[PPC] Implement vmrgew and vmrgow instructions
authorKit Barton <kbarton@ca.ibm.com>
Thu, 25 Jun 2015 15:17:40 +0000 (15:17 +0000)
committerKit Barton <kbarton@ca.ibm.com>
Thu, 25 Jun 2015 15:17:40 +0000 (15:17 +0000)
This patch adds support for the vector merge even word and vector merge odd word
instructions introduced in POWER8.

Phabricator review: http://reviews.llvm.org/D10704

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240650 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/PowerPC/PPCISelLowering.cpp
lib/Target/PowerPC/PPCISelLowering.h
lib/Target/PowerPC/PPCInstrAltivec.td
test/CodeGen/PowerPC/vec_mergeow.ll [new file with mode: 0644]
test/MC/Disassembler/PowerPC/ppc64-encoding-vmx.txt
test/MC/PowerPC/ppc64-encoding-vmx.s

index 2600ee5db17991103725b880f48756ce975066d6..af493c0931c43510ca642d12a1e27892d6264d9a 100644 (file)
@@ -1279,6 +1279,99 @@ bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
   }
 }
 
   }
 }
 
+/**
+ * \brief Common function used to match vmrgew and vmrgow shuffles
+ *
+ * The indexOffset determines whether to look for even or odd words in
+ * the shuffle mask. This is based on the of the endianness of the target
+ * machine.
+ *   - Little Endian:
+ *     - Use offset of 0 to check for odd elements
+ *     - Use offset of 4 to check for even elements
+ *   - Big Endian:
+ *     - Use offset of 0 to check for even elements
+ *     - Use offset of 4 to check for odd elements
+ * A detailed description of the vector element ordering for little endian and
+ * big endian can be found at <a
+ * href="http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html">
+ * Targeting your applications - what little endian and big endian IBM XL C/C++
+ * compiler differences mean to you </a>
+ *
+ * The mask to the shuffle vector instruction specifies the indices of the
+ * elements from the two input vectors to place in the result. The elements are
+ * numbered in array-access order, starting with the first vector. These vectors
+ * are always of type v16i8, thus each vector will contain 16 elements of size
+ * 8. More info on the shuffle vector can be found in the <a
+ * href="http://llvm.org/docs/LangRef.html#shufflevector-instruction">Language
+ * Reference</a>.
+ *
+ * The RHSStartValue indicates whether the same input vectors are used (unary)
+ * or two different input vectors are used, based on the following:
+ *   - If the instruction uses the same vector for both inputs, the range of the
+ *     indices will be 0 to 15. In this case, the RHSStart value passed should
+ *     be 0.
+ *   - If the instruction has two different vectors then the range of the
+ *     indices will be 0 to 31. In this case, the RHSStart value passed should
+ *     be 16 (indices 0-15 specify elements in the first vector while indices 16
+ *     to 31 specify elements in the second vector).
+ *
+ * \param[in] N The shuffle vector SD Node to analyze
+ * \param[in] IndexOffset Specifies whether to look for even or odd elements
+ * \param[in] RHSStartValue Specifies the starting index for the righthand input
+ * vector to the shuffle_vector instruction
+ * \return true iff this shuffle vector represents an even or odd word merge
+ */
+static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
+                     unsigned RHSStartValue) {
+  if (N->getValueType(0) != MVT::v16i8)
+    return false;
+
+  for (unsigned i = 0; i < 2; ++i)
+    for (unsigned j = 0; j < 4; ++j)
+      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
+                             i*RHSStartValue+j+IndexOffset) ||
+          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
+                             i*RHSStartValue+j+IndexOffset+8))
+        return false;
+  return true;
+}
+
+/**
+ * \brief Determine if the specified shuffle mask is suitable for the vmrgew or
+ * vmrgow instructions.
+ *
+ * \param[in] N The shuffle vector SD Node to analyze
+ * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
+ * \param[in] ShuffleKind Identify the type of merge:
+ *   - 0 = big-endian merge with two different inputs;
+ *   - 1 = either-endian merge with two identical inputs;
+ *   - 2 = little-endian merge with two different inputs (inputs are swapped for
+ *     little-endian merges).
+ * \param[in] DAG The current SelectionDAG
+ * \return true iff this shuffle mask 
+ */
+bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
+                              unsigned ShuffleKind, SelectionDAG &DAG) {
+  if (DAG.getTarget().getDataLayout()->isLittleEndian()) {
+    unsigned indexOffset = CheckEven ? 4 : 0;
+    if (ShuffleKind == 1) // Unary
+      return isVMerge(N, indexOffset, 0);
+    else if (ShuffleKind == 2) // swapped
+      return isVMerge(N, indexOffset, 16);
+    else
+      return false;
+  }
+  else {
+    unsigned indexOffset = CheckEven ? 0 : 4;
+    if (ShuffleKind == 1) // Unary
+      return isVMerge(N, indexOffset, 0);
+    else if (ShuffleKind == 0) // Normal
+      return isVMerge(N, indexOffset, 16);
+    else
+      return false;
+  }
+  return false;
+}
 
 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 /// amount, otherwise return -1.
 
