}
private:
- bool EliminateFallThrough(Function &F);
- bool EliminateMostlyEmptyBlocks(Function &F);
- bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
- void EliminateMostlyEmptyBlock(BasicBlock *BB);
- bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT);
- bool OptimizeInst(Instruction *I, bool& ModifiedDT);
- bool OptimizeMemoryInst(Instruction *I, Value *Addr,
+ bool eliminateFallThrough(Function &F);
+ bool eliminateMostlyEmptyBlocks(Function &F);
+ bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
+ void eliminateMostlyEmptyBlock(BasicBlock *BB);
+ bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT);
+ bool optimizeInst(Instruction *I, bool& ModifiedDT);
+ bool optimizeMemoryInst(Instruction *I, Value *Addr,
Type *AccessTy, unsigned AS);
- bool OptimizeInlineAsmInst(CallInst *CS);
- bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT);
- bool MoveExtToFormExtLoad(Instruction *&I);
- bool OptimizeExtUses(Instruction *I);
- bool OptimizeSelectInst(SelectInst *SI);
- bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
- bool OptimizeExtractElementInst(Instruction *Inst);
- bool DupRetToEnableTailCallOpts(BasicBlock *BB);
- bool PlaceDbgValues(Function &F);
+ bool optimizeInlineAsmInst(CallInst *CS);
+ bool optimizeCallInst(CallInst *CI, bool& ModifiedDT);
+ bool moveExtToFormExtLoad(Instruction *&I);
+ bool optimizeExtUses(Instruction *I);
+ bool optimizeSelectInst(SelectInst *SI);
+ bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
+ bool optimizeExtractElementInst(Instruction *Inst);
+ bool dupRetToEnableTailCallOpts(BasicBlock *BB);
+ bool placeDbgValues(Function &F);
bool sinkAndCmp(Function &F);
- bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
+ bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI,
Instruction *&Inst,
const SmallVectorImpl<Instruction *> &Exts,
unsigned CreatedInstCost);
// Eliminate blocks that contain only PHI nodes and an
// unconditional branch.
- EverMadeChange |= EliminateMostlyEmptyBlocks(F);
+ EverMadeChange |= eliminateMostlyEmptyBlocks(F);
// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
- EverMadeChange |= PlaceDbgValues(F);
+ EverMadeChange |= placeDbgValues(F);
// If there is a mask, compare against zero, and branch that can be combined
// into a single target instruction, push the mask and compare into branch
for (Function::iterator I = F.begin(); I != F.end(); ) {
BasicBlock *BB = I++;
bool ModifiedDTOnIteration = false;
- MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration);
+ MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
// Restart BB iteration if the dominator tree of the Function was changed
if (ModifiedDTOnIteration)
// Merge pairs of basic blocks with unconditional branches, connected by
// a single edge.
if (EverMadeChange || MadeChange)
- MadeChange |= EliminateFallThrough(F);
+ MadeChange |= eliminateFallThrough(F);
EverMadeChange |= MadeChange;
}
/// Merge basic blocks which are connected by a single edge, where one of the
/// basic blocks has a single successor pointing to the other basic block,
/// which has a single predecessor.
-bool CodeGenPrepare::EliminateFallThrough(Function &F) {
+bool CodeGenPrepare::eliminateFallThrough(Function &F) {
bool Changed = false;
// Scan all of the blocks in the function, except for the entry block.
for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
/// edges in ways that are non-optimal for isel. Start by eliminating these
/// blocks so we can split them the way we want them.
-bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
+bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
bool MadeChange = false;
// Note that this intentionally skips the entry block.
for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
if (DestBB == BB)
continue;
- if (!CanMergeBlocks(BB, DestBB))
+ if (!canMergeBlocks(BB, DestBB))
continue;
- EliminateMostlyEmptyBlock(BB);
+ eliminateMostlyEmptyBlock(BB);
MadeChange = true;
}
return MadeChange;
/// Return true if we can merge BB into DestBB if there is a single
/// unconditional branch between them, and BB contains no other non-phi
/// instructions.
-bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
+bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
const BasicBlock *DestBB) const {
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
// the successor. If there are more complex condition (e.g. preheaders),
/// Eliminate a basic block that has only phi's and an unconditional branch in
/// it.
