X-Git-Url: http://demsky.eecs.uci.edu/git/?a=blobdiff_plain;f=utils%2FTableGen%2FDAGISelMatcherOpt.cpp;h=0b117eb37c9cd55378e2df273dbb07e529586684;hb=a9d13b157f39979b8e2d4e53684c5ebe20a3f152;hp=7859f36eef6ea38ff4d76291af59f4cff86a0f57;hpb=91c6a822baaba3cb2def94224115e57b84805347;p=oota-llvm.git diff --git a/utils/TableGen/DAGISelMatcherOpt.cpp b/utils/TableGen/DAGISelMatcherOpt.cpp index 7859f36eef6..0b117eb37c9 100644 --- a/utils/TableGen/DAGISelMatcherOpt.cpp +++ b/utils/TableGen/DAGISelMatcherOpt.cpp @@ -12,8 +12,510 @@ //===----------------------------------------------------------------------===// #include "DAGISelMatcher.h" +#include "CodeGenDAGPatterns.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" using namespace llvm; -void llvm::OptimizeMatcher(const MatcherNode *Matcher) { - // Nothing yet. +#define DEBUG_TYPE "isel-opt" + +/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record' +/// into single compound nodes like RecordChild. +static void ContractNodes(std::unique_ptr &MatcherPtr, + const CodeGenDAGPatterns &CGP) { + // If we reached the end of the chain, we're done. + Matcher *N = MatcherPtr.get(); + if (!N) return; + + // If we have a scope node, walk down all of the children. + if (ScopeMatcher *Scope = dyn_cast(N)) { + for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { + std::unique_ptr Child(Scope->takeChild(i)); + ContractNodes(Child, CGP); + Scope->resetChild(i, Child.release()); + } + return; + } + + // If we found a movechild node with a node that comes in a 'foochild' form, + // transform it. + if (MoveChildMatcher *MC = dyn_cast(N)) { + Matcher *New = nullptr; + if (RecordMatcher *RM = dyn_cast(MC->getNext())) + if (MC->getChildNo() < 8) // Only have RecordChild0...7 + New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(), + RM->getResultNo()); + + if (CheckTypeMatcher *CT = dyn_cast(MC->getNext())) + if (MC->getChildNo() < 8 && // Only have CheckChildType0...7 + CT->getResNo() == 0) // CheckChildType checks res #0 + New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType()); + + if (CheckSameMatcher *CS = dyn_cast(MC->getNext())) + if (MC->getChildNo() < 4) // Only have CheckChildSame0...3 + New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber()); + + if (CheckIntegerMatcher *CS = dyn_cast(MC->getNext())) + if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4 + New = new CheckChildIntegerMatcher(MC->getChildNo(), CS->getValue()); + + if (New) { + // Insert the new node. + New->setNext(MatcherPtr.release()); + MatcherPtr.reset(New); + // Remove the old one. + MC->setNext(MC->getNext()->takeNext()); + return ContractNodes(MatcherPtr, CGP); + } + } + + // Zap movechild -> moveparent. + if (MoveChildMatcher *MC = dyn_cast(N)) + if (MoveParentMatcher *MP = + dyn_cast(MC->getNext())) { + MatcherPtr.reset(MP->takeNext()); + return ContractNodes(MatcherPtr, CGP); + } + + // Turn EmitNode->MarkFlagResults->CompleteMatch into + // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage + // MorphNodeTo formation. This is safe because MarkFlagResults never refers + // to the root of the pattern. + if (isa(N) && isa(N->getNext()) && + isa(N->getNext()->getNext())) { + // Unlink the two nodes from the list. + Matcher *EmitNode = MatcherPtr.release(); + Matcher *MFR = EmitNode->takeNext(); + Matcher *Tail = MFR->takeNext(); + + // Relink them. + MatcherPtr.reset(MFR); + MFR->setNext(EmitNode); + EmitNode->setNext(Tail); + return ContractNodes(MatcherPtr, CGP); + } + + // Turn EmitNode->CompleteMatch into MorphNodeTo if we can. + if (EmitNodeMatcher *EN = dyn_cast(N)) + if (CompleteMatchMatcher *CM = + dyn_cast(EN->getNext())) { + // We can only use MorphNodeTo if the result values match up. + unsigned RootResultFirst = EN->getFirstResultSlot(); + bool ResultsMatch = true; + for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i) + if (CM->getResult(i) != RootResultFirst+i) + ResultsMatch = false; + + // If the selected node defines a subset of the glue/chain results, we + // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the + // matched pattern has a chain but the root node doesn't. + const PatternToMatch &Pattern = CM->getPattern(); + + if (!EN->hasChain() && + Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP)) + ResultsMatch = false; + + // If