 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 /// amount, otherwise return -1.
@@ -7046,7 +7139,9 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
-        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG)) {
+        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
+        PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG)   ||
+        PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)) {
       return Op;
     }
   }
       return Op;
     }
   }
@@ -7064,7 +7159,9 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
-      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG))
+      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
+      PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG)             ||
+      PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))
     return Op;
 
   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
     return Op;
 
   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
index 7fd3f9c3de3d5068ba4d5dcca229e6350f1a0019..02242b512a4f94c6fa50bc35469360c5270ae9cf 100644 (file)
@@ -382,6 +382,11 @@ namespace llvm {
     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                             unsigned ShuffleKind, SelectionDAG &DAG);
 
     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
                             unsigned ShuffleKind, SelectionDAG &DAG);
 
+    /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
+    /// a VMRGEW or VMRGOW instruction
+    bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
+                             unsigned ShuffleKind, SelectionDAG &DAG);
+  
     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
     /// shift amount, otherwise return -1.
     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
     /// shift amount, otherwise return -1.
     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
index 9ff604bbee9de43380e182963452d943ab6acaea..cb0271fe8d0ce8c7fc208940bb120c89ec90bc12 100644 (file)
@@ -155,6 +155,33 @@ def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
 }]>;
 
 
 }]>;
 
 
+def vmrgew_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                             (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 0, *CurDAG);
+}]>;
+def vmrgow_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                             (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 0, *CurDAG);
+}]>;
+def vmrgew_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                                   (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 1, *CurDAG);
+}]>;
+def vmrgow_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                                   (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 1, *CurDAG);
+}]>;
+def vmrgew_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                                     (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), true, 2, *CurDAG);
+}]>;
+def vmrgow_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs),
+                                     (vector_shuffle node:$lhs, node:$rhs), [{
+  return PPC::isVMRGEOShuffleMask(cast<ShuffleVectorSDNode>(N), false, 2, *CurDAG);
+}]>;
+
+
+
 def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{
   return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N));
 }]>;
 def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{
   return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N));
 }]>;
@@ -1008,6 +1035,29 @@ def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>;
 def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>;
 } // isCommutable
 