-void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
+void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
BasicBlock *DestBB = BI->getSuccessor(0);
CI->eraseFromParent();
}
-bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) {
+bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) {
BasicBlock *BB = CI->getParent();
// Lower inline assembly if we can.
return true;
}
// Sink address computing for memory operands into the block.
- if (OptimizeInlineAsmInst(CI))
+ if (optimizeInlineAsmInst(CI))
return true;
}
Type *AccessTy;
if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace))
while (!PtrOps.empty())
- if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
+ if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace))
return true;
}
}
/// %tmp2 = tail call i32 @f2()
/// ret i32 %tmp2
/// @endcode
-bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
+bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
if (!TLI)
return false;
bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS,
MemoryInst, Result, InsertedInsts,
- PromotedInsts, TPT).MatchAddr(V, 0);
+ PromotedInsts, TPT).matchAddr(V, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
return Result;
}
private:
- bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
- bool MatchAddr(Value *V, unsigned Depth);
- bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
+ bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+ bool matchAddr(Value *V, unsigned Depth);
+ bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
bool *MovedAway = nullptr);
- bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+ bool isProfitableToFoldIntoAddressingMode(Instruction *I,
ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter);
- bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
- bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost,
+ bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+ bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
Value *PromotedOperand) const;
};
/// Try adding ScaleReg*Scale to the current addressing mode.
/// Return true and update AddrMode if this addr mode is legal for the target,
/// false if not.
-bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
unsigned Depth) {
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
// mode. Just process that directly.
if (Scale == 1)
- return MatchAddr(ScaleReg, Depth);
+ return matchAddr(ScaleReg, Depth);
// If the scale is 0, it takes nothing to add this.
if (Scale == 0)
/// matched in the addressing mode the promotion.
/// \p PromotedOperand is the value that has been promoted.
/// \return True if the promotion is profitable, false otherwise.
-bool AddressingModeMatcher::IsPromotionProfitable(
+bool AddressingModeMatcher::isPromotionProfitable(
unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
// The cost of the new extensions is greater than the cost of the
/// This state can happen when AddrInst is a sext, since it may be moved away.
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
/// not be referenced anymore.
-bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
unsigned Depth,
bool *MovedAway) {
// Avoid exponential behavior on extremely deep expression trees.
switch (Opcode) {
case Instruction::PtrToInt:
// PtrToInt is always a noop, as we know that the int type is pointer sized.
- return MatchAddr(AddrInst->getOperand(0), Depth);
+ return matchAddr(AddrInst->getOperand(0), Depth);
case Instruction::IntToPtr: {
auto AS = AddrInst->getType()->getPointerAddressSpace();
auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
// This inttoptr is a no-op if the integer type is pointer sized.
if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
- return MatchAddr(AddrInst->getOperand(0), Depth);
+ return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::BitCast:
// and we don't want to mess around with them. Assume it knows what it
// is doing.
AddrInst->getOperand(0)->getType() != AddrInst->getType())
- return MatchAddr(AddrInst->getOperand(0), Depth);
+ return matchAddr(AddrInst->getOperand(0), Depth);
return false;
case Instruction::AddrSpaceCast: {
unsigned SrcAS
= AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
- return MatchAddr(AddrInst->getOperand(0), Depth);
+ return matchAddr(AddrInst->getOperand(0), Depth);
return false;
}
case Instruction::Add: {
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
TPT.getRestorationPoint();
- if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
- MatchAddr(AddrInst->getOperand(0), Depth+1))
+ if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
+ matchAddr(AddrInst->getOperand(0), Depth+1))
return true;
// Restore the old addr mode info.
TPT.rollback(LastKnownGood);
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
- MatchAddr(AddrInst->getOperand(1), Depth+1))
+ if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
+ matchAddr(AddrInst->getOperand(1), Depth+1))
return true;
// Otherwise we definitely can't merge the ADD in.
if (Opcode == Instruction::Shl)
Scale = 1LL << Scale;
- return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+ return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
}
case Instruction::GetElementPtr: {
// Scan the GEP. We check it if it contains constant offsets and at most
if (ConstantOffset == 0 ||
TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
// Check to see if we can fold the base pointer in too.
