--- /dev/null
+//===- llvm/Transforms/LowerAllocations.h - Remove Malloc & Free -*- C++ -*--=//
+//
+// This file defines the interface to a pass that lowers malloc and free
+// instructions to calls to %malloc & %free functions. This transformation is
+// a target dependant tranformation because we depend on the size of data types
+// and alignment constraints.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_LOWERALLOCATIONS_H
+#define LLVM_TRANSFORMS_LOWERALLOCATIONS_H
+
+#include "llvm/Transforms/Pass.h"
+class TargetData;
+
+class LowerAllocations : public ConcretePass<LowerAllocations> {
+ Method *MallocMeth; // Methods in the module we are processing
+ Method *FreeMeth; // Initialized by doPassInitializationVirt
+
+ const TargetData &DataLayout;
+public:
+ inline LowerAllocations(const TargetData &TD) : DataLayout(TD) {
+ MallocMeth = FreeMeth = 0;
+ }
+
+ // doPassInitialization - For the lower allocations pass, this ensures that a
+ // module contains a declaration for a malloc and a free function.
+ //
+ // This function is always successful.
+ //
+ bool doPassInitializationVirt(Module *M);
+
+ // doPerMethodWork - This method does the actual work of converting
+ // instructions over, assuming that the pass has already been initialized.
+ //
+ bool doPerMethodWorkVirt(Method *M);
+};
+
+#endif
--- /dev/null
+//===- llvm/Transforms/HoistPHIConstants.h - Normalize PHI nodes -*- C++ -*--=//
+//
+// HoistPHIConstants - Remove literal constants that are arguments of PHI nodes
+// by inserting cast instructions in the preceeding basic blocks, and changing
+// constant references into references of the casted value.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_HOISTPHICONSTANTS_H
+#define LLVM_TRANSFORMS_HOISTPHICONSTANTS_H
+
+#include "llvm/Transforms/Pass.h"
+
+struct HoistPHIConstants : public StatelessPass<HoistPHIConstants> {
+ // doPerMethodWork - This method does the work. Always successful.
+ //
+ static bool doPerMethodWork(Method *M);
+};
+
+#endif
--- /dev/null
+//===- llvm/Transforms/Pass.h - Base class for XForm Passes ------*- C++ -*--=//
+//
+// This file defines a marker class that indicates that a specified class is a
+// transformation pass implementation.
+//
+// Pass's are designed this way so that it is possible to apply N passes to a
+// module, by first doing N Pass specific initializations for the module, then
+// looping over all of the methods in the module, doing method specific work
+// N times for each method. Like this:
+//
+// for_each(Passes.begin(), Passes.end(), doPassInitialization(Module));
+// for_each(Method *M <- Module->begin(), Module->end())
+// for_each(Passes.begin(), Passes.end(), doPerMethodWork(M));
+//
+// The other way to do things is like this:
+// for_each(Pass *P <- Passes.begin(), Passes.end()) {
+// Passes->doPassInitialization(Module)
+// for_each(Module->begin(), Module->end(), P->doPerMethodWork);
+// }
+//
+// But this can cause thrashing and poor cache performance, so we don't do it
+// that way.
+//
+// Because a transformation does not see all methods consecutively, it should
+// be careful about the state that it maintains... another pass may modify a
+// method between two invokacations of doPerMethodWork.
+//
+// Also, implementations of doMethodWork should not remove any methods from the
+// module.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_PASS_H
+#define LLVM_TRANSFORMS_PASS_H
+
+#include "llvm/Module.h"
+#include "llvm/Method.h"
+
+//===----------------------------------------------------------------------===//
+// Pass interface - Implemented by all 'passes'.
+//
+struct Pass {
+ //===--------------------------------------------------------------------===//
+ // The externally useful entry points
+ //
+
+ // runAllPasses - Run a bunch of passes on the specified module, efficiently.
+ static bool runAllPasses(Module *M, vector<Pass*> &Passes) {
+ for (unsigned i = 0; i < Passes.size(); ++i)
+ if (Passes[i]->doPassInitializationVirt(M)) return true;
+
+ // Loop over all of the methods, applying all of the passes to them
+ for (Module::iterator I = M->begin(); I != M->end(); ++I)
+ for (unsigned i = 0; i < Passes.size(); ++i)
+ if (Passes[i]->doPerMethodWorkVirt(*I)) return true;
+ return false;
+ }
+
+ // runAllPassesAndFree - Run a bunch of passes on the specified module,
+ // efficiently. When done, delete all of the passes.
+ //
+ static bool runAllPassesAndFree(Module *M, vector<Pass*> &Passes) {
+ // First run all of the passes
+ bool Result = runAllPasses(M, Passes);
+
+ // Free all of the passes.
+ for (unsigned i = 0; i < Passes.size(); ++i)
+ delete Passes[i];
+ return Result;
+ }
+
+
+ // run(Module*) - Run this pass on a module and all of the methods contained
+ // within it. Returns false on success.