 def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>;
 } // isCommutable
 
+// Vector merge 
+def VMRGEW : VXForm_1<1932, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+                      "vmrgew $vD, $vA, $vB", IIC_VecFP,
+                      [(set v16i8:$vD, (vmrgew_shuffle v16i8:$vA, v16i8:$vB))]>;
+def VMRGOW : VXForm_1<1676, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
+                      "vmrgow $vD, $vA, $vB", IIC_VecFP,
+                      [(set v16i8:$vD, (vmrgow_shuffle v16i8:$vA, v16i8:$vB))]>;
+
+// Match vmrgew(x,x) and vmrgow(x,x)
+def:Pat<(vmrgew_unary_shuffle v16i8:$vA, undef),
+        (VMRGEW $vA, $vA)>;
+def:Pat<(vmrgow_unary_shuffle v16i8:$vA, undef),
+        (VMRGOW $vA, $vA)>;
+
+// Match vmrgew(y,x) and vmrgow(y,x), i.e., swapped operands.  These fragments
+// are matched for little-endian, where the inputs must be swapped for correct
+// semantics.w
+def:Pat<(vmrgew_swapped_shuffle v16i8:$vA, v16i8:$vB),
+        (VMRGEW $vB, $vA)>;
+def:Pat<(vmrgow_swapped_shuffle v16i8:$vA, v16i8:$vB),
+        (VMRGOW $vB, $vA)>;
+
+
 // Vector shifts
 def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>;
 def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
 // Vector shifts
 def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>;
 def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB),
diff --git a/test/CodeGen/PowerPC/vec_mergeow.ll b/test/CodeGen/PowerPC/vec_mergeow.ll
new file mode 100644 (file)
index 0000000..c7c7448
--- /dev/null
@@ -0,0 +1,101 @@
+; RUN: llc -mtriple=powerpc64le-unknown-linux-gnu -mcpu=pwr8 < %s | \
+; RUN:   FileCheck %s  -check-prefix=CHECK-LE
+; RUN: llc -mtriple=powerpc64-unknown-linux-gnu -mcpu=pwr8 < %s | \
+; RUN:   FileCheck %s -check-prefix=CHECK-BE
+
+; Check for a vector merge instruction using two inputs
+; The shufflevector specifies the even elements, using big endian element 
+; ordering. If run on a big endian machine, this should produce the vmrgew 
+; instruction. If run on a little endian machine, this should produce the
+; vmrgow instruction. Note also that on little endian the input registers 
+; are swapped also.
+define void @check_merge_even_xy(<16 x i8>* %A, <16 x i8>* %B) {
+entry:
+; CHECK-LE-LABEL: @check_merge_even_xy
+; CHECK-BE-LABEL: @check_merge_even_xy
+        %tmp = load <16 x i8>, <16 x i8>* %A
+       %tmp2 = load <16 x i8>, <16 x i8>* %B
+       %tmp3 = shufflevector <16 x i8> %tmp, <16 x i8> %tmp2, 
+                             <16 x i32> <i32 0, i32 1, i32 2, i32 3, 
+                                         i32 16, i32 17, i32 18, i32 19, 
+                                         i32 8, i32 9, i32 10, i32 11, 
+                                         i32 24, i32 25, i32 26, i32 27>
+; CHECK-LE: vmrgow 2, 3, 2
+; CHECK-BE: vmrgew 2, 2, 3
+       store <16 x i8> %tmp3, <16 x i8>* %A
+       ret void
+; CHECK-LE: blr
+; CHECK-BE: blr
+}
+
+; Check for a vector merge instruction using a single input. 
+; The shufflevector specifies the even elements, using big endian element 
+; ordering. If run on a big endian machine, this should produce the vmrgew 
+; instruction. If run on a little endian machine, this should produce the
+; vmrgow instruction. 
+define void @check_merge_even_xx(<16 x i8>* %A) {
+entry:
+; CHECK-LE-LABEL: @check_merge_even_xx
+; CHECK-BE-LABEL: @check_merge_even_xx
+        %tmp = load <16 x i8>, <16 x i8>* %A
+       %tmp2 = shufflevector <16 x i8> %tmp, <16 x i8> %tmp, 
+                             <16 x i32> <i32 0, i32 1, i32 2, i32 3, 
+                                         i32 0, i32 1, i32 2, i32 3, 
+                                         i32 8, i32 9, i32 10, i32 11, 
+                                         i32 8, i32 9, i32 10, i32 11>
+; CHECK-LE: vmrgow 2, 2, 2
+; CHECK-BE: vmrgew 2, 2, 2
+       store <16 x i8> %tmp2, <16 x i8>* %A
+       ret void
+; CHECK-LE: blr
+; CHECK-BE: blr       
+}
+
+; Check for a vector merge instruction using two inputs.
+; The shufflevector specifies the odd elements, using big endian element 
+; ordering. If run on a big endian machine, this should produce the vmrgow 
+; instruction. If run on a little endian machine, this should produce the
+; vmrgew instruction. Note also that on little endian the input registers 
+; are swapped also.
+define void @check_merge_odd_xy(<16 x i8>* %A, <16 x i8>* %B) {
+entry:
+; CHECK-LE-LABEL: @check_merge_odd_xy
+; CHECK-BE-LABEL: @check_merge_odd_xy
+        %tmp = load <16 x i8>, <16 x i8>* %A
+       %tmp2 = load <16 x i8>, <16 x i8>* %B
+       %tmp3 = shufflevector <16 x i8> %tmp, <16 x i8> %tmp2, 
+                             <16 x i32> <i32 4, i32 5, i32 6, i32 7, 
+                                         i32 20, i32 21, i32 22, i32 23, 
+                                         i32 12, i32 13, i32 14, i32 15, 
+                                         i32 28, i32 29, i32 30, i32 31>
+; CHECK-LE: vmrgew 2, 3, 2
+; CHECK-BE: vmrgow 2, 2, 3
+        store <16 x i8> %tmp3, <16 x i8>* %A
+       ret void
+; CHECK-LE: blr
+; CHECK-BE: blr
+}
+
+; Check for a vector merge instruction using a single input.
+; The shufflevector specifies the odd elements, using big endian element 
+; ordering. If run on a big endian machine, this should produce the vmrgow 
+; instruction. If run on a little endian machine, this should produce the
+; vmrgew instruction. 
+define void @check_merge_odd_xx(<16 x i8>* %A) {
+entry:
+; CHECK-LE-LABEL: @check_merge_odd_xx
+; CHECK-BE-LABEL: @check_merge_odd_xx
+        %tmp = load <16 x i8>, <16 x i8>* %A
+       %tmp2 = shufflevector <16 x i8> %tmp, <16 x i8> %tmp, 
+                             <16 x i32> <i32 4, i32 5, i32 6, i32 7, 
+                                         i32 4, i32 5, i32 6, i32 7, 
+                                         i32 12, i32 13, i32 14, i32 15, 
+                                         i32 12, i32 13, i32 14, i32 15>
+; CHECK-LE: vmrgew 2, 2, 2
+; CHECK-BE: vmrgow 2, 2, 2
+        store <16 x i8> %tmp2, <16 x i8>* %A
+       ret void
+; CHECK-LE: blr
+; CHECK-BE: blr
+}
+
index 0e3a83f6d3a538e84cf3ff355cb4b7bbd60e0647..16ff14c794d666e6b8a9f272a219c3f567c0a6b7 100644 (file)
 # CHECK: vmrglw 2, 3, 4                  
 0x10 0x43 0x21 0x8c
 
