APFloat(const fltSemantics &, integerPart);
APFloat(const fltSemantics &, fltCategory, bool negative);
APFloat(const fltSemantics &, uninitializedTag);
+ APFloat(const fltSemantics &, const APInt &);
explicit APFloat(double d);
explicit APFloat(float f);
- explicit APFloat(const APInt &, bool isIEEE = false);
APFloat(const APFloat &);
~APFloat();
APInt convertQuadrupleAPFloatToAPInt() const;
APInt convertF80LongDoubleAPFloatToAPInt() const;
APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
- void initFromAPInt(const APInt& api, bool isIEEE = false);
+ void initFromAPInt(const fltSemantics *Sem, const APInt& api);
void initFromHalfAPInt(const APInt& api);
void initFromFloatAPInt(const APInt& api);
void initFromDoubleAPInt(const APInt& api);
}
}
+ /// Returns an APFloat semantics tag appropriate for the given type. If VT is
+ /// a vector type, the element semantics are returned.
+ static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
+ switch (VT.getScalarType().getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unknown FP format");
+ case MVT::f16: return APFloat::IEEEhalf;
+ case MVT::f32: return APFloat::IEEEsingle;
+ case MVT::f64: return APFloat::IEEEdouble;
+ case MVT::f80: return APFloat::x87DoubleExtended;
+ case MVT::f128: return APFloat::IEEEquad;
+ case MVT::ppcf128: return APFloat::PPCDoubleDouble;
+ }
+ }
+
/// AssignOrdering - Assign an order to the SDNode.
void AssignOrdering(const SDNode *SD, unsigned Order);
#ifndef LLVM_IR_TYPE_H
#define LLVM_IR_TYPE_H
+#include "llvm/ADT/APFloat.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
namespace llvm {
getTypeID() == PPC_FP128TyID;
}
+ const fltSemantics &getFltSemantics() const {
+ switch (getTypeID()) {
+ case HalfTyID: return APFloat::IEEEhalf;
+ case FloatTyID: return APFloat::IEEEsingle;
+ case DoubleTyID: return APFloat::IEEEdouble;
+ case X86_FP80TyID: return APFloat::x87DoubleExtended;
+ case FP128TyID: return APFloat::IEEEquad;
+ case PPC_FP128TyID: return APFloat::PPCDoubleDouble;
+ default: llvm_unreachable("Invalid floating type");
+ }
+ }
+
/// isX86_MMXTy - Return true if this is X86 MMX.
bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::convert_from_fp16: {
- APFloat Val(Op->getValue());
+ APFloat Val(APFloat::IEEEhalf, Op->getValue());
bool lost = false;
APFloat::opStatus status =
case 'K':
// F80HexFPConstant - x87 long double in hexadecimal format (10 bytes)
FP80HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APInt(80, Pair));
+ APFloatVal = APFloat(APFloat::x87DoubleExtended, APInt(80, Pair));
return lltok::APFloat;
case 'L':
// F128HexFPConstant - IEEE 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APInt(128, Pair), true);
+ APFloatVal = APFloat(APFloat::IEEEquad, APInt(128, Pair));
return lltok::APFloat;
case 'M':
// PPC128HexFPConstant - PowerPC 128-bit in hexadecimal format (16 bytes)
HexToIntPair(TokStart+3, CurPtr, Pair);
- APFloatVal = APFloat(APInt(128, Pair));
+ APFloatVal = APFloat(APFloat::PPCDoubleDouble, APInt(128, Pair));
return lltok::APFloat;
case 'H':
- APFloatVal = APFloat(APInt(16,HexIntToVal(TokStart+3, CurPtr)));
+ APFloatVal = APFloat(APFloat::IEEEhalf,
+ APInt(16,HexIntToVal(TokStart+3, CurPtr)));
return lltok::APFloat;
}
}
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy->isHalfTy())
- V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
+ APInt(16, (uint16_t)Record[0])));
else if (CurTy->isFloatTy())
- V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
+ APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
- V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
- V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
+ V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
+ APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
- V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
