[X86] - Catch extra combine opportunities for redundant imuls.
authorZia Ansari <zia.ansari@intel.com>
Thu, 22 Oct 2015 16:14:45 +0000 (16:14 +0000)
committerZia Ansari <zia.ansari@intel.com>
Thu, 22 Oct 2015 16:14:45 +0000 (16:14 +0000)
When we fold "mul ((add x, c1), c1)" -> "add ((mul x, c2), c1*c2)", we bail if (add x, c1) has multiple
users which would result in an extra add instruction.
In such cases, this patch adds a check to see if we can eliminate a multiply instruction in exchange for the extra add.

I also added the capability of doing the existing optimization with non-splatted vectors (splatted also works).

Differential Revision: http://reviews.llvm.org/D13740

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251028 91177308-0d34-0410-b5e6-96231b3b80d8

lib/CodeGen/SelectionDAG/DAGCombiner.cpp
test/CodeGen/X86/combine-multiplies.ll [new file with mode: 0644]

index d9ae60b71a8b91dec0428a0010d157da2c50ca27..c96f1a4175aceebb0440bd01f88e8cd9894543f8 100644 (file)
@@ -403,6 +403,14 @@ namespace {
       unsigned SequenceNum;
     };
 
+    /// This is a helper function for visitMUL to check the profitability
+    /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
+    /// MulNode is the original multiply, AddNode is (add x, c1),
+    /// and ConstNode is c2.
+    bool isMulAddWithConstProfitable(SDNode *MulNode,
+                                     SDValue &AddNode,
+                                     SDValue &ConstNode);
+
     /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
     /// constant build_vector of the stored constant values in Stores.
     SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
@@ -2139,14 +2147,15 @@ SDValue DAGCombiner::visitMUL(SDNode *N) {
   }
 
   // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
-  if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
-      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
-                     isa<ConstantSDNode>(N0.getOperand(1))))
-    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
-                       DAG.getNode(ISD::MUL, SDLoc(N0), VT,
-                                   N0.getOperand(0), N1),
-                       DAG.getNode(ISD::MUL, SDLoc(N1), VT,
-                                   N0.getOperand(1), N1));
+  if (isConstantIntBuildVectorOrConstantInt(N1) &&
+      N0.getOpcode() == ISD::ADD &&
+      isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
+      isMulAddWithConstProfitable(N, N0, N1))
+      return DAG.getNode(ISD::ADD, SDLoc(N), VT,
+                         DAG.getNode(ISD::MUL, SDLoc(N0), VT,
+                                     N0.getOperand(0), N1),
+                         DAG.getNode(ISD::MUL, SDLoc(N1), VT,
+                                     N0.getOperand(1), N1));
 
   // reassociate mul
   if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
@@ -10839,6 +10848,81 @@ struct BaseIndexOffset {
 };
 } // namespace
 
