// If the increment doesn't overflow, then neither the addrec nor
// the post-increment will overflow.
if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
- if (OBO->hasNoUnsignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNUW);
- if (OBO->hasNoSignedWrap())
- Flags = setFlags(Flags, SCEV::FlagNSW);
+ if (OBO->getOperand(0) == PN) {
+ if (OBO->hasNoUnsignedWrap())
+ Flags = setFlags(Flags, SCEV::FlagNUW);
+ if (OBO->hasNoSignedWrap())
+ Flags = setFlags(Flags, SCEV::FlagNSW);
+ }
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
// If the increment is an inbounds GEP, then we know the address
// space cannot be wrapped around. We cannot make any guarantee
// unsigned but we may have a negative index from the base
// pointer. We can guarantee that no unsigned wrap occurs if the
// indices form a positive value.
- if (GEP->isInBounds()) {
+ if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
Flags = setFlags(Flags, SCEV::FlagNW);
const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
; RUN: opt < %s -analyze -scalar-evolution -scalar-evolution-max-iterations=0 | FileCheck %s
; PR1101
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-unknown-linux-gnu"
+
@A = weak global [1000 x i32] zeroinitializer, align 32
+; CHECK: Printing analysis 'Scalar Evolution Analysis' for function 'test1':
; CHECK: backedge-taken count is 10000
-define void @test(i32 %N) {
+define void @test1(i32 %N) {
entry:
br label %bb3
return: ; preds = %bb5
ret void
}
+
+; PR22795
+; CHECK: Printing analysis 'Scalar Evolution Analysis' for function 'test2':
+; CHECK: %iv = phi i32 [ -1, %entry ], [ %next.1, %for.inc.1 ]
+; CHECK-NEXT: --> {-1,+,2}<%preheader> U: full-set S: full-set Exits: 13
+
+define i32 @test2() {
+entry:
+ %bins = alloca [16 x i64], align 16
+ %0 = bitcast [16 x i64]* %bins to i8*
+ call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 128, i32 16, i1 false)
+ br label %preheader
+
+preheader: ; preds = %for.inc.1, %entry
+ %v11 = phi i64 [ 0, %entry ], [ %next12.1, %for.inc.1 ]
+ %iv = phi i32 [ -1, %entry ], [ %next.1, %for.inc.1 ]
+ %cmp = icmp sgt i64 %v11, 0
+ br i1 %cmp, label %for.body, label %for.inc
+
+for.body: ; preds = %preheader
+ %zext = zext i32 %iv to i64
+ %arrayidx = getelementptr [16 x i64], [16 x i64]* %bins, i64 0, i64 %v11
+ %loaded = load i64, i64* %arrayidx, align 8
+ %add = add i64 %loaded, 1
+ %add2 = add i64 %add, %zext
+ store i64 %add2, i64* %arrayidx, align 8
+ br label %for.inc
+
+for.inc: ; preds = %for.body, %preheader
+ %next12 = add nuw nsw i64 %v11, 1
+ %next = add nsw i32 %iv, 1
+ br i1 true, label %for.body.1, label %for.inc.1
+
+end: ; preds = %for.inc.1
+ %arrayidx8 = getelementptr [16 x i64], [16 x i64]* %bins, i64 0, i64 2
+ %load = load i64, i64* %arrayidx8, align 16
+ %shr4 = lshr i64 %load, 32
+ %conv = trunc i64 %shr4 to i32
+ ret i32 %conv
+
+for.body.1: ; preds = %for.inc
+ %zext.1 = zext i32 %next to i64
+ %arrayidx.1 = getelementptr [16 x i64], [16 x i64]* %bins, i64 0, i64 %next12
+ %loaded.1 = load i64, i64* %arrayidx.1, align 8
+ %add.1 = add i64 %loaded.1, 1
+ %add2.1 = add i64 %add.1, %zext.1
+ store i64 %add2.1, i64* %arrayidx.1, align 8
+ br label %for.inc.1
+
+for.inc.1: ; preds = %for.body.1, %for.inc
+ %next12.1 = add nuw nsw i64 %next12, 1
+ %next.1 = add nuw nsw i32 %next, 1
+ %exitcond.1 = icmp eq i64 %next12.1, 16
+ br i1 %exitcond.1, label %end, label %preheader
+}
+
+; Function Attrs: nounwind
+declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) #0