+ V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
+ APInt(128, Record)));
else if (CurTy->isPPC_FP128Ty())
- V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
+ V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
+ APInt(128, Record)));
else
V = UndefValue::get(CurTy);
break;
SDValue True, False;
EVT VT = Node->getOperand(0).getValueType();
EVT NVT = Node->getValueType(0);
- APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
+ APFloat apf(DAG.EVTToAPFloatSemantics(VT),
+ APInt::getNullValue(VT.getSizeInBits()));
APInt x = APInt::getSignBit(NVT.getSizeInBits());
(void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
Tmp1 = DAG.getConstantFP(apf, VT);
assert(NVT.getSizeInBits() == integerPartWidth &&
"Do not know how to expand this float constant!");
APInt C = cast<ConstantFPSDNode>(N)->getValueAPF().bitcastToAPInt();
- Lo = DAG.getConstantFP(APFloat(APInt(integerPartWidth, C.getRawData()[1])),
+ Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
+ APInt(integerPartWidth, C.getRawData()[1])),
NVT);
- Hi = DAG.getConstantFP(APFloat(APInt(integerPartWidth, C.getRawData()[0])),
+ Hi = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
+ APInt(integerPartWidth, C.getRawData()[0])),
NVT);
}
SDValue &Hi) {
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
Hi = DAG.getNode(ISD::FP_EXTEND, N->getDebugLoc(), NVT, N->getOperand(0));
- Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
+ Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
+ APInt(NVT.getSizeInBits(), 0)), NVT);
}
void DAGTypeLegalizer::ExpandFloatRes_FPOW(SDNode *N,
Chain = Hi.getValue(1);
// The low part is zero.
- Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
+ Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
+ APInt(NVT.getSizeInBits(), 0)), NVT);
// Modified the chain - switch anything that used the old chain to use the
// new one.
// The integer can be represented exactly in an f64.
Src = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl,
MVT::i32, Src);
- Lo = DAG.getConstantFP(APFloat(APInt(NVT.getSizeInBits(), 0)), NVT);
+ Lo = DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(NVT),
+ APInt(NVT.getSizeInBits(), 0)), NVT);
Hi = DAG.getNode(ISD::SINT_TO_FP, dl, NVT, Src);
} else {
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
}
Lo = DAG.getNode(ISD::FADD, dl, VT, Hi,
- DAG.getConstantFP(APFloat(APInt(128, Parts)),
+ DAG.getConstantFP(APFloat(APFloat::PPCDoubleDouble,
+ APInt(128, Parts)),
MVT::ppcf128));
Lo = DAG.getNode(ISD::SELECT_CC, dl, VT, Src, DAG.getConstant(0, SrcVT),
Lo, Hi, DAG.getCondCode(ISD::SETLT));
assert(N->getOperand(0).getValueType() == MVT::ppcf128 &&
"Logic only correct for ppcf128!");
const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
- APFloat APF = APFloat(APInt(128, TwoE31));
+ APFloat APF = APFloat(APFloat::PPCDoubleDouble, APInt(128, TwoE31));
SDValue Tmp = DAG.getConstantFP(APF, MVT::ppcf128);
// X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
// FIXME: generated code sucks.
return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
}
-static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
- switch (VT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unknown FP format");
- case MVT::f32: return &APFloat::IEEEsingle;
- case MVT::f64: return &APFloat::IEEEdouble;
- case MVT::f80: return &APFloat::x87DoubleExtended;
- case MVT::f128: return &APFloat::IEEEquad;
- case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
- }
-}
-
SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
SDValue Op = N->getOperand(0);
EVT SrcVT = Op.getValueType();
// The following optimization is valid only if every value in SrcVT (when
// treated as signed) is representable in DstVT. Check that the mantissa
// size of DstVT is >= than the number of bits in SrcVT -1.