- if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+ if (matchAddr(AddrInst->getOperand(0), Depth+1))
return true;
}
AddrMode.BaseOffs -= ConstantOffset;
AddrMode.BaseOffs += ConstantOffset;
// Match the base operand of the GEP.
- if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+ if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
// If it couldn't be matched, just stuff the value in a register.
if (AddrMode.HasBaseReg) {
AddrMode = BackupAddrMode;
}
// Match the remaining variable portion of the GEP.
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+ if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
Depth)) {
// If it couldn't be matched, try stuffing the base into a register
// instead of matching it, and retrying the match of the scale.
AddrMode.HasBaseReg = true;
AddrMode.BaseReg = AddrInst->getOperand(0);
AddrMode.BaseOffs += ConstantOffset;
- if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+ if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
VariableScale, Depth)) {
// If even that didn't work, bail.
AddrMode = BackupAddrMode;
ExtAddrMode BackupAddrMode = AddrMode;
unsigned OldSize = AddrModeInsts.size();
- if (!MatchAddr(PromotedOperand, Depth) ||
+ if (!matchAddr(PromotedOperand, Depth) ||
// The total of the new cost is equals to the cost of the created
// instructions.
// The total of the old cost is equals to the cost of the extension plus
// what we have saved in the addressing mode.
- !IsPromotionProfitable(CreatedInstsCost,
+ !isPromotionProfitable(CreatedInstsCost,
ExtCost + (AddrModeInsts.size() - OldSize),
PromotedOperand)) {
AddrMode = BackupAddrMode;
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
/// for the target.
///
-bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
// Start a transaction at this point that we will rollback if the matching
// fails.
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
// Check to see if it is possible to fold this operation.
bool MovedAway = false;
- if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
+ if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
// This instruction may have been move away. If so, there is nothing
// to check here.
if (MovedAway)
// *profitable* to do so. We use a simple cost model to avoid increasing
// register pressure too much.
if (I->hasOneUse() ||
- IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+ isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
AddrModeInsts.push_back(I);
return true;
}
TPT.rollback(LastKnownGood);
}
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
- if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+ if (matchOperationAddr(CE, CE->getOpcode(), Depth))
return true;
TPT.rollback(LastKnownGood);
} else if (isa<ConstantPointerNull>(Addr)) {
/// the use site that we're folding it into. If so, there is no cost to
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
/// that we know are live at the instruction already.
-bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
Value *KnownLive2) {
// If Val is either of the known-live values, we know it is live!
if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
/// X was live across 'load Z' for other reasons, we actually *would* want to
/// fold the addressing mode in the Z case. This would make Y die earlier.
bool AddressingModeMatcher::
-IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
ExtAddrMode &AMAfter) {
if (IgnoreProfitability) return true;
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
// lifetime wasn't extended by adding this instruction.
- if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
BaseReg = nullptr;
- if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+ if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
ScaledReg = nullptr;
// If folding this instruction (and it's subexprs) didn't extend any live
MemoryInst, Result, InsertedInsts,
PromotedInsts, TPT);
Matcher.IgnoreProfitability = true;
- bool Success = Matcher.MatchAddr(Address, 0);
+ bool Success = Matcher.matchAddr(Address, 0);
(void)Success; assert(Success && "Couldn't select *anything*?");
// The match was to check the profitability, the changes made are not
///
/// This method is used to optimize both load/store and inline asms with memory
/// operands.
-bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
+bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
Type *AccessTy, unsigned AddrSpace) {
Value *Repl = Addr;
/// If there are any memory operands, use OptimizeMemoryInst to sink their
/// address computing into the block when possible / profitable.
-bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
+bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
bool MadeChange = false;
const TargetRegisterInfo *TRI =
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
OpInfo.isIndirect) {
Value *OpVal = CS->getArgOperand(ArgNo++);
- MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
+ MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
} else if (OpInfo.Type == InlineAsm::isInput)
ArgNo++;
}
/// %add = add nuw i64 %zext, 4
/// \encode
/// Thanks to the promotion, we can match zext(load i32*) to i64.
-bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT,
+bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT,
LoadInst *&LI, Instruction *&Inst,
const SmallVectorImpl<Instruction *> &Exts,
unsigned CreatedInstsCost = 0) {
}
// The promotion is profitable.
// Check if it exposes an ext(load).