+// This is a helper function for visitMUL to check the profitability
+// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
+// MulNode is the original multiply, AddNode is (add x, c1),
+// and ConstNode is c2.
+//
+// If the (add x, c1) has multiple uses, we could increase
+// the number of adds if we make this transformation.
+// It would only be worth doing this if we can remove a
+// multiply in the process. Check for that here.
+// To illustrate:
+//     (A + c1) * c3
+//     (A + c2) * c3
+// We're checking for cases where we have common "c3 * A" expressions.
+bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
+                                              SDValue &AddNode,
+                                              SDValue &ConstNode) {
+  APInt Val;
+
+  // If the add only has one use, this would be OK to do.
+  if (AddNode.getNode()->hasOneUse())
+    return true;
+
+  // Walk all the users of the constant with which we're multiplying.
+  for (SDNode *Use : ConstNode->uses()) {
+
+    if (Use == MulNode) // This use is the one we're on right now. Skip it.
+      continue;
+
+    if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
+      SDNode *OtherOp;
+      SDNode *MulVar = AddNode.getOperand(0).getNode();
+
+      // OtherOp is what we're multiplying against the constant.
+      if (Use->getOperand(0) == ConstNode)
+        OtherOp = Use->getOperand(1).getNode();
+      else
+        OtherOp = Use->getOperand(0).getNode();
+
+      // Check to see if multiply is with the same operand of our "add".
+      //
+      //     ConstNode  = CONST
+      //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
+      //     ...
+      //     AddNode  = (A + c1)  <-- MulVar is A.
+      //         = AddNode * ConstNode   <-- current visiting instruction.
+      //
+      // If we make this transformation, we will have a common
+      // multiply (ConstNode * A) that we can save.
+      if (OtherOp == MulVar)
+        return true;
+
+      // Now check to see if a future expansion will give us a common
+      // multiply.
+      //
+      //     ConstNode  = CONST
+      //     AddNode    = (A + c1)
+      //     ...   = AddNode * ConstNode <-- current visiting instruction.
+      //     ...
+      //     OtherOp = (A + c2)
+      //     Use     = OtherOp * ConstNode <-- visiting Use.
+      //
+      // If we make this transformation, we will have a common
+      // multiply (CONST * A) after we also do the same transformation
+      // to the "t2" instruction.
+      if (OtherOp->getOpcode() == ISD::ADD &&
+          isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
+          OtherOp->getOperand(0).getNode() == MulVar)
+        return true;
+    }
+  }
+
+  // Didn't find a case where this would be profitable.
+  return false;
+}
+
 SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
                                                   SDLoc SL,
                                                   ArrayRef<MemOpLink> Stores,
diff --git a/test/CodeGen/X86/combine-multiplies.ll b/test/CodeGen/X86/combine-multiplies.ll
new file mode 100644 (file)
index 0000000..5e51edb
--- /dev/null
@@ -0,0 +1,163 @@
+; RUN: llc < %s -mattr=sse2 -mtriple=i386-unknown-linux-gnu | FileCheck %s
+
+; Source file looks something like this:
+;
+; typedef int AAA[100][100];
+;
+; void testCombineMultiplies(AAA a,int lll)
+; {
+;   int LOC = lll + 5;
+;
+;   a[LOC][LOC] = 11;
+;
+;   a[LOC][20] = 22;
+;   a[LOC+20][20] = 33;
+; }
+;
+; We want to make sure we don't generate 2 multiply instructions,
+; one for a[LOC][] and one for a[LOC+20]. visitMUL in DAGCombiner.cpp
+; should combine the instructions in such a way to avoid the extra
+; multiply.
+;
+; Output looks roughly like this:
+;
+;      movl    8(%esp), %eax
+;      movl    12(%esp), %ecx
+;      imull   $400, %ecx, %edx        # imm = 0x190
+;      leal    (%edx,%eax), %esi
+;      movl    $11, 2020(%esi,%ecx,4)
+;      movl    $22, 2080(%edx,%eax)
+;      movl    $33, 10080(%edx,%eax)
+;
+; CHECK-LABEL: testCombineMultiplies
+; CHECK: imull $400, [[ARG1:%[a-z]+]], [[MUL:%[a-z]+]] # imm = 0x190
+; CHECK-NEXT: leal ([[MUL]],[[ARG2:%[a-z]+]]), [[LEA:%[a-z]+]]
+; CHECK-NEXT: movl $11, {{[0-9]+}}([[LEA]],[[ARG1]],4)
+; CHECK-NEXT: movl $22, {{[0-9]+}}([[MUL]],[[ARG2]])
+; CHECK-NEXT: movl $33, {{[0-9]+}}([[MUL]],[[ARG2]])
+; CHECK: retl
+;
+
+; Function Attrs: nounwind
+define void @testCombineMultiplies([100 x i32]* nocapture %a, i32 %lll) {
+entry:
+  %add = add nsw i32 %lll, 5
+  %arrayidx1 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 %add
+  store i32 11, i32* %arrayidx1, align 4
+  %arrayidx3 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add, i32 20
+  store i32 22, i32* %arrayidx3, align 4