- const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
- if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
+ const fltSemantics &sem = DAG.EVTToAPFloatSemantics(DstVT);
+ if (APFloat::semanticsPrecision(sem) >= SrcVT.getSizeInBits()-1 &&
TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
// Do a signed conversion then adjust the result.
SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
return Res;
}
-static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
- switch (VT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unknown FP format");
- case MVT::f16: return &APFloat::IEEEhalf;
- case MVT::f32: return &APFloat::IEEEsingle;
- case MVT::f64: return &APFloat::IEEEdouble;
- case MVT::f80: return &APFloat::x87DoubleExtended;
- case MVT::f128: return &APFloat::IEEEquad;
- case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
- }
-}
-
// Default null implementations of the callbacks.
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
- (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
+ (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
+ APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
EltVT==MVT::f16) {
bool ignored;
APFloat apf = APFloat(Val);
- apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
+ apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
&ignored);
return getConstantFP(apf, VT, isTarget);
} else
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
- APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
+ APFloat apf(EVTToAPFloatSemantics(VT),
+ APInt::getNullValue(VT.getSizeInBits()));
(void)apf.convertFromAPInt(Val,
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
}
case ISD::BITCAST:
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(Val), VT);
+ return getConstantFP(APFloat(APFloat::IEEEsingle, Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(Val), VT);
+ return getConstantFP(APFloat(APFloat::IEEEdouble, Val), VT);
break;
case ISD::BSWAP:
return getConstant(Val.byteSwap(), VT);
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
- (void)V.convert(*EVTToAPFloatSemantics(VT),
+ (void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
- (void)V.convert(*EVTToAPFloatSemantics(VT),
+ (void)V.convert(EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
if (VT.isInteger())
return DAG.getConstant(Val, VT);
- return DAG.getConstantFP(APFloat(Val), VT);
+ return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), VT);
}
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
/// getF32Constant - Get 32-bit floating point constant.
static SDValue
getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
+ return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
+ MVT::f32);
}
/// expandExp - Lower an exp intrinsic. Handles the special sequences for
else if (Op0->getType()->isDoubleTy())
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
else if (Op0->getType()->isX86_FP80Ty()) {
- APFloat apf = APFloat(GV.IntVal);
+ APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal);
uint64_t v;
bool ignored;
(void)apf.convertToInteger(&v, BitWidth,
case Type::X86_FP80TyID:
case Type::PPC_FP128TyID:
case Type::FP128TyID: {
- APFloat apfLHS = APFloat(LHS.IntVal);
+ const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
+ APFloat apfLHS = APFloat(Sem, LHS.IntVal);
switch (CE->getOpcode()) {
default: llvm_unreachable("Invalid long double opcode");
case Instruction::FAdd:
- apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FSub:
- apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ apfLHS.subtract(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FMul:
- apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ apfLHS.multiply(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FDiv:
- apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ apfLHS.divide(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
case Instruction::FRem:
- apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
+ apfLHS.mod(APFloat(Sem, RHS.IntVal),
+ APFloat::rmNearestTiesToEven);
GV.IntVal = apfLHS.bitcastToAPInt();
break;
}
case Type::PPC_FP128TyID:
case Type::X86_FP80TyID:
case Type::FP128TyID:
- C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
+ C = ConstantFP::get(F->getContext(), APFloat(ArgTy->getFltSemantics(),
+ AV.IntVal));
break;
case Type::PointerTyID:
void *ArgPtr = GVTOP(AV);
if (DestTy->isFloatingPointTy())
return ConstantFP::get(DestTy->getContext(),
- APFloat(CI->getValue(),
- !DestTy->isPPC_FP128Ty()));
+ APFloat(DestTy->getFltSemantics(),
+ CI->getValue()));
// Otherwise, can't fold this (vector?)