- (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
+ (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost);
if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
// If we have created a new extension, i.e., now we have two
// extensions. We must make sure one of them is merged with
/// \p I[in/out] the extension may be modified during the process if some
/// promotions apply.
///
-bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) {
+bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) {
// Try to promote a chain of computation if it allows to form
// an extended load.
TypePromotionTransaction TPT;
// Look for a load being extended.
LoadInst *LI = nullptr;
Instruction *OldExt = I;
- bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts);
+ bool HasPromoted = extLdPromotion(TPT, LI, I, Exts);
if (!LI || !I) {
assert(!HasPromoted && !LI && "If we did not match any load instruction "
"the code must remain the same");
return true;
}
-bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
+bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
BasicBlock *DefBB = I->getParent();
// If the result of a {s|z}ext and its source are both live out, rewrite all
/// If we have a SelectInst that will likely profit from branch prediction,
/// turn it into a branch.
-bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
+bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
// Can we convert the 'select' to CF ?
/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
/// it's often worth sinking a shufflevector splat down to its use so that
/// codegen can spot all lanes are identical.
-bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
+bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
BasicBlock *DefBB = SVI->getParent();
// Only do this xform if variable vector shifts are particularly expensive.
/// Some targets can do store(extractelement) with one instruction.
/// Try to push the extractelement towards the stores when the target
/// has this feature and this is profitable.
-bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) {
+bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
unsigned CombineCost = UINT_MAX;
if (DisableStoreExtract || !TLI ||
(!StressStoreExtract &&
return false;
}
-bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) {
+bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) {
// Bail out if we inserted the instruction to prevent optimizations from
// stepping on each other's toes.
if (InsertedInsts.count(I))
TargetLowering::TypeExpandInteger) {
return SinkCast(CI);
} else {
- bool MadeChange = MoveExtToFormExtLoad(I);
- return MadeChange | OptimizeExtUses(I);
+ bool MadeChange = moveExtToFormExtLoad(I);
+ return MadeChange | optimizeExtUses(I);
}
}
return false;
stripInvariantGroupMetadata(*LI);
if (TLI) {
unsigned AS = LI->getPointerAddressSpace();
- return OptimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
+ return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
}
return false;
}
stripInvariantGroupMetadata(*SI);
if (TLI) {
unsigned AS = SI->getPointerAddressSpace();
- return OptimizeMemoryInst(I, SI->getOperand(1),
+ return optimizeMemoryInst(I, SI->getOperand(1),
SI->getOperand(0)->getType(), AS);
}
return false;
GEPI->replaceAllUsesWith(NC);
GEPI->eraseFromParent();
++NumGEPsElim;
- OptimizeInst(NC, ModifiedDT);
+ optimizeInst(NC, ModifiedDT);
return true;
}
return false;
}
if (CallInst *CI = dyn_cast<CallInst>(I))
- return OptimizeCallInst(CI, ModifiedDT);
+ return optimizeCallInst(CI, ModifiedDT);
if (SelectInst *SI = dyn_cast<SelectInst>(I))
- return OptimizeSelectInst(SI);
+ return optimizeSelectInst(SI);
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
- return OptimizeShuffleVectorInst(SVI);
+ return optimizeShuffleVectorInst(SVI);
if (isa<ExtractElementInst>(I))
- return OptimizeExtractElementInst(I);
+ return optimizeExtractElementInst(I);
return false;
}
// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
-bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
+bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) {
SunkAddrs.clear();
bool MadeChange = false;
CurInstIterator = BB.begin();
while (CurInstIterator != BB.end()) {
- MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT);
+ MadeChange |= optimizeInst(CurInstIterator++, ModifiedDT);
if (ModifiedDT)
return true;
}
- MadeChange |= DupRetToEnableTailCallOpts(&BB);
+ MadeChange |= dupRetToEnableTailCallOpts(&BB);
return MadeChange;
}
// llvm.dbg.value is far away from the value then iSel may not be able
// handle it properly. iSel will drop llvm.dbg.value if it can not
// find a node corresponding to the value.
-bool CodeGenPrepare::PlaceDbgValues(Function &F) {
+bool CodeGenPrepare::placeDbgValues(Function &F) {
bool MadeChange = false;
for (BasicBlock &BB : F) {
Instruction *PrevNonDbgInst = nullptr;