+  %add4 = add nsw i32 %lll, 25
+  %arrayidx6 = getelementptr inbounds [100 x i32], [100 x i32]* %a, i32 %add4, i32 20
+  store i32 33, i32* %arrayidx6, align 4
+  ret void
+}
+
+
+; Test for the same optimization on vector multiplies.
+;
+; Source looks something like this:
+;
+; typedef int v4int __attribute__((__vector_size__(16)));
+;
+; v4int x;
+; v4int v2, v3;
+; void testCombineMultiplies_splat(v4int v1) {
+;   v2 = (v1 + (v4int){ 11, 11, 11, 11 }) * (v4int) {22, 22, 22, 22};
+;   v3 = (v1 + (v4int){ 33, 33, 33, 33 }) * (v4int) {22, 22, 22, 22};
+;   x = (v1 + (v4int){ 11, 11, 11, 11 });
+; }
+;
+; Output looks something like this:
+;
+; testCombineMultiplies_splat:                              # @testCombineMultiplies_splat
+; # BB#0:                                 # %entry
+;      movdqa  .LCPI1_0, %xmm1         # xmm1 = [11,11,11,11]
+;      paddd   %xmm0, %xmm1
+;      movdqa  .LCPI1_1, %xmm2         # xmm2 = [22,22,22,22]
+;      pshufd  $245, %xmm0, %xmm3      # xmm3 = xmm0[1,1,3,3]
+;      pmuludq %xmm2, %xmm0
+;      pshufd  $232, %xmm0, %xmm0      # xmm0 = xmm0[0,2,2,3]
+;      pmuludq %xmm2, %xmm3
+;      pshufd  $232, %xmm3, %xmm2      # xmm2 = xmm3[0,2,2,3]
+;      punpckldq       %xmm2, %xmm0    # xmm0 = xmm0[0],xmm2[0],xmm0[1],xmm2[1]
+;      movdqa  .LCPI1_2, %xmm2         # xmm2 = [242,242,242,242]
+;      paddd   %xmm0, %xmm2
+;      paddd   .LCPI1_3, %xmm0
+;      movdqa  %xmm2, v2
+;      movdqa  %xmm0, v3
+;      movdqa  %xmm1, x
+;      retl
+;
+; Again, we want to make sure we don't generate two different multiplies.
+; We should have a single multiply for "v1 * {22, 22, 22, 22}" (made up of two
+; pmuludq instructions), followed by two adds. Without this optimization, we'd
+; do 2 adds, followed by 2 multiplies (i.e. 4 pmuludq instructions).
+;
+; CHECK-LABEL: testCombineMultiplies_splat
+; CHECK:       movdqa .LCPI1_0, [[C11:%xmm[0-9]]]
+; CHECK-NEXT:  paddd %xmm0, [[C11]]
+; CHECK-NEXT:  movdqa .LCPI1_1, [[C22:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
+; CHECK-NEXT:  pmuludq [[C22]], [[T2:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
+; CHECK-NEXT:  pmuludq [[C22]], [[T4:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $232, [[T4]], [[T5:%xmm[0-9]]]
+; CHECK-NEXT:  punpckldq [[T5]], [[T6:%xmm[0-9]]]
+; CHECK-NEXT:  movdqa .LCPI1_2, [[C242:%xmm[0-9]]]
+; CHECK-NEXT:  paddd [[T6]], [[C242]]
+; CHECK-NEXT:  paddd .LCPI1_3, [[C726:%xmm[0-9]]]
+; CHECK-NEXT:  movdqa [[C242]], v2
+; CHECK-NEXT:  [[C726]], v3
+; CHECK-NEXT:  [[C11]], x
+; CHECK-NEXT:  retl 
+
+@v2 = common global <4 x i32> zeroinitializer, align 16
+@v3 = common global <4 x i32> zeroinitializer, align 16
+@x = common global <4 x i32> zeroinitializer, align 16
+
+; Function Attrs: nounwind
+define void @testCombineMultiplies_splat(<4 x i32> %v1) {
+entry:
+  %add1 = add <4 x i32> %v1, <i32 11, i32 11, i32 11, i32 11>
+  %mul1 = mul <4 x i32> %add1, <i32 22, i32 22, i32 22, i32 22>
+  %add2 = add <4 x i32> %v1, <i32 33, i32 33, i32 33, i32 33>
+  %mul2 = mul <4 x i32> %add2, <i32 22, i32 22, i32 22, i32 22>
+  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
+  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
+  store <4 x i32> %add1, <4 x i32>* @x, align 16
+  ret void
+}
+
+; Finally, check the non-splatted vector case. This is very similar
+; to the previous test case, except for the vector values.
+;
+; CHECK-LABEL: testCombineMultiplies_non_splat
+; CHECK:       movdqa .LCPI2_0, [[C11:%xmm[0-9]]]
+; CHECK-NEXT:  paddd %xmm0, [[C11]]
+; CHECK-NEXT:  movdqa .LCPI2_1, [[C22:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $245, %xmm0, [[T1:%xmm[0-9]]]
+; CHECK-NEXT:  pmuludq [[C22]], [[T2:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $232, [[T2]], [[T3:%xmm[0-9]]]
+; CHECK-NEXT:  pshufd $245, [[C22]], [[T7:%xmm[0-9]]]
+; CHECK-NEXT:  pmuludq [[T1]], [[T7]]
+; CHECK-NEXT:  pshufd $232, [[T7]], [[T5:%xmm[0-9]]]
+; CHECK-NEXT:  punpckldq [[T5]], [[T6:%xmm[0-9]]]
+; CHECK-NEXT:  movdqa .LCPI2_2, [[C242:%xmm[0-9]]]
+; CHECK-NEXT:  paddd [[T6]], [[C242]]
+; CHECK-NEXT:  paddd .LCPI2_3, [[C726:%xmm[0-9]]]
+; CHECK-NEXT:  movdqa [[C242]], v2
+; CHECK-NEXT:  [[C726]], v3
+; CHECK-NEXT:  [[C11]], x
+; CHECK-NEXT:  retl 
+; Function Attrs: nounwind
+define void @testCombineMultiplies_non_splat(<4 x i32> %v1) {
+entry:
+  %add1 = add <4 x i32> %v1, <i32 11, i32 22, i32 33, i32 44>
+  %mul1 = mul <4 x i32> %add1, <i32 22, i32 33, i32 44, i32 55>
+  %add2 = add <4 x i32> %v1, <i32 33, i32 44, i32 55, i32 66>
+  %mul2 = mul <4 x i32> %add2, <i32 22, i32 33, i32 44, i32 55>
+  store <4 x i32> %mul1, <4 x i32>* @v2, align 16
+  store <4 x i32> %mul2, <4 x i32>* @v3, align 16
+  store <4 x i32> %add1, <4 x i32>* @x, align 16
+  ret void
+}