 # CHECK: vmrglw 2, 3, 4                  
 0x10 0x43 0x21 0x8c
 
+# CHECK: vmrgew 2, 3, 4
+0x10 0x43 0x27 0x8c
+
+# CHECK: vmrgow 2, 3, 4
+0x10 0x43 0x26 0x8c
+
 # CHECK: vspltb 2, 3, 1                  
 0x10 0x41 0x1a 0x0c
 
 # CHECK: vspltb 2, 3, 1                  
 0x10 0x41 0x1a 0x0c
 
index 5c62d2a6c95532be380e36c9922a5930ec164dd2..d8825bf334021830441a78d121461fe66392a984 100644 (file)
@@ -1,5 +1,5 @@
 
 
-# RUN: llvm-mc -triple powerpc64-unknown-unknown --show-encoding %s | FileCheck -check-prefix=CHECK-BE %s
+# RUN: llvm-mc -triple powerpc64-unknown-unknown --show-encoding %s | FileCheck -check-prefix=CHECK-BE %s 
 # RUN: llvm-mc -triple powerpc64le-unknown-unknown --show-encoding %s | FileCheck -check-prefix=CHECK-LE %s
 
 # Vector facility
 # RUN: llvm-mc -triple powerpc64le-unknown-unknown --show-encoding %s | FileCheck -check-prefix=CHECK-LE %s
 
 # Vector facility
 # CHECK-BE: vmrglw 2, 3, 4                  # encoding: [0x10,0x43,0x21,0x8c]
 # CHECK-LE: vmrglw 2, 3, 4                  # encoding: [0x8c,0x21,0x43,0x10]
             vmrglw 2, 3, 4
 # CHECK-BE: vmrglw 2, 3, 4                  # encoding: [0x10,0x43,0x21,0x8c]
 # CHECK-LE: vmrglw 2, 3, 4                  # encoding: [0x8c,0x21,0x43,0x10]
             vmrglw 2, 3, 4
-
+# CHECK-BE: vmrgew 2, 3, 4                  # encoding: [0x10,0x43,0x27,0x8c]
+# CHECK-LE: vmrgew 2, 3, 4                  # encoding: [0x8c,0x27,0x43,0x10]
+            vmrgew 2, 3, 4
+# CHECK-BE: vmrgow 2, 3, 4                  # encoding: [0x10,0x43,0x26,0x8c]
+# CHECK-LE: vmrgow 2, 3, 4                  # encoding: [0x8c,0x26,0x43,0x10]
+            vmrgow 2, 3, 4
+       
 # CHECK-BE: vspltb 2, 3, 1                  # encoding: [0x10,0x41,0x1a,0x0c]
 # CHECK-LE: vspltb 2, 3, 1                  # encoding: [0x0c,0x1a,0x41,0x10]
             vspltb 2, 3, 1
 # CHECK-BE: vspltb 2, 3, 1                  # encoding: [0x10,0x41,0x1a,0x0c]
 # CHECK-LE: vspltb 2, 3, 1                  # encoding: [0x0c,0x1a,0x41,0x10]
             vspltb 2, 3, 1