void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned TargetReg);
- void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Reg);
+ void doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1);
+
+ /// doMultiplyConst - This method will multiply the value in Op0Reg by the
+ /// value of the ContantInt *CI
void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Val);
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, ConstantInt *CI);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
- /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
- /// of the long value.
+ /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt);
+
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operation
+ bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
return Reg;
}
+/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+/// is okay to use as an immediate argument to a certain binary operator.
+///
+/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
+bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator)
+{
+ ConstantSInt *Op1Cs;
+ ConstantUInt *Op1Cu;
+
+ // ADDI, Compare, and non-indexed Load take SIMM
+ bool cond1 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Op1Cs->getValue() >= -32768)
+ && (Operator == 0);
+
+ // SUBI takes -SIMM since it is a mnemonic for ADDI
+ bool cond2 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32768)
+ && (Op1Cs->getValue() >= -32767)
+ && (Operator == 1);
+
+ // ANDIo, ORI, and XORI take unsigned values
+ bool cond3 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Operator >= 2);
+
+ // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
+ bool cond4 = (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 32767)
+ && (Operator < 2);
+
+ // ANDIo, ORI, and XORI take UIMMs, so they can be larger
+ bool cond5 = (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 65535)
+ && (Operator >= 2);
+
+ if (cond1 || cond2 || cond3 || cond4 || cond5)
+ return true;
+
+ return false;
+}
+
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
if (Val < (1ULL << 16)) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
} else if (Val < (1ULL << 32)) {
unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
} else if (Val < (1ULL << 48)) {
unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
} else {
unsigned TempLo = makeAnotherReg(Type::IntTy);
unsigned TempHi = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
+ BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
.addImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
+ .addImm(Val & 0xFFFF);
}
return;
}
assert(Class <= cInt && "Type not handled yet!");
if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
} else if (Class == cByte || Class == cShort) {
ConstantInt *CI = cast<ConstantInt>(C);
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
} else {
ConstantInt *CI = cast<ConstantInt>(C);
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
} else {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
- .addImm(CI->getRawValue() >> 16);
+ .addSImm(CI->getRawValue() >> 16);
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
.addImm(CI->getRawValue() & 0xFFFF);
}
.addConstantPoolIndex(CPI);
unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
- BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
+ BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// GV is located at PC + distance
unsigned CurPC = makeAnotherReg(Type::IntTy);
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
}
}
- ArgOffset += 4; // longs require 4 additional bytes
+ // longs require 4 additional bytes and use 2 GPRs
+ ArgOffset += 4;
if (GPR_remaining > 1) {
- GPR_remaining--; // uses up 2 GPRs
+ GPR_remaining--;
GPR_idx++;
}
break;
// it into the conditional branch or select instruction which is the only user
// of the cc instruction. This is the case if the conditional branch is the
// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch. We also don't handle long arguments below, so we reject
-// them here as well.
+// conditional branch.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
const Type *CompTy = Op0->getType();
unsigned Class = getClassB(CompTy);
unsigned Op0r = getReg(Op0, MBB, IP);
+
+ // Use crand for lt, gt and crandc for le, ge
+ unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
+ // ? cr1[lt] : cr1[gt]
+ unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
+ // ? cr0[lt] : cr0[gt]
+ unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
// Special case handling of: cmp R, i
if (isa<ConstantPointerNull>(Op1)) {
- BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
+ BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addSImm(0);
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Class == cByte || Class == cShort || Class == cInt) {
- unsigned Op1v = CI->getRawValue();
+ unsigned Op1v = CI->getRawValue() & 0xFFFF;
+ unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
+ unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
-
- // Compare immediate or promote to reg?
- if (Op1v <= 32767) {
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
+ // Treat compare like ADDI for the purposes of immediate suitability
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
} else {
unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
- PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
}
return OpNum;
} else {
unsigned LowCst = CI->getRawValue();
unsigned HiCst = CI->getRawValue() >> 32;
if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = Op0r;
- if (LowCst != 0) {
- unsigned LoLow = makeAnotherReg(Type::IntTy);
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
- BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
- .addImm(LowCst >> 16);
- }
- unsigned HiTmp = Op0r+1;
- if (HiCst != 0) {
- unsigned HiLow = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
- BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
- .addImm(HiCst >> 16);
- }
+ unsigned LoLow = makeAnotherReg(Type::IntTy);
+ unsigned LoTmp = makeAnotherReg(Type::IntTy);
+ unsigned HiLow = makeAnotherReg(Type::IntTy);
+ unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+
+ BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
+ .addImm(LowCst & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
+ .addImm(LowCst >> 16);
+ BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
+ .addImm(HiCst & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
+ .addImm(HiCst >> 16);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
return OpNum;
} else {
unsigned ConstReg = makeAnotherReg(CompTy);
- unsigned CondReg = makeAnotherReg(Type::IntTy);
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
copyConstantToRegister(MBB, IP, CI, ConstReg);
- // FIXME: this is inefficient, but avoids branches
-
- // compare hi word -> cr0
- // compare lo word -> cr1
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
- BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
+ // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
.addReg(ConstReg);
- BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
- // shift amount = 4 * CR0[EQ]
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
- .addImm(29).addImm(29);
- // shift cr1 into cr0 position if op0.hi and const.hi were equal
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
- .addReg(TmpReg1);
- // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
- BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
-
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op0r+1)
+ .addReg(ConstReg+1);
+ BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
+ BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
+ .addImm(2);
return OpNum;
}
}
}
unsigned Op1r = getReg(Op1, MBB, IP);
+ unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
+
switch (Class) {
default: assert(0 && "Unknown type class!");
case cByte:
case cShort:
case cInt:
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
- PPC32::CR0).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
break;
case cFP32:
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
break; // Allow the sete or setne to be generated from flags set by OR
} else {
- unsigned CondReg = makeAnotherReg(Type::IntTy);
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-
- // FIXME: this is inefficient, but avoids branches
-
- // compare hi word -> cr0
- // compare lo word -> cr1
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
+
+ // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
.addReg(Op1r);
- BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
- // shift amount = 4 * CR0[EQ]
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
- .addImm(29).addImm(29);
- // shift cr1 into cr0 position if op0.hi and op1.hi were equal
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
- .addReg(TmpReg1);
- // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
- BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
-
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op1r)
+ .addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
+ BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
+ .addImm(2);
return OpNum;
}
}
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy0MBB:
- // %FalseValue = li 0
- // b sinkMBB
- BB = copy0MBB;
- unsigned FalseValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
- BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
- DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
- DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
- DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = li 1
// b sinkMBB
BB = copy1MBB;
unsigned TrueValue = makeAnotherReg (I.getType ());
- BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
+ BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
+ // copy0MBB:
+ // %FalseValue = li 0
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = makeAnotherReg(I.getType());
+ BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
} else {
unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
+ BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
}
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // FIXME: spill code is being generated after the branch and before copy1MBB
- // this is bad, since it will never be run
-
- // copy0MBB:
- // %FalseValue = ...
- // b sinkMBB
- BB = copy0MBB;
- unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
- BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = ...
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
+ // copy0MBB:
+ // %FalseValue = ...
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
+ BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
} else {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
+ BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
.addImm(TheVal & 0xFFFF);
}
}
}
-static Constant* minUConstantForValue(uint64_t val) {
- if (val <= 1)
- return ConstantBool::get(val);
- else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
- return ConstantUInt::get(Type::UShortTy, val);
- else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
- return ConstantUInt::get(Type::UIntTy, val);
- else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
- return ConstantUInt::get(Type::ULongTy, val);
-
- std::cerr << "Value: " << val << " not accepted for any integral type!\n";
- abort();
-}
-
/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate. For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
}
// Adjust the stack pointer for the new arguments...
- BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+ BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
// Arguments go on the stack in reverse order, as specified by the ABI.
