efi: stub: add implementation of efi_random_alloc()
authorArd Biesheuvel <ard.biesheuvel@linaro.org>
Mon, 11 Jan 2016 09:43:16 +0000 (10:43 +0100)
committerAlex Shi <alex.shi@linaro.org>
Wed, 11 May 2016 15:21:11 +0000 (23:21 +0800)
This implements efi_random_alloc(), which allocates a chunk of memory of
a certain size at a certain alignment, and uses the random_seed argument
it receives to randomize the address of the allocation.

This is implemented by iterating over the UEFI memory map, counting the
number of suitable slots (aligned offsets) within each region, and picking
a random number between 0 and 'number of slots - 1' to select the slot,
This should guarantee that each possible offset is chosen equally likely.

Suggested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
(cherry picked from commit 2ddbfc81eac84a299cb4747a8764bc43f23e9008)
Signed-off-by: Alex Shi <alex.shi@linaro.org>
drivers/firmware/efi/libstub/efistub.h
drivers/firmware/efi/libstub/random.c

index 206b7252b9d10bf7e824bd20b81c9e2391ecbf44..5ed3d3f3816637cd10d007f381797320f0567305 100644 (file)
@@ -46,4 +46,8 @@ void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
 efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table,
                                  unsigned long size, u8 *out);
 
+efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
+                             unsigned long size, unsigned long align,
+                             unsigned long *addr, unsigned long random_seed);
+
 #endif
index 97941ee5954f193fc3f12ffb893f029689350b45..53f6d3fe6d8621519634d3aa2299aeaf5f2ca90d 100644 (file)
@@ -33,3 +33,103 @@ efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
 
        return rng->get_rng(rng, NULL, size, out);
 }
+
+/*
+ * Return the number of slots covered by this entry, i.e., the number of
+ * addresses it covers that are suitably aligned and supply enough room
+ * for the allocation.
+ */
+static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
+                                        unsigned long size,
+                                        unsigned long align)
+{
+       u64 start, end;
+
+       if (md->type != EFI_CONVENTIONAL_MEMORY)
+               return 0;
+
+       start = round_up(md->phys_addr, align);
+       end = round_down(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - size,
+                        align);
+
+       if (start > end)
+               return 0;
+
+       return (end - start + 1) / align;
+}
+
+/*
+ * The UEFI memory descriptors have a virtual address field that is only used
+ * when installing the virtual mapping using SetVirtualAddressMap(). Since it
+ * is unused here, we can reuse it to keep track of each descriptor's slot
+ * count.
+ */
+#define MD_NUM_SLOTS(md)       ((md)->virt_addr)
+
+efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
+                             unsigned long size,
+                             unsigned long align,
+                             unsigned long *addr,
+                             unsigned long random_seed)
+{
+       unsigned long map_size, desc_size, total_slots = 0, target_slot;
+       efi_status_t status;
+       efi_memory_desc_t *memory_map;
+       int map_offset;
+
+       status = efi_get_memory_map(sys_table_arg, &memory_map, &map_size,
+                                   &desc_size, NULL, NULL);
+       if (status != EFI_SUCCESS)
+               return status;
+
+       if (align < EFI_ALLOC_ALIGN)
+               align = EFI_ALLOC_ALIGN;
+
+       /* count the suitable slots in each memory map entry */
+       for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
+               efi_memory_desc_t *md = (void *)memory_map + map_offset;
+               unsigned long slots;
+
+               slots = get_entry_num_slots(md, size, align);
+               MD_NUM_SLOTS(md) = slots;
+               total_slots += slots;
+       }
+
+       /* find a random number between 0 and total_slots */
+       target_slot = (total_slots * (u16)random_seed) >> 16;
+
+       /*
+        * target_slot is now a value in the range [0, total_slots), and so
+        * it corresponds with exactly one of the suitable slots we recorded
+        * when iterating over the memory map the first time around.
+        *
+        * So iterate over the memory map again, subtracting the number of
+        * slots of each entry at each iteration, until we have found the entry
+        * that covers our chosen slot. Use the residual value of target_slot
+        * to calculate the randomly chosen address, and allocate it directly
+        * using EFI_ALLOCATE_ADDRESS.
+        */
+       for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
+               efi_memory_desc_t *md = (void *)memory_map + map_offset;
+               efi_physical_addr_t target;
+               unsigned long pages;
+
+               if (target_slot >= MD_NUM_SLOTS(md)) {
+                       target_slot -= MD_NUM_SLOTS(md);
+                       continue;
+               }
+
+               target = round_up(md->phys_addr, align) + target_slot * align;
+               pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
+
+               status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
+                                       EFI_LOADER_DATA, pages, &target);
+               if (status == EFI_SUCCESS)
+                       *addr = target;
+               break;
+       }
+
+       efi_call_early(free_pool, memory_map);
+
+       return status;
+}