the matched node has glue and the output root doesn't, we can't + // use MorphNodeTo. + // + // NOTE: Strictly speaking, we don't have to check for glue here + // because the code in the pattern generator doesn't handle it right. We + // do it anyway for thoroughness. + if (!EN->hasOutFlag() && + Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP)) + ResultsMatch = false; + + + // If the root result node defines more results than the source root node + // *and* has a chain or glue input, then we can't match it because it + // would end up replacing the extra result with the chain/glue. +#if 0 + if ((EN->hasGlue() || EN->hasChain()) && + EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...) + ResultMatch = false; +#endif + + if (ResultsMatch) { + const SmallVectorImpl &VTs = EN->getVTList(); + const SmallVectorImpl &Operands = EN->getOperandList(); + MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(), + VTs, Operands, + EN->hasChain(), EN->hasInFlag(), + EN->hasOutFlag(), + EN->hasMemRefs(), + EN->getNumFixedArityOperands(), + Pattern)); + return; + } + + // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode + // variants. + } + + ContractNodes(N->getNextPtr(), CGP); + + + // If we have a CheckType/CheckChildType/Record node followed by a + // CheckOpcode, invert the two nodes. We prefer to do structural checks + // before type checks, as this opens opportunities for factoring on targets + // like X86 where many operations are valid on multiple types. + if ((isa(N) || isa(N) || + isa(N)) && + isa(N->getNext())) { + // Unlink the two nodes from the list. + Matcher *CheckType = MatcherPtr.release(); + Matcher *CheckOpcode = CheckType->takeNext(); + Matcher *Tail = CheckOpcode->takeNext(); + + // Relink them. + MatcherPtr.reset(CheckOpcode); + CheckOpcode->setNext(CheckType); + CheckType->setNext(Tail); + return ContractNodes(MatcherPtr, CGP); + } +} + +/// SinkPatternPredicates - Pattern predicates can be checked at any level of +/// the matching tree. The generator dumps them at the top level of the pattern +/// though, which prevents factoring from being able to see past them. This +/// optimization sinks them as far down into the pattern as possible. +/// +/// Conceptually, we'd like to sink these predicates all the way to the last +/// matcher predicate in the series. However, it turns out that some +/// ComplexPatterns have side effects on the graph, so we really don't want to +/// run a the complex pattern if the pattern predicate will fail. For this +/// reason, we refuse to sink the pattern predicate past a ComplexPattern. +/// +static void SinkPatternPredicates(std::unique_ptr &MatcherPtr) { + // Recursively scan for a PatternPredicate. + // If we reached the end of the chain, we're done. + Matcher *N = MatcherPtr.get(); + if (!N) return; + + // Walk down all members of a scope node. + if (ScopeMatcher *Scope = dyn_cast(N)) { + for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { + std::unique_ptr Child(Scope->takeChild(i)); + SinkPatternPredicates(Child); + Scope->resetChild(i, Child.release()); + } + return; + } + + // If this node isn't a CheckPatternPredicateMatcher we keep scanning until + // we find one. + CheckPatternPredicateMatcher *CPPM =dyn_cast(N); + if (!CPPM) + return SinkPatternPredicates(N->getNextPtr()); + + // Ok, we found one, lets try to sink it. Check if we can sink it past the + // next node in the chain. If not, we won't be able to change anything and + // might as well bail. + if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate()) + return; + + // Okay, we know we can sink it past at least one node. Unlink it from the + // chain and scan for the new insertion point. + MatcherPtr.release(); // Don't delete CPPM. + MatcherPtr.reset(CPPM->takeNext()); + + N = MatcherPtr.get(); + while (N->getNext()->isSafeToReorderWithPatternPredicate()) + N = N->getNext(); + + // At this point, we want to insert CPPM after N. + CPPM->setNext(N->takeNext()); + N->setNext(CPPM); +} + +/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a +/// specified kind. Return null if we didn't find one otherwise return the +/// matcher. +static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) { + for (; M; M = M->getNext()) + if (M->getKind() == Kind) + return M; + return