unsigned getMaxStoresPerMemmove() const { return maxStoresPerMemmove; }
/// This function returns true if the target allows unaligned memory accesses.
- /// This is used, for example, in situations where an array copy/move/set is
- /// converted to a sequence of store operations. It's use helps to ensure that
- /// such replacements don't generate code that causes an alignment error
- /// (trap) on the target machine.
+ /// of the specified type. This is used, for example, in situations where an
+ /// array copy/move/set is converted to a sequence of store operations. It's
+ /// use helps to ensure that such replacements don't generate code that causes
+ /// an alignment error (trap) on the target machine.
/// @brief Determine if the target supports unaligned memory accesses.
- bool allowsUnalignedMemoryAccesses() const {
- return allowUnalignedMemoryAccesses;
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
+ return false;
}
/// This function returns true if the target would benefit from code placement
/// @brief Specify maximum bytes of store instructions per memmove call.
unsigned maxStoresPerMemmove;
- /// This field specifies whether the target machine permits unaligned memory
- /// accesses. This is used, for example, to determine the size of store
- /// operations when copying small arrays and other similar tasks.
- /// @brief Indicate whether the target permits unaligned memory accesses.
- bool allowUnalignedMemoryAccesses;
-
/// This field specifies whether the target can benefit from code placement
/// optimization.
bool benefitFromCodePlacementOpt;
return SDValue();
}
+bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
+ if (!Subtarget->hasV6Ops())
+ // Pre-v6 does not support unaligned mem access.
+ return false;
+ else if (!Subtarget->hasV6Ops()) {
+ // v6 may or may not support unaligned mem access.
+ if (!Subtarget->isTargetDarwin())
+ return false;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ return true;
+ // FIXME: VLD1 etc with standard alignment is legal.
+ }
+}
+
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
if (V < 0)
return false;
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ /// FIXME: Add getOptimalMemOpType to implement memcpy with NEON?
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const;
+
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const;
+
+
ConstraintType getConstraintType(const std::string &Constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
- allowUnalignedMemoryAccesses = true; // x86 supports it!
setPrefLoopAlignment(16);
benefitFromCodePlacementOpt = true;
}
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. It returns EVT::iAny if SelectionDAG should be responsible for
/// determining it.
- virtual
- EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
- bool isSrcConst, bool isSrcStr,
- SelectionDAG &DAG) const;
+ virtual EVT getOptimalMemOpType(uint64_t Size, unsigned Align,
+ bool isSrcConst, bool isSrcStr,
+ SelectionDAG &DAG) const;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
+ return true;
+ }
/// LowerOperation - Provide custom lowering hooks for some operations.
///
LowerLOAD(SDValue Op, SelectionDAG &DAG)
{
LoadSDNode *LD = cast<LoadSDNode>(Op);
- assert(LD->getExtensionType() == ISD::NON_EXTLOAD && "Unexpected extension type");
+ assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
+ "Unexpected extension type");
assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
- if (allowsUnalignedMemoryAccesses()) {
+ if (allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
return SDValue();
}
unsigned ABIAlignment = getTargetData()->
StoreSDNode *ST = cast<StoreSDNode>(Op);
assert(!ST->isTruncatingStore() && "Unexpected store type");
assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
- if (allowsUnalignedMemoryAccesses()) {
+ if (allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
return SDValue();
}
unsigned ABIAlignment = getTargetData()->
case ISD::STORE: {
// Replace unaligned store of unaligned load with memmove.
StoreSDNode *ST = cast<StoreSDNode>(N);
- if (!DCI.isBeforeLegalize() || allowsUnalignedMemoryAccesses() ||
+ if (!DCI.isBeforeLegalize() ||
+ allowsUnalignedMemoryAccesses(ST->getMemoryVT()) ||
ST->isVolatile() || ST->isIndexed()) {
break;
}
-; RUN: llvm-as < %s | \
-; RUN: llc -march=arm -o %t -f
-; RUN: grep ldrb %t | count 4
-; RUN: grep strb %t | count 4
+; RUN: llvm-as < %s | llc -march=arm | FileCheck %s -check-prefix=GENERIC
+; RUN: llvm-as < %s | llc -mtriple=armv6-apple-darwin | FileCheck %s -check-prefix=DARWIN_V6
+; RUN: llvm-as < %s | llc -march=arm -mattr=+v7a | FileCheck %s -check-prefix=V7
+; rdar://7113725
- %struct.p = type <{ i8, i32 }>
-@t = global %struct.p <{ i8 1, i32 10 }> ; <%struct.p*> [#uses=1]
-@u = weak global %struct.p zeroinitializer ; <%struct.p*> [#uses=1]
-
-define i32 @main() {
+define arm_apcscc void @t(i8* nocapture %a, i8* nocapture %b) nounwind {
entry:
- %tmp3 = load i32* getelementptr (%struct.p* @t, i32 0, i32 1), align 1 ; <i32> [#uses=2]
- store i32 %tmp3, i32* getelementptr (%struct.p* @u, i32 0, i32 1), align 1
- ret i32 %tmp3
+; GENERIC: t:
+; GENERIC: ldrb r2
+; GENERIC: ldrb r3
+; GENERIC: ldrb r12
+; GENERIC: ldrb r1
+; GENERIC: strb r1
+; GENERIC: strb r12
+; GENERIC: strb r3
+; GENERIC: strb r2
+
+; DARWIN_V6: t:
+; DARWIN_V6: ldr r1
+; DARWIN_V6: str r1
+
+; V7: t:
+; V7: ldr r1
+; V7: str r1
+ %__src1.i = bitcast i8* %b to i32* ; <i32*> [#uses=1]
+ %__dest2.i = bitcast i8* %a to i32* ; <i32*> [#uses=1]
+ %tmp.i = load i32* %__src1.i, align 1 ; <i32> [#uses=1]
+ store i32 %tmp.i, i32* %__dest2.i, align 1
+ ret void
}