The AArch64 target lowering for [zs]ext of vectors is set up to handle
input simple types and expects the generic SDag path to do something reasonable
with anything that's not a simple type. The code, however, was only
checking that the result type was a simple type and assuming that
implied that the source type would also be a simple type. That's not a
valid assumption, as operations like "zext <1 x i1> %0 to <1 x i32>"
demonstrate. The fix is to simply explicitly validate the source type
as well as the result type.
PR20791
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216689
91177308-0d34-0410-b5e6-
96231b3b80d8
// If the vector type isn't a simple VT, it's beyond the scope of what
// we're worried about here. Let legalization do its thing and hope for
// the best.
- if (!ResVT.isSimple())
+ SDValue Src = N->getOperand(0);
+ EVT SrcVT = Src->getValueType(0);
+ if (!ResVT.isSimple() || !SrcVT.isSimple())
return SDValue();
- SDValue Src = N->getOperand(0);
- MVT SrcVT = Src->getValueType(0).getSimpleVT();
// If the source VT is a 64-bit vector, we can play games and get the
// better results we want.
if (SrcVT.getSizeInBits() != 64)
store %T1_30 %r, %T1_30* %p1
ret void
}
+
+; Extend from v1i1 was crashing things (PR20791). Make sure we do something
+; sensible instead.
+define <1 x i32> @autogen_SD7918() {
+; CHECK-LABEL: autogen_SD7918
+; CHECK: movi d0, #0000000000000000
+; CHECK-NEXT: ret
+ %I29 = insertelement <1 x i1> zeroinitializer, i1 false, i32 0
+ %ZE = zext <1 x i1> %I29 to <1 x i32>
+ ret <1 x i32> %ZE
+}