + // Handle a reference to a register class. This is used // in COPY_TO_SUBREG instructions. - if (DI->getDef()->isSubClassOf("RegisterClass")) { - std::string Value = getQualifiedName(DI->getDef()) + "RegClassID"; + if (Def->isSubClassOf("RegisterOperand")) + Def = Def->getValueAsDef("RegClass"); + if (Def->isSubClassOf("RegisterClass")) { + std::string Value = getQualifiedName(Def) + "RegClassID"; + AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); + ResultOps.push_back(NextRecordedOperandNo++); + return; + } + + // Handle a subregister index. This is used for INSERT_SUBREG etc. + if (Def->isSubClassOf("SubRegIndex")) { + std::string Value = getQualifiedName(Def); AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); ResultOps.push_back(NextRecordedOperandNo++); return; } } - + errs() << "unhandled leaf node: \n"; N->dump(); } /// GetInstPatternNode - Get the pattern for an instruction. -/// +/// const TreePatternNode *MatcherGen:: GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { const TreePattern *InstPat = Inst.getPattern(); - + // FIXME2?: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode; if (InstPat) @@ -616,15 +672,44 @@ GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { else if (/*isRoot*/ N == Pattern.getDstPattern()) InstPatNode = Pattern.getSrcPattern(); else - return 0; - + return nullptr; + if (InstPatNode && !InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "set") InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); - + return InstPatNode; } +static bool +mayInstNodeLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + Record *Op = N->getOperator(); + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op); + return II.mayLoad || II.mayStore; +} + +static unsigned +numNodesThatMayLoadOrStore(const TreePatternNode *N, + const CodeGenDAGPatterns &CGP) { + if (N->isLeaf()) + return 0; + + Record *OpRec = N->getOperator(); + if (!OpRec->isSubClassOf("Instruction")) + return 0; + + unsigned Count = 0; + if (mayInstNodeLoadOrStore(N, CGP)) + ++Count; + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); + + return Count; +} + void MatcherGen:: EmitResultInstructionAsOperand(const TreePatternNode *N, SmallVectorImpl &OutputOps) { @@ -632,8 +717,8 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op); const DAGInstruction &Inst = CGP.getInstruction(Op); - - // If we can, get the pattern for the instruction we're generating. We derive + + // If we can, get the pattern for the instruction we're generating. We derive // a variety of information from this pattern, such as whether it has a chain. // // FIXME2: This is extremely dubious for several reasons, not the least of @@ -641,70 +726,104 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // nodes can't duplicate. const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); - // NodeHasChain - Whether the instruction node we're creating takes chains. + // NodeHasChain - Whether the instruction node we're creating takes chains. bool NodeHasChain = InstPatNode && InstPatNode->TreeHasProperty(SDNPHasChain, CGP); - + + // Instructions which load and store from memory should have a chain, + // regardless of whether they happen to have an internal pattern saying so. + if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) + && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || + II.hasSideEffects)) + NodeHasChain = true; + bool isRoot = N == Pattern.getDstPattern(); - // TreeHasOutFlag - True if this tree has a flag. - bool TreeHasInFlag = false, TreeHasOutFlag = false; + // TreeHasOutGlue - True if this tree has glue. + bool TreeHasInGlue = false, TreeHasOutGlue = false; if (isRoot) { const TreePatternNode *SrcPat = Pattern.getSrcPattern(); - TreeHasInFlag = SrcPat->TreeHasProperty(SDNPOptInFlag, CGP) || - SrcPat->TreeHasProperty(SDNPInFlag, CGP); - + TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || + SrcPat->TreeHasProperty(SDNPInGlue, CGP); + // FIXME2: this is checking the entire pattern, not just the node in // question, doing this just for the root seems like a total hack. - TreeHasOutFlag = SrcPat->TreeHasProperty(SDNPOutFlag, CGP); + TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); } // NumResults - This is the number of results produced by the instruction in // the "outs" list. - unsigned NumResults = Inst.getNumResults(); - - // Loop over all of the operands of the instruction pattern, emitting code - // to fill them all in. The node 'N' usually has number children equal to - // the number of input operands of the instruction. However, in cases - // where there are predicate operands for an instruction, we need to fill - // in the 'execute always' values. Match up the node operands to the - // instruction operands to do this. + unsigned NumResults = Inst.getNumResults(); + + // Number of operands we know the output instruction must have. If it is + // variadic, we could have more operands. + unsigned NumFixedOperands = II.Operands.size(); + SmallVector InstOps; - for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.OperandList.size(); + + // Loop over all of the fixed operands of the instruction pattern, emitting + // code to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases where + // there are predicate operands for an instruction, we need to fill in the + // 'execute always' values. Match up the node operands to the instruction + // operands to do this. + unsigned ChildNo = 0; + for (unsigned InstOpNo = NumResults, e = NumFixedOperands; InstOpNo != e; ++InstOpNo) { - // Determine what to emit for this operand. - Record *OperandNode = II.OperandList[InstOpNo].Rec; - if ((OperandNode->isSubClassOf("PredicateOperand") || - OperandNode->isSubClassOf("OptionalDefOperand")) && + Record *OperandNode = II.Operands[InstOpNo].Rec; + if (OperandNode->isSubClassOf("OperandWithDefaultOps") && !