(SE->*GetExtendExpr)(PreStart, Ty));
}
+// Try to prove away overflow by looking at "nearby" add recurrences. A
+// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
+// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
+//
+// Formally:
+//
+// {S,+,X} == {S-T,+,X} + T
+// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
+//
+// If ({S-T,+,X} + T) does not overflow ... (1)
+//
+// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
+//
+// If {S-T,+,X} does not overflow ... (2)
+//
+// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
+// == {Ext(S-T)+Ext(T),+,Ext(X)}
+//
+// If (S-T)+T does not overflow ... (3)
+//
+// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
+// == {Ext(S),+,Ext(X)} == LHS
+//
+// Thus, if (1), (2) and (3) are true for some T, then
+// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
+//
+// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
+// does not overflow" restricted to the 0th iteration. Therefore we only need
+// to check for (1) and (2).
+//
+// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
+// is `Delta` (defined below).
+//
+template <typename ExtendOpTy>
+bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
+ const SCEV *Step,
+ const Loop *L) {
+ auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
+
+ // We restrict `Start` to a constant to prevent SCEV from spending too much
+ // time here. It is correct (but more expensive) to continue with a
+ // non-constant `Start` and do a general SCEV subtraction to compute
+ // `PreStart` below.
+ //
+ const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
+ if (!StartC)
+ return false;
+
+ APInt StartAI = StartC->getValue()->getValue();
+
+ for (unsigned Delta : {-2, -1, 1, 2}) {
+ const SCEV *PreStart = getConstant(StartAI - Delta);
+
+ // Give up if we don't already have the add recurrence we need because
+ // actually constructing an add recurrence is relatively expensive.
+ const SCEVAddRecExpr *PreAR = [&]() {
+ FoldingSetNodeID ID;
+ ID.AddInteger(scAddRecExpr);
+ ID.AddPointer(PreStart);
+ ID.AddPointer(Step);
+ ID.AddPointer(L);
+ void *IP = nullptr;
+ return static_cast<SCEVAddRecExpr *>(
+ UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
+ }();
+
+ if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
+ const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
+ ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
+ const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
+ DeltaS, &Pred, this);
+ if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
+ return true;
+ }
+ }
+
+ return false;
+}
+
const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
}
}
}
+
+ if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
+ getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
+ }
}
// The cast wasn't folded; create an explicit cast node.
return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
}
}
+
+ if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
+ const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
+ return getAddRecExpr(
+ getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
+ getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
+ }
}
// The cast wasn't folded; create an explicit cast node.
--- /dev/null
+; RUN: opt -analyze -scalar-evolution < %s | FileCheck %s
+
+define void @f(i1* %condition) {
+; CHECK-LABEL: Classifying expressions for: @f
+ entry:
+ br label %loop
+
+ loop:
+ %idx = phi i32 [ 0, %entry ], [ %idx.inc, %loop ]
+ %idx.inc = add nsw i32 %idx, 1
+
+ %idx.inc2 = add i32 %idx.inc, 1
+ %idx.inc2.zext = zext i32 %idx.inc2 to i64
+
+; CHECK: %idx.inc2.zext = zext i32 %idx.inc2 to i64
+; CHECK-NEXT: --> {2,+,1}<nuw><%loop>
+
+ %c = load volatile i1, i1* %condition
+ br i1 %c, label %loop, label %exit
+
+ exit:
+ ret void
+}
+
+define void @g(i1* %condition) {
+; CHECK-LABEL: Classifying expressions for: @g
+ entry:
+ br label %loop
+
+ loop:
+ %idx = phi i32 [ 0, %entry ], [ %idx.inc, %loop ]
+ %idx.inc = add nsw i32 %idx, 3
+
+ %idx.inc2 = add i32 %idx.inc, -1
+ %idx.inc2.sext = sext i32 %idx.inc2 to i64
+; CHECK: %idx.inc2.sext = sext i32 %idx.inc2 to i64
+; CHECK-NEXT: --> {2,+,3}<nuw><nsw><%loop>
+
+ %c = load volatile i1, i1* %condition
+ br i1 %c, label %loop, label %exit
+
+ exit:
+ ret void
+}