/// representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
-SaturatingAdd(T X, T Y, bool &ResultOverflowed) {
+SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
+ bool Dummy;
+ bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 29
T Z = X + Y;
- ResultOverflowed = (Z < X || Z < Y);
- if (ResultOverflowed)
+ Overflowed = (Z < X || Z < Y);
+ if (Overflowed)
return std::numeric_limits<T>::max();
else
return Z;
}
-/// \brief Add two unsigned integers, X and Y, of type T.
-/// Clamp the result to the maximum representable value of T on overflow.
-template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
-SaturatingAdd(T X, T Y) {
- bool ResultOverflowed;
- return SaturatingAdd(X, Y, ResultOverflowed);
-}
-
/// \brief Multiply two unsigned integers, X and Y, of type T.
/// Clamp the result to the maximum representable value of T on overflow.
/// ResultOverflowed indicates if the result is larger than the maximum
/// representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
-SaturatingMultiply(T X, T Y, bool &ResultOverflowed) {
+SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
+ bool Dummy;
+ bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
+
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that
// because it fails for uint16_t (where multiplication can have undefined
// behavior due to promotion to int), and requires a division in addition
// to the multiplication.
- ResultOverflowed = false;
+ Overflowed = false;
// Log2(Z) would be either Log2Z or Log2Z + 1.
// Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
return X * Y;
}
if (Log2Z > Log2Max) {
- ResultOverflowed = true;
+ Overflowed = true;
return Max;
}
// that on at the end.
T Z = (X >> 1) * Y;
if (Z & ~(Max >> 1)) {
- ResultOverflowed = true;
+ Overflowed = true;
return Max;
}
Z <<= 1;
return Z;
}
-/// \brief Multiply two unsigned integers, X and Y, of type T.
-/// Clamp the result to the maximum representable value of T on overflow.
-template <typename T>
-typename std::enable_if<std::is_unsigned<T>::value, T>::type
-SaturatingMultiply(T X, T Y) {
- bool ResultOverflowed;
- return SaturatingMultiply(X, Y, ResultOverflowed);
-}
-
extern const float huge_valf;
} // End llvm namespace
bool ResultOverflowed;
EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2)));
- EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2), ResultOverflowed));
+ EXPECT_EQ(T(3), SaturatingAdd(T(1), T(2), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(Max, T(1)));
- EXPECT_EQ(Max, SaturatingAdd(Max, T(1), ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingAdd(Max, T(1), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1)));
- EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1), ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingAdd(T(1), T(Max - 1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(T(1), Max));
- EXPECT_EQ(Max, SaturatingAdd(T(1), Max, ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingAdd(T(1), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingAdd(Max, Max));
- EXPECT_EQ(Max, SaturatingAdd(Max, Max, ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingAdd(Max, Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
}
// Test basic multiplication.
EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3)));
- EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3), ResultOverflowed));
+ EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2)));
- EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2), ResultOverflowed));
+ EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
// Test multiplication by zero.
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0)));
- EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0), ResultOverflowed));
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0)));
- EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0), ResultOverflowed));
+ EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1)));
- EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1), ResultOverflowed));
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0)));
- EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0), ResultOverflowed));
+ EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0), &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max));
- EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max, ResultOverflowed));
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max, &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
// Test multiplication by maximum value.
EXPECT_EQ(Max, SaturatingMultiply(Max, T(2)));
- EXPECT_EQ(Max, SaturatingMultiply(Max, T(2), ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingMultiply(Max, T(2), &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiply(T(2), Max));
- EXPECT_EQ(Max, SaturatingMultiply(T(2), Max, ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingMultiply(T(2), Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
EXPECT_EQ(Max, SaturatingMultiply(Max, Max));
- EXPECT_EQ(Max, SaturatingMultiply(Max, Max, ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingMultiply(Max, Max, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
// Test interesting boundary conditions for algorithm -
if(OverflowExpected) {
EXPECT_EQ(Max, SaturatingMultiply(X, Y));
- EXPECT_EQ(Max, SaturatingMultiply(X, Y, ResultOverflowed));
+ EXPECT_EQ(Max, SaturatingMultiply(X, Y, &ResultOverflowed));
EXPECT_TRUE(ResultOverflowed);
} else {
EXPECT_EQ(X * Y, SaturatingMultiply(X, Y));
- EXPECT_EQ(X * Y, SaturatingMultiply(X, Y, ResultOverflowed));
+ EXPECT_EQ(X * Y, SaturatingMultiply(X, Y, &ResultOverflowed));
EXPECT_FALSE(ResultOverflowed);
}
}