// Offset to the paramater area on the stack is 24.
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
// Reg or stack? Note that PPC calling conventions state that long args
// are passed rN = hi, rN+1 = lo, opposite of LLVM.
if (GPR_remaining > 1) {
- BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg+1)
- .addReg(ArgReg+1);
- BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg)
+ BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
+ BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
+ .addReg(ArgReg+1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
.addReg(PPC32::R1);
}
// If this is a vararg function, and there are GPRs left, also
// pass the float in an int. Otherwise, put it on the stack.
if (isVarArg) {
- BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
- .addImm(ArgOffset).addReg(ArgReg);
+ .addSImm(ArgOffset).addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
}
} else {
- BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
FPR_idx++;
// For vararg functions, must pass doubles via int regs as well
if (isVarArg) {
- BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
if (GPR_remaining > 1) {
- BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
+ BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
.addReg(PPC32::R1);
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
- .addImm(ArgOffset+4).addReg(PPC32::R1);
+ .addSImm(ArgOffset+4).addReg(PPC32::R1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
}
} else {
- BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
// Doubles use 8 bytes, and 2 GPRs worth of param space
GPR_idx++;
}
} else {
- BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
+ BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
}
BB->push_back(CallMI);
- BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
+ BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
// If there is a return value, scavenge the result from the location the call
// leaves it in...
BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
break;
case cLong: // Long values are in r3 hi:r4 lo
- BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R3).addReg(PPC32::R3);
- BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R4).addReg(PPC32::R4);
+ BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+ BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
break;
default: assert(0 && "Unknown class!");
}
MachineFrameInfo *MFI = F->getFrameInfo();
unsigned NumBytes = MFI->getStackSize();
- BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addImm(NumBytes+8)
+ BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
.addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
- BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
+ BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
- BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
+ BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
static const unsigned OpcodeTab[] = {
PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
};
+ static const unsigned ImmOpcodeTab[] = {
+ PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
+ };
+
// Otherwise, code generate the full operation with a constant.
static const unsigned BottomTab[] = {
PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
}
// sub 0, X -> neg X
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
if (OperatorClass == 1 && CI->isNullValue()) {
- unsigned op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
-
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
if (Class == cLong) {
- unsigned zeroes = makeAnotherReg(Type::IntTy);
- unsigned overflow = makeAnotherReg(Type::IntTy);
- unsigned T = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
- .addImm(5).addImm(31);
- BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
- BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
+ BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
+ } else {
+ BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(Op1r);
}
return;
}
+ }
// Special case: op Reg, <const int>
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
// xor X, -1 -> not X
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- if (Class == cLong) // Invert the top part too
+ if (Class == cLong) // Invert the low part too
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
.addReg(Op0r+1);
return;
}
-
- unsigned Opcode = OpcodeTab[OperatorClass];
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- if (Class != cLong) {
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- // If the constant is zero in the low 32-bits, just copy the low part
- // across and apply the normal 32-bit operation to the high parts. There
- // will be no carry or borrow into the top.
- if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
- if (OperatorClass != 2) // All but and...
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
- BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- return;
- }
-
- // If this is a long value and the high or low bits have a special
- // property, emit some special cases.
- unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
- // If this is a logical operation and the top 32-bits are zero, just
- // operate on the lower 32.
- if (Op1h == 0 && OperatorClass > 1) {
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- if (OperatorClass != 2) // All but and
- BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
- else
- BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
+ // FIXME: We're not handling ANDI right now since it could trash the CR
+ if (Class != cLong) {
+ if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
+ int immediate = Op1C->getRawValue() & 0xFFFF;
+
+ if (OperatorClass < 2)
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addSImm(immediate);
+ else
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addZImm(immediate);
+ } else {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
+ }
return;
}
-
- // TODO: We could handle lots of other special cases here, such as AND'ing
- // with 0xFFFFFFFF00000000 -> noop, etc.
-
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
+
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
+ BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
return;
}
unsigned Opcode = OpcodeTab[OperatorClass];
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
} else {
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
+ BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
+ BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
}
return;
}
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
-/// result should be given as DestTy.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned op1Reg) {
- unsigned Class = getClass(DestTy);
- switch (Class) {
- case cLong:
- BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
- .addReg(op1Reg+1);
- case cInt:
- case cShort:
- case cByte:
- BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
- return;
- default:
- assert(0 && "doMultiply cannot operate on unknown type!");
- }
-}
-
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
Val >>= 1;
++Count;
}
- return Count+1;
+ return Count;
}
-
-/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
-/// 16, or 32-bit integer multiply by a constant.
+/// doMultiply - Emit appropriate instructions to multiply together the
+/// Values Op0 and Op1, and put the result in DestReg.
///
+void ISel::doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1) {
+ unsigned Class0 = getClass(Op0->getType());
+ unsigned Class1 = getClass(Op1->getType());
+
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ // 64 x 64 -> 64
+ if (Class0 == cLong && Class1 == cLong) {
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
+ if (Class0 == cLong && Class1 <= cInt) {
+ unsigned Tmp0 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ if (Op1->getType()->isSigned())
+ BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
+ else
+ BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 32 x 32 -> 32
+ if (Class0 <= cInt && Class1 <= cInt) {
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ return;
+ }
+
+ assert(0 && "doMultiply cannot operate on unknown type!");
+}
+
+/// doMultiplyConst - This method will multiply the value in Op0 by the
+/// value of the ContantInt *CI
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned ConstRHS) {
- unsigned Class = getClass(DestTy);
- // Handle special cases here.
- switch (ConstRHS) {
- case 0:
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
+ unsigned DestReg, Value *Op0, ConstantInt *CI) {
+ unsigned Class = getClass(Op0->getType());
+
+ // Mul op0, 0 ==> 0
+ if (CI->isNullValue()) {
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
+ if (Class == cLong)
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
return;
- case 1:
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
- return;
- case 2:
- BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
+ }
+
+ // Mul op0, 1 ==> op0
+ if (CI->equalsInt(1)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+ if (Class == cLong)
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
return;
}
// If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(ConstRHS)) {
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- case cShort:
- case cInt:
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
- .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
+ if (unsigned Shift = ExactLog2(CI->getRawValue())) {
+ ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
+ emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
+ return;
+ }
+
+ // If 32 bits or less and immediate is in right range, emit mul by immediate
+ if (Class == cByte || Class == cShort || Class == cInt)
+ {
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned imm = CI->getRawValue() & 0xFFFF;
+ BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
return;
}
}
- // Most general case, emit a normal multiply...
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
-
- copyConstantToRegister(MBB, IP, C, TmpReg);
- doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
+ doMultiply(MBB, IP, DestReg, Op0, CI);
}
void ISel::visitMul(BinaryOperator &I) {
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned DestReg) {
- MachineBasicBlock &BB = *MBB;
TypeClass Class = getClass(Op0->getType());
- // Simple scalar multiply?
- unsigned Op0Reg = getReg(Op0, &BB, IP);
switch (Class) {
case cByte:
case cShort:
case cInt:
+ case cLong:
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
- doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
+ doMultiplyConst(MBB, IP, DestReg, Op0, CI);
} else {
- unsigned Op1Reg = getReg(Op1, &BB, IP);
- doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
+ doMultiply(MBB, IP, DestReg, Op0, Op1);
}
return;
case cFP32:
case cFP64:
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
return;
- case cLong:
break;
}
-
- // Long value. We have to do things the hard way...
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned CLow = CI->getRawValue();
- unsigned CHi = CI->getRawValue() >> 32;
-
- if (CLow == 0) {
- // If the low part of the constant is all zeros, things are simple.
- BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
- doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
- return;
- }
-
- // Multiply the two low parts
- unsigned OverflowReg = 0;
- if (CLow == 1) {
- BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
- } else {
- unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
- unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
- OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
- BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
- BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
- BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
- .addReg(Op1RegL);
- }
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
- doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
-
- unsigned AHBLplusOverflowReg;
- if (OverflowReg) {
- AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::ADD, 2,
- AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
- } else {
- AHBLplusOverflowReg = AHBLReg;
- }
-
- if (CHi == 0) {
- BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
- .addReg(AHBLplusOverflowReg);
- } else {
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
- doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
-
- BuildMI(BB, IP, PPC32::ADD, 2,
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
- }
- return;
- }
-
- // General 64x64 multiply
-
- unsigned Op1Reg = getReg(Op1, &BB, IP);
-
- // Multiply the two low parts...
- BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
-
- unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
-
- unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
- .addReg(OverflowReg);
-
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
- BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
-
- BuildMI(BB, IP, PPC32::ADD, 2,
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
}
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned TmpReg = makeAnotherReg(Op0->getType());
- BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg)
- .addImm(log2V-1);
+ BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
return;
}
if (Amount < 32) {
if (isLeftShift) {
// FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
- BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(32-Amount).addImm(31);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
// FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(32-Amount).addImm(Amount).addImm(31);
- BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(0).addImm(Amount-1);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
} else { // Shifting more than 32 bits
Amount -= 32;
if (isLeftShift) {
if (Amount != 0) {
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
}
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
} else {
if (Amount != 0) {
if (isSigned)
- BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
.addImm(Amount);
else
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
} else {
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
- .addReg(SrcReg+1);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
}
- BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
+ BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
}
}
} else {
if (isLeftShift) {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addImm(32);
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
.addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
+ BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addImm(-32);
- BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
.addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
} else {
if (isSigned) {
abort();
} else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addImm(32);
- BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
.addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addImm(-32);
- BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
.addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
.addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
}
}
unsigned SrcAddrReg = getReg(I.getOperand(0));
if (Class == cLong) {
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
- BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
} else {
- BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+ BuildMI(BB, Opcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
}
}
}
unsigned Class = getClassB(ValTy);
if (Class == cLong) {
- BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
- BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
+ BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
+ BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
return;
}
};
unsigned Opcode = Opcodes[Class];
if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
- BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+ BuildMI(BB, Opcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
}
case cShort:
case cInt: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
+ BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
break;
}
unsigned TmpReg = makeAnotherReg(Type::IntTy);
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
- BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
+ BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
.addReg(SrcReg2);
break;
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
SrcClass < DestClass) {
bool isLong = DestClass == cLong;
- if (isLong) DestClass = cInt;
-
+ if (isLong) {
+ DestClass = cInt;
+ ++DestReg;
+ }
+
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
if (SrcClass < cInt) {
if (isUnsigned) {
}
if (isLong) { // Handle upper 32 bits as appropriate...
+ --DestReg;
if (isUnsigned) // Zero out top bits...
- BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
+ BuildMI(*BB, IP, PPC32::LI, 1, DestReg).addSImm(0);
else // Sign extend bottom half...
- BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
+ BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg).addReg(DestReg).addImm(31);
}
return;
}
// Special case long -> int ...
if (SrcClass == cLong && DestClass == cInt) {
- BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
return;
}
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
&& SrcClass > DestClass) {
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+ unsigned source = (SrcClass == cLong) ? SrcReg+1 : SrcReg;
+
if (isUnsigned) {
unsigned shift = (SrcClass == cByte) ? 24 : 16;
- BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
+ BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(source).addZImm(0)
.addImm(shift).addImm(31);
} else {
BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
- DestReg).addReg(SrcReg);
+ DestReg).addReg(source);
}
return;
}
unsigned TempF = makeAnotherReg(Type::DoubleTy);
if (!SrcTy->isSigned()) {
- BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
- BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
} else {
unsigned TempLo = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
- BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
}
// Increment the VAList pointer...
- BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
+ BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
}
void ISel::visitVAArgInst(VAArgInst &I) {
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::ULongTyID:
case Type::LongTyID:
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
- BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
break;
case Type::DoubleTyID:
- BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
break;
}
}
outputReg);
}
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg) {
- const TargetData &TD = TM.getTargetData();
-
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*> GEPTypes;
- GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- // Keep emitting instructions until we consume the entire GEP instruction.
- while (!GEPOps.empty()) {
- if (GEPTypes.empty()) {
- // Load the base pointer into a register.
- unsigned Reg = getReg(Src, MBB, IP);
- BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
- break; // we are now done
- }
- if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
- // It's a struct access. CUI is the index into the structure,
- // which names the field. This index must have unsigned type.
- const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
-
- // Use the TargetData structure to pick out what the layout of the
- // structure is in memory. Since the structure index must be constant, we
- // can get its value and use it to find the right byte offset from the
- // StructLayout class's list of structure member offsets.
- unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- unsigned DispReg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
- BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
-
+/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+/// constant expression GEP support.
+///
+void ISel::emitGEPOperation (MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Src, User::op_iterator IdxBegin,
+ User::op_iterator IdxEnd, unsigned TargetReg) {
+ const TargetData &TD = TM.getTargetData ();
+ const Type *Ty = Src->getType ();
+ unsigned basePtrReg = getReg (Src, MBB, IP);
+
+ // GEPs have zero or more indices; we must perform a struct access
+ // or array access for each one.
+ for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
+ ++oi) {
+ Value *idx = *oi;
+ unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
+ if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
+ // It's a struct access. idx is the index into the structure,
+ // which names the field. Use the TargetData structure to
+ // pick out what the layout of the structure is in memory.
+ // Use the (constant) structure index's value to find the
+ // right byte offset from the StructLayout class's list of
+ // structure member offsets.
+ unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
+ unsigned memberOffset =
+ TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
+ // Emit an ADDI to add memberOffset to the basePtr.
+ BuildMI (*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addSImm(memberOffset);
+ // The next type is the member of the structure selected by the
+ // index.
+ Ty = StTy->getElementType (fieldIndex);
+ } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy)
idx = CI->getOperand(0);
-
- // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- const Type *ElTy = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(ElTy);
-
+
+ Ty = SqTy->getElementType();
+ unsigned elementSize = TD.getTypeSize (Ty);
+
if (idx == Constant::getNullValue(idx->getType())) {
// GEP with idx 0 is a no-op
+ nextBasePtrReg = basePtrReg;
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP);
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
+ BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(idxReg);
} else {
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
-
- // Make sure we can back the iterator up to point to the first
- // instruction emitted.
- MachineBasicBlock::iterator BeforeIt = IP;
- if (IP == MBB->begin())
- BeforeIt = MBB->end();
- else
- --BeforeIt;
- doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
-
+ // It's an array or pointer access: [ArraySize x ElementType].
+ // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
+ // must find the size of the pointed-to type (Not coincidentally, the next
+ // type is the type of the elements in the array).
+ unsigned OffsetReg = makeAnotherReg(idx->getType());
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, elementSize);
+ doMultiplyConst(MBB, IP, OffsetReg, idx, CUI);
+
+ // Deal with long indices
+ if (getClass(idx->getType()) == cLong) ++OffsetReg;
+
// Emit an ADD to add OffsetReg to the basePtr.
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
-
- // Step to the first instruction of the multiply.
- if (BeforeIt == MBB->end())
- IP = MBB->begin();
- else
- IP = ++BeforeIt;
-
- TargetReg = Reg; // Codegen the rest of the GEP into this
+ BuildMI (*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(OffsetReg);
}
}
+ basePtrReg = nextBasePtrReg;
}
+ // After we have processed all the indices, the result is left in
+ // basePtrReg. Move it to the register where we were expected to
+ // put the answer.
+ BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
}
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
// Create a register to hold the temporary result of multiplying the type size
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
- unsigned SrcReg1 = getReg(I.getArraySize());
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
+ doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
+ BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
// AlignedSize = and <AddedSize>, ~15
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(I.getOperand(0));
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
+ doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
}
std::vector<ValueRecord> Args;
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned TargetReg);
- void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Reg);
+ void doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1);
+
+ /// doMultiplyConst - This method will multiply the value in Op0Reg by the
+ /// value of the ContantInt *CI
void doMultiplyConst(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned Op0Reg, unsigned Op1Val);
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, ConstantInt *CI);
void emitDivRemOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
- /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
- /// of the long value.
+ /// high 32 bits of the long value, and the regNum+1 is the low 32 bits.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt);
+
+ /// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+ /// is okay to use as an immediate argument to a certain binary operation
+ bool canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Opcode);
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
return Reg;
}
+/// canUseAsImmediateForOpcode - This method returns whether a ConstantInt
+/// is okay to use as an immediate argument to a certain binary operator.
+///
+/// Operator is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for Xor.
+bool ISel::canUseAsImmediateForOpcode(ConstantInt *CI, unsigned Operator)
+{
+ ConstantSInt *Op1Cs;
+ ConstantUInt *Op1Cu;
+
+ // ADDI, Compare, and non-indexed Load take SIMM
+ bool cond1 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Op1Cs->getValue() >= -32768)
+ && (Operator == 0);
+
+ // SUBI takes -SIMM since it is a mnemonic for ADDI
+ bool cond2 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32768)
+ && (Op1Cs->getValue() >= -32767)
+ && (Operator == 1);
+
+ // ANDIo, ORI, and XORI take unsigned values
+ bool cond3 = (Op1Cs = dyn_cast<ConstantSInt>(CI))
+ && (Op1Cs->getValue() <= 32767)
+ && (Operator >= 2);
+
+ // ADDI and SUBI take SIMMs, so we have to make sure the UInt would fit
+ bool cond4 = (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 32767)
+ && (Operator < 2);
+
+ // ANDIo, ORI, and XORI take UIMMs, so they can be larger
+ bool cond5 = (Op1Cu = dyn_cast<ConstantUInt>(CI))
+ && (Op1Cu->getValue() <= 65535)
+ && (Operator >= 2);
+
+ if (cond1 || cond2 || cond3 || cond4 || cond5)
+ return true;
+
+ return false;
+}
+
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
/// that is to be statically allocated with the initial stack frame
/// adjustment.
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
if (Val < (1ULL << 16)) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addSImm(Val & 0xFFFF);
} else if (Val < (1ULL << 32)) {
unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
} else if (Val < (1ULL << 48)) {
unsigned Temp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(Temp).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LI, 1, R+1).addImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, Temp).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(Temp).addImm(Val & 0xFFFF);
} else {
unsigned TempLo = makeAnotherReg(Type::IntTy);
unsigned TempHi = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addImm((Val >> 16) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempLo).addImm(Val & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addImm((Val >> 48) & 0xFFFF);
- BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempHi)
+ BuildMI(*MBB, IP, PPC32::LIS, 1, TempHi).addSImm((Val >> 48) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TempHi)
.addImm((Val >> 32) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::LIS, 1, TempLo).addSImm((Val >> 16) & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(TempLo)
+ .addImm(Val & 0xFFFF);
}
return;
}
assert(Class <= cInt && "Type not handled yet!");
if (C->getType() == Type::BoolTy) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(C == ConstantBool::True);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(C == ConstantBool::True);
} else if (Class == cByte || Class == cShort) {
ConstantInt *CI = cast<ConstantInt>(C);
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
} else {
ConstantInt *CI = cast<ConstantInt>(C);
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(CI->getRawValue());
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(CI->getRawValue());
} else {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::LIS, 1, TmpReg)
- .addImm(CI->getRawValue() >> 16);
+ .addSImm(CI->getRawValue() >> 16);
BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
.addImm(CI->getRawValue() & 0xFFFF);
}
.addConstantPoolIndex(CPI);
unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
- BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
+ BuildMI(*MBB, IP, LoadOpcode, 2, R).addSImm(0).addReg(Reg2);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
- BuildMI(*MBB, IP, PPC32::LI, 1, R).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, R).addSImm(0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// GV is located at PC + distance
unsigned CurPC = makeAnotherReg(Type::IntTy);
addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
}
}
- ArgOffset += 4; // longs require 4 additional bytes
+ // longs require 4 additional bytes and use 2 GPRs
+ ArgOffset += 4;
if (GPR_remaining > 1) {
- GPR_remaining--; // uses up 2 GPRs
+ GPR_remaining--;
GPR_idx++;
}
break;
// it into the conditional branch or select instruction which is the only user
// of the cc instruction. This is the case if the conditional branch is the
// only user of the setcc, and if the setcc is in the same basic block as the
-// conditional branch. We also don't handle long arguments below, so we reject
-// them here as well.
+// conditional branch.
//
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
const Type *CompTy = Op0->getType();
unsigned Class = getClassB(CompTy);
unsigned Op0r = getReg(Op0, MBB, IP);
+
+ // Use crand for lt, gt and crandc for le, ge
+ unsigned CROpcode = (OpNum == 2 || OpNum == 4) ? PPC32::CRAND : PPC32::CRANDC;
+ // ? cr1[lt] : cr1[gt]
+ unsigned CR1field = (OpNum == 2 || OpNum == 3) ? 4 : 5;
+ // ? cr0[lt] : cr0[gt]
+ unsigned CR0field = (OpNum == 2 || OpNum == 5) ? 0 : 1;
// Special case handling of: cmp R, i
if (isa<ConstantPointerNull>(Op1)) {
- BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
+ BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addSImm(0);
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Class == cByte || Class == cShort || Class == cInt) {
- unsigned Op1v = CI->getRawValue();
+ unsigned Op1v = CI->getRawValue() & 0xFFFF;
+ unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
+ unsigned OpcodeImm = CompTy->isSigned() ? PPC32::CMPWI : PPC32::CMPLWI;
- // Mask off any upper bits of the constant, if there are any...
- Op1v &= (1ULL << (8 << Class)) - 1;
-
- // Compare immediate or promote to reg?