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { // This is a predicate or optional def operand; emit the // 'default ops' operands. - const DAGDefaultOperand &DefaultOp = - CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); + const DAGDefaultOperand &DefaultOp + = CGP.getDefaultOperand(OperandNode); for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); continue; } - - const TreePatternNode *Child = N->getChild(ChildNo); - + // Otherwise this is a normal operand or a predicate operand without // 'execute always'; emit it. - unsigned BeforeAddingNumOps = InstOps.size(); - EmitResultOperand(Child, InstOps); - assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); - - // If the operand is an instruction and it produced multiple results, just - // take the first one. - if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) - InstOps.resize(BeforeAddingNumOps+1); - - ++ChildNo; + + // For operands with multiple sub-operands we may need to emit + // multiple child patterns to cover them all. However, ComplexPattern + // children may themselves emit multiple MI operands. + unsigned NumSubOps = 1; + if (OperandNode->isSubClassOf("Operand")) { + DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); + if (unsigned NumArgs = MIOpInfo->getNumArgs()) + NumSubOps = NumArgs; + } + + unsigned FinalNumOps = InstOps.size() + NumSubOps; + while (InstOps.size() < FinalNumOps) { + const TreePatternNode *Child = N->getChild(ChildNo); + unsigned BeforeAddingNumOps = InstOps.size(); + EmitResultOperand(Child, InstOps); + assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); + + // If the operand is an instruction and it produced multiple results, just + // take the first one. + if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) + InstOps.resize(BeforeAddingNumOps+1); + + ++ChildNo; + } } - - // If this node has an input flag or explicitly specified input physregs, we - // need to add chained and flagged copyfromreg nodes and materialize the flag + + // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't + // expand suboperands, use default operands, or other features determined from + // the CodeGenInstruction after the fixed operands, which were handled + // above. Emit the remaining instructions implicitly added by the use for + // variable_ops. + if (II.Operands.isVariadic) { + for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) + EmitResultOperand(N->getChild(I), InstOps); + } + + // If this node has input glue or explicitly specified input physregs, we + // need to add chained and glued copyfromreg nodes and materialize the glue // input. if (isRoot && !PhysRegInputs.empty()) { // Emit all of the CopyToReg nodes for the input physical registers. These @@ -712,30 +831,30 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, PhysRegInputs[i].first)); - // Even if the node has no other flag inputs, the resultant node must be - // flagged to the CopyFromReg nodes we just generated. - TreeHasInFlag = true; + // Even if the node has no other glue inputs, the resultant node must be + // glued to the CopyFromReg nodes we just generated. + TreeHasInGlue = true; } - - // Result order: node results, chain, flags - + + // Result order: node results, chain, glue + // Determine the result types. SmallVector ResultVTs; for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) ResultVTs.push_back(N->getType(i)); - + // If this is the root instruction of a pattern that has physical registers in // its result pattern, add output VTs for them. For example, X86 has: // (set AL, (mul ...)) // This also handles implicit results like: // (implicit EFLAGS) - if (isRoot && Pattern.getDstRegs().size() != 0) { + if (isRoot && !Pattern.getDstRegs().empty()) { // If the root came from an implicit def in the instruction handling stuff, // don't re-add it. - Record *HandledReg = 0; + Record *HandledReg = nullptr; if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) HandledReg = II.ImplicitDefs[0]; - + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { Record *Reg = Pattern.getDstRegs()[i]; if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; @@ -748,38 +867,42 @@ EmitResultInstructionAsOperand(const TreePatternNode *N, // gets the excess operands from the input DAG. int NumFixedArityOperands = -1; if (isRoot && - (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))) + Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); - - // If this is the root node and any of the nodes matched nodes in the input - // pattern have MemRefs in them, have the interpreter collect them and plop - // them onto this node. - // - // FIXME3: This is actively incorrect for result patterns where the root of - // the pattern is not the memory reference and is also incorrect when the - // result pattern has multiple memory-referencing instructions. For example, - // in the X86 backend, this pattern causes the memrefs to get attached to the - // CVTSS2SDrr instead of the MOVSSrm: - // - // def : Pat<(extloadf32 addr:$src), - // (CVTSS2SDrr (MOVSSrm addr:$src))>; + + // If this is the root node and multiple matched nodes in the input pattern + // have MemRefs in them, have the interpreter collect them and plop them onto + // this node. If there is just one node with MemRefs, leave them on that node + // even if it is not the root. // - bool NodeHasMemRefs = - isRoot && Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); + // FIXME3: This is actively incorrect for result patterns with multiple + // memory-referencing instructions. + bool PatternHasMemOperands = + Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); + + bool NodeHasMemRefs = false; + if (PatternHasMemOperands) { + unsigned NumNodesThatLoadOrStore = + numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); + bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && + NumNodesThatLoadOrStore == 1; + NodeHasMemRefs = + NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || + NumNodesThatLoadOrStore != 1)); + } - assert((!ResultVTs.empty() || TreeHasOutFlag || NodeHasChain) && + assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && "Node has no result"); - + AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), - ResultVTs.data(), ResultVTs.size(), - InstOps.data(), InstOps.size(), - NodeHasChain, TreeHasInFlag, TreeHasOutFlag, + ResultVTs, InstOps, + NodeHasChain, TreeHasInGlue, TreeHasOutGlue, NodeHasMemRefs, NumFixedArityOperands, NextRecordedOperandNo)); - - // The non-chain and non-flag results of the newly emitted node get recorded. + + // The non-chain and non-glue results of the newly emitted node get recorded. for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { - if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Flag) break; + if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; OutputOps.push_back(NextRecordedOperandNo++); } } @@ -791,7 +914,7 @@ EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, // Emit the operand. SmallVector InputOps; - + // FIXME2: Could easily generalize this to support multiple inputs and outputs // to the SDNodeXForm. For now we just support one input and one output like // the old instruction selector. @@ -820,7 +943,7 @@ void MatcherGen::EmitResultOperand(const TreePatternNode *N, if (OpRec->isSubClassOf("SDNodeXForm")) return EmitResultSDNodeXFormAsOperand(N, ResultOps); errs() << "Unknown result node to emit code for: " << *N << '\n'; - throw std::string("Unknown node in result pattern!"); + PrintFatalError("Unknown node in result pattern!"); } void MatcherGen::EmitResultCode() { @@ -828,50 +951,50 @@ void MatcherGen::EmitResultCode() { // merge them together into a token factor. This informs the generated code // what all the chained nodes are. if (!MatchedChainNodes.empty()) - AddMatcher(new EmitMergeInputChainsMatcher - (MatchedChainNodes.data(), MatchedChainNodes.size())); - + AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); + // Codegen the root of the result pattern, capturing the resulting values. SmallVector Ops; EmitResultOperand(Pattern.getDstPattern(), Ops); // At this point, we have however many values the result pattern produces. // However, the input pattern might not need all of these. If there are - // excess values at the end (such as condition codes etc) just lop them off. - // This doesn't need to worry about flags or chains, just explicit results. - // - // FIXME2: This doesn't work because there is currently no way to get an - // accurate count of the # results the source pattern sets. This is because - // of the "parallel" construct in X86 land, which looks like this: + // excess values at the end (such as implicit defs of condition codes etc) + // just lop them off. This doesn't need to worry about glue or chains, just + // explicit results. // - //def : Pat<(parallel (X86and_flag GR8:$src1, GR8:$src2), - // (implicit EFLAGS)), - // (AND8rr GR8:$src1, GR8:$src2)>; - // - // This idiom means to match the two-result node X86and_flag (which is - // declared as returning a single result, because we can't match multi-result - // nodes yet). In this case, we would have to know that the input has two - // results. However, mul8r is modelled exactly the same way, but without - // implicit defs included. The fix is to support multiple results directly - // and eliminate 'parallel'. - // - // FIXME2: When this is fixed, we should revert the terrible hack in the - // OPC_EmitNode code in the interpreter. -#if 0 - const TreePatternNode *Src = Pattern.getSrcPattern(); - unsigned NumSrcResults = Src->getTypeNum(0) != MVT::isVoid ? 1 : 0; - NumSrcResults += Pattern.getDstRegs().size(); + unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); + + // If the pattern also has (implicit) results, count them as well. + if (!Pattern.getDstRegs().empty()) { + // If the root came from an implicit def in the instruction handling stuff, + // don't re-add it. + Record *HandledReg = nullptr; + const TreePatternNode *DstPat = Pattern.getDstPattern(); + if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); + + if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) + HandledReg = II.ImplicitDefs[0]; + } + + for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { + Record *Reg = Pattern.getDstRegs()[i]; + if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; + ++NumSrcResults; + } + } + assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); Ops.resize(NumSrcResults); -#endif - // If the matched pattern covers nodes which define a flag result, emit a node + // If the matched pattern covers nodes which define a glue result, emit a node // that tells the matcher about them so that it can update their results. - if (!MatchedFlagResultNodes.empty()) - AddMatcher(new MarkFlagResultsMatcher(MatchedFlagResultNodes.data(), - MatchedFlagResultNodes.size())); - - AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern)); + if (!MatchedGlueResultNodes.empty()) + AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes)); + + AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); } @@ -884,19 +1007,16 @@ Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, // Generate the code for the matcher. if (Gen.EmitMatcherCode(Variant)) - return 0; - + return nullptr; + // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. // FIXME2: Split result code out to another table, and make the matcher end // with an "Emit " command. This allows result generation stuff to be // shared and factored? - + // If the match succeeds, then we generate Pattern. Gen.EmitResultCode(); // Unconditional match. return Gen.GetMatcher(); } - - -