return 0;
case Instruction::SIToFP:
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt api = CI->getValue();
- APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()),
- !DestTy->isPPC_FP128Ty() /* isEEEE */);
+ APFloat apf(DestTy->getFltSemantics(),
+ APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
(void)apf.convertFromAPInt(api,
opc==Instruction::SIToFP,
APFloat::rmNearestTiesToEven);
APFloat::getZero(APFloat::IEEEquad));
case Type::PPC_FP128TyID:
return ConstantFP::get(Ty->getContext(),
- APFloat(APInt::getNullValue(128)));
+ APFloat(APFloat::PPCDoubleDouble,
+ APInt::getNullValue(128)));
case Type::PointerTyID:
return ConstantPointerNull::get(cast<PointerType>(Ty));
case Type::StructTyID:
// Unless we have a special case, add in second double.
if (category == fcNormal) {
- APFloat v(APInt(64, i2));
+ APFloat v(IEEEdouble, APInt(64, i2));
fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
assert(fs == opOK && !losesInfo);
(void)fs;
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
/// when the size is anything else).
void
-APFloat::initFromAPInt(const APInt& api, bool isIEEE)
+APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
{
- if (api.getBitWidth() == 16)
+ if (Sem == &IEEEhalf)
return initFromHalfAPInt(api);
- else if (api.getBitWidth() == 32)
+ if (Sem == &IEEEsingle)
return initFromFloatAPInt(api);
- else if (api.getBitWidth()==64)
+ if (Sem == &IEEEdouble)
return initFromDoubleAPInt(api);
- else if (api.getBitWidth()==80)
+ if (Sem == &x87DoubleExtended)
return initFromF80LongDoubleAPInt(api);
- else if (api.getBitWidth()==128)
- return (isIEEE ?
- initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
- else
- llvm_unreachable(0);
+ if (Sem == &IEEEquad)
+ return initFromQuadrupleAPInt(api);
+ if (Sem == &PPCDoubleDouble)
+ return initFromPPCDoubleDoubleAPInt(api);
+
+ llvm_unreachable(0);
}
APFloat
APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
{
- return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
+ switch (BitWidth) {
+ case 16:
+ return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
+ case 32:
+ return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
+ case 64:
+ return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
+ case 80:
+ return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
+ case 128:
+ if (isIEEE)
+ return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
+ return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
+ default:
+ llvm_unreachable("Unknown floating bit width");
+ }
}
APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
return Val;
}
-APFloat::APFloat(const APInt& api, bool isIEEE) {
- initFromAPInt(api, isIEEE);
+APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
+ initFromAPInt(&Sem, API);
}
APFloat::APFloat(float f) {
- initFromAPInt(APInt::floatToBits(f));
+ initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
}
APFloat::APFloat(double d) {
- initFromAPInt(APInt::doubleToBits(d));
+ initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
}
namespace {
SmallVector<Constant*,2> CV1;
CV1.push_back(
- ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
- ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
}
Constant *C;
if (EltVT == MVT::f64)
- C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, ~(1ULL << 63))));
else
- C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
+ APInt(32, ~(1U << 31))));
C = ConstantVector::getSplat(NumElts, C);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
}
Constant *C;
if (EltVT == MVT::f64)
- C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 1ULL << 63)));
else
- C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
+ C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
+ APInt(32, 1U << 31)));
C = ConstantVector::getSplat(NumElts, C);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
// First get the sign bit of second operand.
SmallVector<Constant*,4> CV;
if (SrcVT == MVT::f64) {
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
+ const fltSemantics &Sem = APFloat::IEEEdouble;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
} else {
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ const fltSemantics &Sem = APFloat::IEEEsingle;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
}
Constant *C = ConstantVector::get(CV);
SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
// Clear first operand sign bit.
CV.clear();
if (VT == MVT::f64) {
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
+ const fltSemantics &Sem = APFloat::IEEEdouble;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
+ APInt(64, ~(1ULL << 63)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
} else {
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
- CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ const fltSemantics &Sem = APFloat::IEEEsingle;
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
+ APInt(32, ~(1U << 31)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);