- if (Op1v <= 32767) {
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
+ // Treat compare like ADDI for the purposes of immediate suitability
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ BuildMI(*MBB, IP, OpcodeImm, 2, PPC32::CR0).addReg(Op0r).addSImm(Op1v);
} else {
unsigned Op1r = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
- PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
}
return OpNum;
} else {
unsigned LowCst = CI->getRawValue();
unsigned HiCst = CI->getRawValue() >> 32;
if (OpNum < 2) { // seteq, setne
- unsigned LoTmp = Op0r;
- if (LowCst != 0) {
- unsigned LoLow = makeAnotherReg(Type::IntTy);
- unsigned LoTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
- BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
- .addImm(LowCst >> 16);
- }
- unsigned HiTmp = Op0r+1;
- if (HiCst != 0) {
- unsigned HiLow = makeAnotherReg(Type::IntTy);
- unsigned HiTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
- BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
- .addImm(HiCst >> 16);
- }
+ unsigned LoLow = makeAnotherReg(Type::IntTy);
+ unsigned LoTmp = makeAnotherReg(Type::IntTy);
+ unsigned HiLow = makeAnotherReg(Type::IntTy);
+ unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+
+ BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r+1)
+ .addImm(LowCst & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
+ .addImm(LowCst >> 16);
+ BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r)
+ .addImm(HiCst & 0xFFFF);
+ BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
+ .addImm(HiCst >> 16);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
return OpNum;
} else {
unsigned ConstReg = makeAnotherReg(CompTy);
- unsigned CondReg = makeAnotherReg(Type::IntTy);
- unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
- unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
copyConstantToRegister(MBB, IP, CI, ConstReg);
- // FIXME: this is inefficient, but avoids branches
-
- // compare hi word -> cr0
- // compare lo word -> cr1
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(ConstReg+1);
- BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
+ // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
.addReg(ConstReg);
- BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
- // shift amount = 4 * CR0[EQ]
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
- .addImm(29).addImm(29);
- // shift cr1 into cr0 position if op0.hi and const.hi were equal
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
- .addReg(TmpReg1);
- // cr0 == ( op0.hi != const.hi ) ? cr0 : cr1
- BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
-
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op0r+1)
+ .addReg(ConstReg+1);
+ BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
+ BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
+ .addImm(2);
return OpNum;
}
}
}
unsigned Op1r = getReg(Op1, MBB, IP);
+ unsigned Opcode = CompTy->isSigned() ? PPC32::CMPW : PPC32::CMPLW;
+
switch (Class) {
default: assert(0 && "Unknown type class!");
case cByte:
case cShort:
case cInt:
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
- PPC32::CR0).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, Opcode, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
break;
case cFP32:
unsigned LoTmp = makeAnotherReg(Type::IntTy);
unsigned HiTmp = makeAnotherReg(Type::IntTy);
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
- BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r+1).addReg(Op1r+1);
BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
break; // Allow the sete or setne to be generated from flags set by OR
} else {
- unsigned CondReg = makeAnotherReg(Type::IntTy);
unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
-
- // FIXME: this is inefficient, but avoids branches
-
- // compare hi word -> cr0
- // compare lo word -> cr1
- BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
- PPC32::CR0).addImm(0).addReg(Op0r+1).addReg(Op1r+1);
- BuildMI(*MBB, IP, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(Op0r)
+
+ // cr0 = r3 ccOpcode r5 or (r3 == r5 AND r4 ccOpcode r6)
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0r)
.addReg(Op1r);
- BuildMI(*MBB, IP, PPC32::MFCR, 0, CondReg);
- // shift amount = 4 * CR0[EQ]
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, TmpReg1).addReg(CondReg).addImm(5)
- .addImm(29).addImm(29);
- // shift cr1 into cr0 position if op0.hi and op1.hi were equal
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(CondReg)
- .addReg(TmpReg1);
- // cr0 == ( op0.hi != op1.hi ) ? cr0 : cr1
- BuildMI(*MBB, IP, PPC32::MTCRF, 2).addImm(1).addReg(TmpReg2);
-
+ BuildMI(*MBB, IP, PPC32::CMPW, 2, PPC32::CR1).addReg(Op1r)
+ .addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::CRAND, 3).addImm(2).addImm(2).addImm(CR1field);
+ BuildMI(*MBB, IP, PPC32::CROR, 3).addImm(CR0field).addImm(CR0field)
+ .addImm(2);
return OpNum;
}
}
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // copy0MBB:
- // %FalseValue = li 0
- // b sinkMBB
- BB = copy0MBB;
- unsigned FalseValue = makeAnotherReg(I.getType());
- BuildMI(BB, PPC32::LI, 1, FalseValue).addImm(0);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
- BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
-
- DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
- DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
- DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
- DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = li 1
// b sinkMBB
BB = copy1MBB;
unsigned TrueValue = makeAnotherReg (I.getType ());
- BuildMI(BB, PPC32::LI, 1, TrueValue).addImm(1);
+ BuildMI(BB, PPC32::LI, 1, TrueValue).addSImm(1);
BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
+ // copy0MBB:
+ // %FalseValue = li 0
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = makeAnotherReg(I.getType());
+ BuildMI(BB, PPC32::LI, 1, FalseValue).addSImm(0);
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
} else {
unsigned CondReg = getReg(Cond, MBB, IP);
- BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addImm(0);
+ BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(CondReg).addSImm(0);
Opcode = getPPCOpcodeForSetCCNumber(Instruction::SetNE);
}
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, copy0MBB);
BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
- // Update machine-CFG edges
- BB->addSuccessor(copy1MBB);
- BB->addSuccessor(copy0MBB);
-
- // FIXME: spill code is being generated after the branch and before copy1MBB
- // this is bad, since it will never be run
-
- // copy0MBB:
- // %FalseValue = ...
- // b sinkMBB
- BB = copy0MBB;
- unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
F->getBasicBlockList().insert(It, sinkMBB);
- BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
// Update machine-CFG edges
- BB->addSuccessor(sinkMBB);
+ BB->addSuccessor(copy1MBB);
+ BB->addSuccessor(copy0MBB);
// copy1MBB:
// %TrueValue = ...
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
+ // copy0MBB:
+ // %FalseValue = ...
+ // fallthrough
+ BB = copy0MBB;
+ unsigned FalseValue = getReg(FalseVal, BB, BB->begin());
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
if (TheVal < 32768 && TheVal >= -32768) {
- BuildMI(BB, PPC32::LI, 1, targetReg).addImm(TheVal);
+ BuildMI(BB, PPC32::LI, 1, targetReg).addSImm(TheVal);
} else {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(BB, PPC32::LIS, 1, TmpReg).addImm(TheVal >> 16);
+ BuildMI(BB, PPC32::LIS, 1, TmpReg).addSImm(TheVal >> 16);
BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
.addImm(TheVal & 0xFFFF);
}
}
}
-static Constant* minUConstantForValue(uint64_t val) {
- if (val <= 1)
- return ConstantBool::get(val);
- else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
- return ConstantUInt::get(Type::UShortTy, val);
- else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
- return ConstantUInt::get(Type::UIntTy, val);
- else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
- return ConstantUInt::get(Type::ULongTy, val);
-
- std::cerr << "Value: " << val << " not accepted for any integral type!\n";
- abort();
-}
-
/// doCall - This emits an abstract call instruction, setting up the arguments
/// and the return value as appropriate. For the actual function call itself,
/// it inserts the specified CallMI instruction into the stream.
}
// Adjust the stack pointer for the new arguments...
- BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+ BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(NumBytes);
// Arguments go on the stack in reverse order, as specified by the ABI.
// Offset to the paramater area on the stack is 24.
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
.addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
// Reg or stack? Note that PPC calling conventions state that long args
// are passed rN = hi, rN+1 = lo, opposite of LLVM.
if (GPR_remaining > 1) {
- BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg+1)
- .addReg(ArgReg+1);
- BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg)
+ BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
.addReg(ArgReg);
+ BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx+1]).addReg(ArgReg+1)
+ .addReg(ArgReg+1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
} else {
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
- BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
+ BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addSImm(ArgOffset+4)
.addReg(PPC32::R1);
}
// If this is a vararg function, and there are GPRs left, also
// pass the float in an int. Otherwise, put it on the stack.
if (isVarArg) {
- BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
if (GPR_remaining > 0) {
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx])
- .addImm(ArgOffset).addReg(ArgReg);
+ .addSImm(ArgOffset).addReg(ArgReg);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
}
}
} else {
- BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
break;
FPR_idx++;
// For vararg functions, must pass doubles via int regs as well
if (isVarArg) {
- BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
if (GPR_remaining > 1) {
- BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
+ BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addSImm(ArgOffset)
.addReg(PPC32::R1);
BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx+1])
- .addImm(ArgOffset+4).addReg(PPC32::R1);
+ .addSImm(ArgOffset+4).addReg(PPC32::R1);
CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use);
CallMI->addRegOperand(GPR[GPR_idx+1], MachineOperand::Use);
}
}
} else {
- BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
+ BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addSImm(ArgOffset)
.addReg(PPC32::R1);
}
// Doubles use 8 bytes, and 2 GPRs worth of param space
GPR_idx++;
}
} else {
- BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
+ BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addSImm(0);
}
BB->push_back(CallMI);
- BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
+ BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addSImm(NumBytes);
// If there is a return value, scavenge the result from the location the call
// leaves it in...
BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
break;
case cLong: // Long values are in r3 hi:r4 lo
- BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R3).addReg(PPC32::R3);
- BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R4).addReg(PPC32::R4);
+ BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+ BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
break;
default: assert(0 && "Unknown class!");
}
MachineFrameInfo *MFI = F->getFrameInfo();
unsigned NumBytes = MFI->getStackSize();
- BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addImm(NumBytes+8)
+ BuildMI(BB, PPC32::LWZ, 2, TmpReg1).addSImm(NumBytes+8)
.addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
- BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
+ BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(PPC32::R1).addReg(PPC32::R1);
} else {
// Values other than zero are not implemented yet.
- BuildMI(BB, PPC32::LI, 1, TmpReg1).addImm(0);
+ BuildMI(BB, PPC32::LI, 1, TmpReg1).addSImm(0);
}
return;
static const unsigned OpcodeTab[] = {
PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
};
+ static const unsigned ImmOpcodeTab[] = {
+ PPC32::ADDI, PPC32::SUBI, PPC32::ANDIo, PPC32::ORI, PPC32::XORI
+ };
+
// Otherwise, code generate the full operation with a constant.
static const unsigned BottomTab[] = {
PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
}
// sub 0, X -> neg X
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) {
if (OperatorClass == 1 && CI->isNullValue()) {
- unsigned op1Reg = getReg(Op1, MBB, IP);
- BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
-
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
if (Class == cLong) {
- unsigned zeroes = makeAnotherReg(Type::IntTy);
- unsigned overflow = makeAnotherReg(Type::IntTy);
- unsigned T = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
- .addImm(5).addImm(31);
- BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
- BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
+ BuildMI(*MBB, IP, PPC32::SUBFIC, 2, DestReg+1).addReg(Op1r+1).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::SUBFZE, 1, DestReg).addReg(Op1r);
+ } else {
+ BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(Op1r);
}
return;
}
+ }
// Special case: op Reg, <const int>
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
// xor X, -1 -> not X
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- if (Class == cLong) // Invert the top part too
+ if (Class == cLong) // Invert the low part too
BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
.addReg(Op0r+1);
return;
}
-
- unsigned Opcode = OpcodeTab[OperatorClass];
- unsigned Op1r = getReg(Op1, MBB, IP);
-
- if (Class != cLong) {
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- return;
- }
-
- // If the constant is zero in the low 32-bits, just copy the low part
- // across and apply the normal 32-bit operation to the high parts. There
- // will be no carry or borrow into the top.
- if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
- if (OperatorClass != 2) // All but and...
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
- else
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
- BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
- return;
- }
-
- // If this is a long value and the high or low bits have a special
- // property, emit some special cases.
- unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
- // If this is a logical operation and the top 32-bits are zero, just
- // operate on the lower 32.
- if (Op1h == 0 && OperatorClass > 1) {
- BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
- if (OperatorClass != 2) // All but and
- BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
- else
- BuildMI(*MBB, IP, PPC32::LI, 1,DestReg+1).addImm(0);
+ // FIXME: We're not handling ANDI right now since it could trash the CR
+ if (Class != cLong) {
+ if (canUseAsImmediateForOpcode(Op1C, OperatorClass)) {
+ int immediate = Op1C->getRawValue() & 0xFFFF;
+
+ if (OperatorClass < 2)
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addSImm(immediate);
+ else
+ BuildMI(*MBB, IP, ImmOpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addZImm(immediate);
+ } else {
+ unsigned Op1r = getReg(Op1, MBB, IP);
+ BuildMI(*MBB, IP, OpcodeTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
+ }
return;
}
-
- // TODO: We could handle lots of other special cases here, such as AND'ing
- // with 0xFFFFFFFF00000000 -> noop, etc.
-
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
+
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
+ BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
return;
}
unsigned Opcode = OpcodeTab[OperatorClass];
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
} else {
- BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
- .addReg(Op1r);
- BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
+ BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
.addReg(Op1r+1);
+ BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg).addReg(Op0r)
+ .addReg(Op1r);
}
return;
}
-/// doMultiply - Emit appropriate instructions to multiply together the
-/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
-/// result should be given as DestTy.
-///
-void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned op1Reg) {
- unsigned Class = getClass(DestTy);
- switch (Class) {
- case cLong:
- BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
- .addReg(op1Reg+1);
- case cInt:
- case cShort:
- case cByte:
- BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
- return;
- default:
- assert(0 && "doMultiply cannot operate on unknown type!");
- }
-}
-
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
// returns zero when the input is not exactly a power of two.
static unsigned ExactLog2(unsigned Val) {
Val >>= 1;
++Count;
}
- return Count+1;
+ return Count;
}
-
-/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
-/// 16, or 32-bit integer multiply by a constant.
+/// doMultiply - Emit appropriate instructions to multiply together the
+/// Values Op0 and Op1, and put the result in DestReg.
///
+void ISel::doMultiply(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ unsigned DestReg, Value *Op0, Value *Op1) {
+ unsigned Class0 = getClass(Op0->getType());
+ unsigned Class1 = getClass(Op1->getType());
+
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned Op1r = getReg(Op1, MBB, IP);
+
+ // 64 x 64 -> 64
+ if (Class0 == cLong && Class1 == cLong) {
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r+1);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 64 x 32 or less, promote 32 to 64 and do a 64 x 64
+ if (Class0 == cLong && Class1 <= cInt) {
+ unsigned Tmp0 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp1 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp2 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp3 = makeAnotherReg(Type::IntTy);
+ unsigned Tmp4 = makeAnotherReg(Type::IntTy);
+ if (Op1->getType()->isSigned())
+ BuildMI(*MBB, IP, PPC32::SRAWI, 2, Tmp0).addReg(Op1r).addImm(31);
+ else
+ BuildMI(*MBB, IP, PPC32::LI, 2, Tmp0).addSImm(0);
+ BuildMI(*MBB, IP, PPC32::MULHWU, 2, Tmp1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp2).addReg(Op0r+1).addReg(Tmp0);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, Tmp4).addReg(Op0r).addReg(Op1r);
+ BuildMI(*MBB, IP, PPC32::ADD, 2, DestReg).addReg(Tmp3).addReg(Tmp4);
+ return;
+ }
+
+ // 32 x 32 -> 32
+ if (Class0 <= cInt && Class1 <= cInt) {
+ BuildMI(*MBB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0r).addReg(Op1r);
+ return;
+ }
+
+ assert(0 && "doMultiply cannot operate on unknown type!");
+}
+
+/// doMultiplyConst - This method will multiply the value in Op0 by the
+/// value of the ContantInt *CI
void ISel::doMultiplyConst(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
- unsigned DestReg, const Type *DestTy,
- unsigned op0Reg, unsigned ConstRHS) {
- unsigned Class = getClass(DestTy);
- // Handle special cases here.
- switch (ConstRHS) {
- case 0:
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
+ unsigned DestReg, Value *Op0, ConstantInt *CI) {
+ unsigned Class = getClass(Op0->getType());
+
+ // Mul op0, 0 ==> 0
+ if (CI->isNullValue()) {
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addSImm(0);
+ if (Class == cLong)
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
return;
- case 1:
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
- return;
- case 2:
- BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
+ }
+
+ // Mul op0, 1 ==> op0
+ if (CI->equalsInt(1)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+ if (Class == cLong)
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
return;
}
// If the element size is exactly a power of 2, use a shift to get it.