nullptr; +} + + +/// FactorNodes - Turn matches like this: +/// Scope +/// OPC_CheckType i32 +/// ABC +/// OPC_CheckType i32 +/// XYZ +/// into: +/// OPC_CheckType i32 +/// Scope +/// ABC +/// XYZ +/// +static void FactorNodes(std::unique_ptr &MatcherPtr) { + // If we reached the end of the chain, we're done. + Matcher *N = MatcherPtr.get(); + if (!N) return; + + // If this is not a push node, just scan for one. + ScopeMatcher *Scope = dyn_cast(N); + if (!Scope) + return FactorNodes(N->getNextPtr()); + + // Okay, pull together the children of the scope node into a vector so we can + // inspect it more easily. While we're at it, bucket them up by the hash + // code of their first predicate. + SmallVector OptionsToMatch; + + for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) { + // Factor the subexpression. + std::unique_ptr Child(Scope->takeChild(i)); + FactorNodes(Child); + + if (Matcher *N = Child.release()) + OptionsToMatch.push_back(N); + } + + SmallVector NewOptionsToMatch; + + // Loop over options to match, merging neighboring patterns with identical + // starting nodes into a shared matcher. + for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) { + // Find the set of matchers that start with this node. + Matcher *Optn = OptionsToMatch[OptionIdx++]; + + if (OptionIdx == e) { + NewOptionsToMatch.push_back(Optn); + continue; + } + + // See if the next option starts with the same matcher. If the two + // neighbors *do* start with the same matcher, we can factor the matcher out + // of at least these two patterns. See what the maximal set we can merge + // together is. + SmallVector EqualMatchers; + EqualMatchers.push_back(Optn); + + // Factor all of the known-equal matchers after this one into the same + // group. + while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn)) + EqualMatchers.push_back(OptionsToMatch[OptionIdx++]); + + // If we found a non-equal matcher, see if it is contradictory with the + // current node. If so, we know that the ordering relation between the + // current sets of nodes and this node don't matter. Look past it to see if + // we can merge anything else into this matching group. + unsigned Scan = OptionIdx; + while (1) { + // If we ran out of stuff to scan, we're done. + if (Scan == e) break; + + Matcher *ScanMatcher = OptionsToMatch[Scan]; + + // If we found an entry that matches out matcher, merge it into the set to + // handle. + if (Optn->isEqual(ScanMatcher)) { + // If is equal after all, add the option to EqualMatchers and remove it + // from OptionsToMatch. + EqualMatchers.push_back(ScanMatcher); + OptionsToMatch.erase(OptionsToMatch.begin()+Scan); + --e; + continue; + } + + // If the option we're checking for contradicts the start of the list, + // skip over it. + if (Optn->isContradictory(ScanMatcher)) { + ++Scan; + continue; + } + + // If we're scanning for a simple node, see if it occurs later in the + // sequence. If so, and if we can move it up, it might be contradictory + // or the same as what we're looking for. If so, reorder it. + if (Optn->isSimplePredicateOrRecordNode()) { + Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind()); + if (M2 && M2 != ScanMatcher && + M2->canMoveBefore(ScanMatcher) && + (M2->isEqual(Optn) || M2->isContradictory(Optn))) { + Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2); + M2->setNext(MatcherWithoutM2); + OptionsToMatch[Scan] = M2; + continue; + } + } + + // Otherwise, we don't know how to handle this entry, we have to bail. + break; + } + + if (Scan != e && + // Don't print it's obvious nothing extra could be merged anyway. + Scan+1 != e) { + DEBUG(errs() << "Couldn't merge this:\n"; + Optn->print(errs(), 4); + errs() << "into this:\n"; + OptionsToMatch[Scan]->print(errs(), 4); + if (Scan+1 != e) + OptionsToMatch[Scan+1]->printOne(errs()); + if (Scan+2 < e) + OptionsToMatch[Scan+2]->printOne(errs()); + errs() << "\n"); + } + + // If we only found one option starting with this matcher, no factoring is + // possible. + if (EqualMatchers.size() == 1) { + NewOptionsToMatch.push_back(EqualMatchers[0]); + continue; + } + + // Factor these checks by pulling the first node off each entry and + // discarding it. Take the first one off the first entry to reuse. + Matcher *Shared = Optn; + Optn = Optn->takeNext(); + EqualMatchers[0] = Optn; + + // Remove and delete the first node from the other matchers we're factoring. + for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) { + Matcher *Tmp = EqualMatchers[i]->takeNext(); + delete EqualMatchers[i]; + EqualMatchers[i] = Tmp; + } + + Shared->setNext(new ScopeMatcher(EqualMatchers)); + + // Recursively factor the newly created node. + FactorNodes(Shared->getNextPtr()); + + NewOptionsToMatch.push_back(Shared); + } + + // If we're down to a single pattern to match, then we don't need this scope + // anymore. + if (NewOptionsToMatch.size() == 1) { + MatcherPtr.reset(NewOptionsToMatch[0]); + return; + } + + if (NewOptionsToMatch.empty()) { + MatcherPtr.reset(nullptr); + return; + } + + // If our factoring failed (didn't achieve anything) see if we can simplify in + // other ways. + + // Check to see if all of the leading entries are now opcode checks. If so, + // we can convert this Scope to be a OpcodeSwitch instead. + bool AllOpcodeChecks = true, AllTypeChecks = true; + for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { + // Check to see if this breaks a series of CheckOpcodeMatchers. + if (AllOpcodeChecks && + !isa(NewOptionsToMatch[i])) { +#if 0 + if (i > 3) { + errs() << "FAILING OPC #" << i << "\n"; + NewOptionsToMatch[i]->dump(); + } +#endif + AllOpcodeChecks = false; + } + + // Check to see if this breaks a series of CheckTypeMatcher's. + if (AllTypeChecks) { + CheckTypeMatcher *CTM = + cast_or_null(FindNodeWithKind(NewOptionsToMatch[i], + Matcher::CheckType)); + if (!CTM || + // iPTR checks could alias any other case without us knowing, don't + // bother with them. + CTM->getType() == MVT::iPTR || + // SwitchType only works for result #0. + CTM->getResNo() != 0 || + // If the CheckType isn't at the start of the list, see if we can move + // it there. + !CTM->canMoveBefore(NewOptionsToMatch[i])) { +#if 0 + if (i > 3 && AllTypeChecks) { + errs() << "FAILING TYPE #" << i << "\n"; + NewOptionsToMatch[i]->dump(); + } +#endif + AllTypeChecks = false; + } + } + } + + // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot. + if (AllOpcodeChecks) { + StringSet<> Opcodes; + SmallVector, 8> Cases; + for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { + CheckOpcodeMatcher *COM = cast(NewOptionsToMatch[i]); + assert(Opcodes.insert(COM->getOpcode().getEnumName()) && + "Duplicate opcodes not factored?"); + Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext())); + } + + MatcherPtr.reset(new SwitchOpcodeMatcher(Cases)); + return; + } + + // If all the options are CheckType's, we can form the SwitchType, woot. + if (AllTypeChecks) { + DenseMap TypeEntry; + SmallVector, 8> Cases; + for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) { + CheckTypeMatcher *CTM = + cast_or_null(FindNodeWithKind(NewOptionsToMatch[i], + Matcher::CheckType)); + Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM); + MVT::SimpleValueType CTMTy = CTM->getType(); + delete CTM; + + unsigned &Entry = TypeEntry[CTMTy]; + if (Entry != 0) { + // If we have unfactored duplicate types, then we should factor them. + Matcher *PrevMatcher = Cases[Entry-1].second; + if (ScopeMatcher *SM = dyn_cast(PrevMatcher)) { + SM->setNumChildren(SM->getNumChildren()+1); + SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM); + continue; + } + + Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM }; + Cases[Entry-1].second = new ScopeMatcher(Entries); + continue; + } + + Entry = Cases.size()+1; + Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM)); + } + + if (Cases.size() != 1) { + MatcherPtr.reset(new SwitchTypeMatcher(Cases)); + } else { + // If we factored and ended up with one case, create it now. + MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0)); + MatcherPtr->setNext(Cases[0].second); + } + return; + } + + + // Reassemble the Scope node with the adjusted children. + Scope->setNumChildren(NewOptionsToMatch.size()); + for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) + Scope->resetChild(i, NewOptionsToMatch[i]); +} + +Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher, + const CodeGenDAGPatterns &CGP) { + std::unique_ptr MatcherPtr(TheMatcher); + ContractNodes(MatcherPtr, CGP); + SinkPatternPredicates(MatcherPtr); + FactorNodes(MatcherPtr); + return MatcherPtr.release(); }