- if (unsigned Shift = ExactLog2(ConstRHS)) {
- switch (Class) {
- default: assert(0 && "Unknown class for this function!");
- case cByte:
- case cShort:
- case cInt:
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
- .addImm(Shift-1).addImm(0).addImm(31-Shift+1);
+ if (unsigned Shift = ExactLog2(CI->getRawValue())) {
+ ConstantUInt *ShiftCI = ConstantUInt::get(Type::UByteTy, Shift);
+ emitShiftOperation(MBB, IP, Op0, ShiftCI, true, Op0->getType(), DestReg);
+ return;
+ }
+
+ // If 32 bits or less and immediate is in right range, emit mul by immediate
+ if (Class == cByte || Class == cShort || Class == cInt)
+ {
+ if (canUseAsImmediateForOpcode(CI, 0)) {
+ unsigned Op0r = getReg(Op0, MBB, IP);
+ unsigned imm = CI->getRawValue() & 0xFFFF;
+ BuildMI(*MBB, IP, PPC32::MULLI, 2, DestReg).addReg(Op0r).addSImm(imm);
return;
}
}
- // Most general case, emit a normal multiply...
- unsigned TmpReg = makeAnotherReg(Type::IntTy);
- Constant *C = ConstantUInt::get(Type::UIntTy, ConstRHS);
-
- copyConstantToRegister(MBB, IP, C, TmpReg);
- doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
+ doMultiply(MBB, IP, DestReg, Op0, CI);
}
void ISel::visitMul(BinaryOperator &I) {
void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
Value *Op0, Value *Op1, unsigned DestReg) {
- MachineBasicBlock &BB = *MBB;
TypeClass Class = getClass(Op0->getType());
- // Simple scalar multiply?
- unsigned Op0Reg = getReg(Op0, &BB, IP);
switch (Class) {
case cByte:
case cShort:
case cInt:
+ case cLong:
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
- doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
+ doMultiplyConst(MBB, IP, DestReg, Op0, CI);
} else {
- unsigned Op1Reg = getReg(Op1, &BB, IP);
- doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
+ doMultiply(MBB, IP, DestReg, Op0, Op1);
}
return;
case cFP32:
case cFP64:
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
return;
- case cLong:
break;
}
-
- // Long value. We have to do things the hard way...
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- unsigned CLow = CI->getRawValue();
- unsigned CHi = CI->getRawValue() >> 32;
-
- if (CLow == 0) {
- // If the low part of the constant is all zeros, things are simple.
- BuildMI(BB, IP, PPC32::LI, 1, DestReg).addImm(0);
- doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
- return;
- }
-
- // Multiply the two low parts
- unsigned OverflowReg = 0;
- if (CLow == 1) {
- BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
- } else {
- unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
- unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
- OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::LIS, 1, TmpRegL).addImm(CLow >> 16);
- BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
- BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
- BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
- .addReg(Op1RegL);
- }
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
- doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
-
- unsigned AHBLplusOverflowReg;
- if (OverflowReg) {
- AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::ADD, 2,
- AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
- } else {
- AHBLplusOverflowReg = AHBLReg;
- }
-
- if (CHi == 0) {
- BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
- .addReg(AHBLplusOverflowReg);
- } else {
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
- doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
-
- BuildMI(BB, IP, PPC32::ADD, 2,
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
- }
- return;
- }
-
- // General 64x64 multiply
-
- unsigned Op1Reg = getReg(Op1, &BB, IP);
-
- // Multiply the two low parts...
- BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
-
- unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
-
- unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
-
- unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
- .addReg(OverflowReg);
-
- unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
- BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
-
- BuildMI(BB, IP, PPC32::ADD, 2,
- DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
}
unsigned Op0Reg = getReg(Op0, BB, IP);
unsigned TmpReg = makeAnotherReg(Op0->getType());
- BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg)
- .addImm(log2V-1);
+ BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(log2V);
BuildMI(*BB, IP, PPC32::ADDZE, 1, ResultReg).addReg(TmpReg);
return;
}
if (Amount < 32) {
if (isLeftShift) {
// FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(Amount).addImm(0).addImm(31-Amount);
- BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(32-Amount).addImm(31);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
// FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
.addImm(32-Amount).addImm(Amount).addImm(31);
- BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(0).addImm(Amount-1);
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
}
} else { // Shifting more than 32 bits
Amount -= 32;
if (isLeftShift) {
if (Amount != 0) {
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
.addImm(Amount).addImm(0).addImm(31-Amount);
} else {
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
- .addReg(SrcReg);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
+ .addReg(SrcReg+1);
}
- BuildMI(*MBB, IP, PPC32::LI, 1, DestReg).addImm(0);
+ BuildMI(*MBB, IP, PPC32::LI, 1, DestReg+1).addSImm(0);
} else {
if (Amount != 0) {
if (isSigned)
- BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(SrcReg)
.addImm(Amount);
else
- BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
.addImm(32-Amount).addImm(Amount).addImm(31);
} else {
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
- .addReg(SrcReg+1);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
+ .addReg(SrcReg);
}
- BuildMI(*MBB, IP,PPC32::LI,1,DestReg+1).addImm(0);
+ BuildMI(*MBB, IP,PPC32::LI, 1, DestReg).addSImm(0);
}
}
} else {
if (isLeftShift) {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addImm(32);
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg)
.addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
- BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
+ BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addImm(-32);
- BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
.addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
+ BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg+1).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
} else {
if (isSigned) {
abort();
} else {
BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
- .addImm(32);
- BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
+ .addSImm(32);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg+1)
.addReg(ShiftAmountReg);
- BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg)
.addReg(TmpReg1);
BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
.addReg(TmpReg3);
BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
- .addImm(-32);
- BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
+ .addSImm(-32);
+ BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg)
.addReg(TmpReg5);
- BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
+ BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
.addReg(TmpReg6);
- BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
+ BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg).addReg(SrcReg)
.addReg(ShiftAmountReg);
}
}
unsigned SrcAddrReg = getReg(I.getOperand(0));
if (Class == cLong) {
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
- BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(SrcAddrReg);
} else {
- BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+ BuildMI(BB, Opcode, 2, DestReg).addSImm(0).addReg(SrcAddrReg);
}
}
}
unsigned Class = getClassB(ValTy);
if (Class == cLong) {
- BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
- BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
+ BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
+ BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addSImm(4).addReg(AddressReg);
return;
}
};
unsigned Opcode = Opcodes[Class];
if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
- BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+ BuildMI(BB, Opcode, 3).addReg(ValReg).addSImm(0).addReg(AddressReg);
}
case cShort:
case cInt: {
unsigned TmpReg = makeAnotherReg(Type::IntTy);
- BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
+ BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
break;
}
unsigned TmpReg = makeAnotherReg(Type::IntTy);
unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
BuildMI(*MBB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
- BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
+ BuildMI(*MBB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addSImm(-1);
BuildMI(*MBB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg)
.addReg(SrcReg2);
break;
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
SrcClass < DestClass) {
bool isLong = DestClass == cLong;
- if (isLong) DestClass = cInt;
-
+ if (isLong) {
+ DestClass = cInt;
+ ++DestReg;
+ }
+
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
if (SrcClass < cInt) {
if (isUnsigned) {
}
if (isLong) { // Handle upper 32 bits as appropriate...
+ --DestReg;
if (isUnsigned) // Zero out top bits...
- BuildMI(*BB, IP, PPC32::LI, 1, DestReg+1).addImm(0);
+ BuildMI(*BB, IP, PPC32::LI, 1, DestReg).addSImm(0);
else // Sign extend bottom half...
- BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
+ BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg).addReg(DestReg).addImm(31);
}
return;
}
// Special case long -> int ...
if (SrcClass == cLong && DestClass == cInt) {
- BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+ BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
return;
}
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
&& SrcClass > DestClass) {
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+ unsigned source = (SrcClass == cLong) ? SrcReg+1 : SrcReg;
+
if (isUnsigned) {
unsigned shift = (SrcClass == cByte) ? 24 : 16;
- BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
+ BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(source).addZImm(0)
.addImm(shift).addImm(31);
} else {
BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
- DestReg).addReg(SrcReg);
+ DestReg).addReg(source);
}
return;
}
unsigned TempF = makeAnotherReg(Type::DoubleTy);
if (!SrcTy->isSigned()) {
- BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
- BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addImm(0);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC32::LI, 1, constantLo).addSImm(0);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
} else {
unsigned TempLo = makeAnotherReg(Type::IntTy);
- BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addImm(0x4330);
- BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addImm(0x8000);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantHi).addSImm(0x4330);
+ BuildMI(*BB, IP, PPC32::LIS, 1, constantLo).addSImm(0x8000);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
ConstantFrameIndex);
addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
}
// Increment the VAList pointer...
- BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
+ BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addSImm(Size);
}
void ISel::visitVAArgInst(VAArgInst &I) {
case Type::PointerTyID:
case Type::UIntTyID:
case Type::IntTyID:
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
break;
case Type::ULongTyID:
case Type::LongTyID:
- BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
- BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg).addSImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addSImm(4).addReg(VAList);
break;
case Type::DoubleTyID:
- BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
+ BuildMI(BB, PPC32::LFD, 2, DestReg).addSImm(0).addReg(VAList);
break;
}
}
outputReg);
}
-void ISel::emitGEPOperation(MachineBasicBlock *MBB,
- MachineBasicBlock::iterator IP,
- Value *Src, User::op_iterator IdxBegin,
- User::op_iterator IdxEnd, unsigned TargetReg) {
- const TargetData &TD = TM.getTargetData();
-
- std::vector<Value*> GEPOps;
- GEPOps.resize(IdxEnd-IdxBegin+1);
- GEPOps[0] = Src;
- std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
-
- std::vector<const Type*> GEPTypes;
- GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
- gep_type_end(Src->getType(), IdxBegin, IdxEnd));
-
- // Keep emitting instructions until we consume the entire GEP instruction.
- while (!GEPOps.empty()) {
- if (GEPTypes.empty()) {
- // Load the base pointer into a register.
- unsigned Reg = getReg(Src, MBB, IP);
- BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
- break; // we are now done
- }
- if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
- // It's a struct access. CUI is the index into the structure,
- // which names the field. This index must have unsigned type.
- const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
-
- // Use the TargetData structure to pick out what the layout of the
- // structure is in memory. Since the structure index must be constant, we
- // can get its value and use it to find the right byte offset from the
- // StructLayout class's list of structure member offsets.
- unsigned Disp = TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- unsigned DispReg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::LI, 1, DispReg).addImm(Disp);
- BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(DispReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
- } else {
- // It's an array or pointer access: [ArraySize x ElementType].
- const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
- Value *idx = GEPOps.back();
- GEPOps.pop_back(); // Consume a GEP operand
- GEPTypes.pop_back();
-
+/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+/// constant expression GEP support.
+///
+void ISel::emitGEPOperation (MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator IP,
+ Value *Src, User::op_iterator IdxBegin,
+ User::op_iterator IdxEnd, unsigned TargetReg) {
+ const TargetData &TD = TM.getTargetData ();
+ const Type *Ty = Src->getType ();
+ unsigned basePtrReg = getReg (Src, MBB, IP);
+
+ // GEPs have zero or more indices; we must perform a struct access
+ // or array access for each one.
+ for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
+ ++oi) {
+ Value *idx = *oi;
+ unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
+ if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
+ // It's a struct access. idx is the index into the structure,
+ // which names the field. Use the TargetData structure to
+ // pick out what the layout of the structure is in memory.
+ // Use the (constant) structure index's value to find the
+ // right byte offset from the StructLayout class's list of
+ // structure member offsets.
+ unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
+ unsigned memberOffset =
+ TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
+ // Emit an ADDI to add memberOffset to the basePtr.
+ BuildMI (*MBB, IP, PPC32::ADDI, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addSImm(memberOffset);
+ // The next type is the member of the structure selected by the
+ // index.
+ Ty = StTy->getElementType (fieldIndex);
+ } else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
// operand. Handle this case directly now...
if (CastInst *CI = dyn_cast<CastInst>(idx))
if (CI->getOperand(0)->getType() == Type::IntTy ||
CI->getOperand(0)->getType() == Type::UIntTy)
idx = CI->getOperand(0);
-
- // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
- // must find the size of the pointed-to type (Not coincidentally, the next
- // type is the type of the elements in the array).
- const Type *ElTy = SqTy->getElementType();
- unsigned elementSize = TD.getTypeSize(ElTy);
-
+
+ Ty = SqTy->getElementType();
+ unsigned elementSize = TD.getTypeSize (Ty);
+
if (idx == Constant::getNullValue(idx->getType())) {
// GEP with idx 0 is a no-op
+ nextBasePtrReg = basePtrReg;
} else if (elementSize == 1) {
// If the element size is 1, we don't have to multiply, just add
unsigned idxReg = getReg(idx, MBB, IP);
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
- --IP; // Insert the next instruction before this one.
- TargetReg = Reg; // Codegen the rest of the GEP into this
+ BuildMI(*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(idxReg);
} else {
- unsigned idxReg = getReg(idx, MBB, IP);
- unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
-
- // Make sure we can back the iterator up to point to the first
- // instruction emitted.
- MachineBasicBlock::iterator BeforeIt = IP;
- if (IP == MBB->begin())
- BeforeIt = MBB->end();
- else
- --BeforeIt;
- doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
-
+ // It's an array or pointer access: [ArraySize x ElementType].
+ // We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
+ // must find the size of the pointed-to type (Not coincidentally, the next
+ // type is the type of the elements in the array).
+ unsigned OffsetReg = makeAnotherReg(idx->getType());
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, elementSize);
+ doMultiplyConst(MBB, IP, OffsetReg, idx, CUI);
+
+ // Deal with long indices
+ if (getClass(idx->getType()) == cLong) ++OffsetReg;
+
// Emit an ADD to add OffsetReg to the basePtr.
- unsigned Reg = makeAnotherReg(Type::UIntTy);
- BuildMI(*MBB, IP, PPC32::ADD,2,TargetReg).addReg(Reg).addReg(OffsetReg);
-
- // Step to the first instruction of the multiply.
- if (BeforeIt == MBB->end())
- IP = MBB->begin();
- else
- IP = ++BeforeIt;
-
- TargetReg = Reg; // Codegen the rest of the GEP into this
+ BuildMI (*MBB, IP, PPC32::ADD, 2, nextBasePtrReg).addReg(basePtrReg)
+ .addReg(OffsetReg);
}
}
+ basePtrReg = nextBasePtrReg;
}
+ // After we have processed all the indices, the result is left in
+ // basePtrReg. Move it to the register where we were expected to
+ // put the answer.
+ BuildMI (BB, PPC32::OR, 2, TargetReg).addReg(basePtrReg).addReg(basePtrReg);
}
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
// Create a register to hold the temporary result of multiplying the type size
// constant by the variable amount.
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
- unsigned SrcReg1 = getReg(I.getArraySize());
// TotalSizeReg = mul <numelements>, <TypeSize>
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, TySize);
+ doMultiplyConst(BB, MBBI, TotalSizeReg, I.getArraySize(), CUI);
// AddedSize = add <TotalSizeReg>, 15
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
- BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
+ BuildMI(BB, PPC32::ADDI, 2, AddedSizeReg).addReg(TotalSizeReg).addSImm(15);
// AlignedSize = and <AddedSize>, ~15
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
} else {
Arg = makeAnotherReg(Type::UIntTy);
- unsigned Op0Reg = getReg(I.getOperand(0));
MachineBasicBlock::iterator MBBI = BB->end();
- doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
+ ConstantUInt *CUI = ConstantUInt::get(Type::UIntTy, AllocSize);
+ doMultiplyConst(BB, MBBI, Arg, I.getOperand(0), CUI);
}
std::vector<ValueRecord> Args;