+ //
+ bool run(Module *M) {
+ if (doPassInitializationVirt(M)) return true;
+
+ // Loop over methods in the module. doPerMethodWork could add a method to
+ // the Module, so we have to keep checking for end of method list condition.
+ //
+ for (Module::iterator I = M->begin(); I != M->end(); ++I)
+ if (doPerMethodWorkVirt(*I)) return true;
+ return false;
+ }
+
+ // run(Method*) - Run this pass on a module and one specific method. Returns
+ // false on success.
+ //
+ bool run(Method *M) {
+ if (doPassInitializationVirt(M->getParent())) return true;
+ return doPerMethodWorkVirt(M);
+ }
+
+
+ //===--------------------------------------------------------------------===//
+ // Functions to be implemented by subclasses
+ //
+
+ // Destructor - Virtual so we can be subclassed
+ inline virtual ~Pass() {}
+
+ // doPassInitializationVirt - Virtual method overridden by subclasses to do
+ // any neccesary per-module initialization. Returns false on success.
+ //
+ virtual bool doPassInitializationVirt(Module *M) = 0;
+
+ // doPerMethodWorkVirt - Virtual method overriden by subclasses to do the
+ // per-method processing of the pass. Returns false on success.
+ //
+ virtual bool doPerMethodWorkVirt(Method *M) = 0;
+};
+
+
+//===----------------------------------------------------------------------===//
+// ConcretePass<t> class - This is used by implementations of passes to fill in
+// boiler plate code. SubClass should be a concrete class that is derived from
+// ConcretePass.
+//
+// Deriving from this class is good because if new methods are added in the
+// future, code for your pass won't have to change to stub out the unused
+// functionality.
+//
+template<class SubClass>
+struct ConcretePass : public Pass {
+
+ // doPassInitializationVirt - Default to success.
+ virtual bool doPassInitializationVirt(Module *M) { return false; }
+
+ // doPerMethodWorkVirt - Default to success.
+ virtual bool doPerMethodWorkVirt(Method *M) { return false; }
+};
+
+
+
+//===----------------------------------------------------------------------===//
+// StatelessPass<t> class - This is used by implementations of passes to fill in
+// boiler plate code. Subclassing this class indicates that a class has no
+// state to keep around, so it's safe to invoke static versions of functions.
+// This can be more efficient that using virtual function dispatch all of the
+// time.
+//
+// SubClass should be a concrete class that is derived from StatelessPass.
+//
+template<class SubClass>
+struct StatelessPass : public ConcretePass<SubClass> {
+
+ //===--------------------------------------------------------------------===//
+ // The externally useful entry points - These are specialized to avoid the
+ // overhead of virtual method invokations if
+ //
+ // run(Module*) - Run this pass on a module and all of the methods contained
+ // within it. Returns false on success.
+ //
+ static bool run(Module *M) {
+ if (doPassInitialization(M->getParent())) return true;
+
+ // Loop over methods in the module. doPerMethodWork could add a method to
+ // the Module, so we have to keep checking for end of method list condition.
+ //
+ for (Module::iterator I = M->begin(); I != M->end(); ++I)
+ if (doPerMethodWork(*I)) return true;
+ return false;
+ }
+
+ // run(Method*) - Run this pass on a module and one specific method. Returns
+ // false on success.
+ //
+ static bool run(Method *M) {
+ if (doPassInitialization(M->getParent())) return true;
+ return doPerMethodWork(M);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // Default static method implementations, these should be defined in SubClass
+
+ static bool doPassInitialization(Module *M) { return false; }
+ static bool doPerMethodWork(Method *M) { return false; }
+
+
+ //===--------------------------------------------------------------------===//
+ // Virtual method forwarders...
+
+ // doPassInitializationVirt - For a StatelessPass, default to implementing in
+ // terms of the static method.
+ //
+ virtual bool doPassInitializationVirt(Module *M) {
+ return SubClass::doPassInitialization(M);
+ }
+
+ // doPerMethodWorkVirt - For a StatelessPass, default to implementing in
+ // terms of the static method.
+ //
+ virtual bool doPerMethodWorkVirt(Method *M) {
+ return SubClass::doPerMethodWork(M);
+ }
+};
+
+#endif
+
--- /dev/null
+//===- llvm/Transforms/PrintModulePass.h - Printing Pass ---------*- C++ -*--=//
+//
+// This file defines a simple pass to print out methods of a module as they are
+// processed.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TRANSFORMS_PRINTMODULE_H
+#define LLVM_TRANSFORMS_PRINTMODULE_H
+
+#include "llvm/Transforms/Pass.h"
+#include "llvm/Assembly/Writer.h"
+
+class PrintModulePass : public ConcretePass<PrintModulePass> {
+ string Banner; // String to print before each method
+ ostream *Out; // ostream to print on
+ bool DeleteStream; // Delete the ostream in our dtor?
+public:
+ inline PrintModulePass(const string &B, ostream *o = &cout, bool DS = false)
+ : Banner(B), Out(o), DeleteStream(DS) {}
+
+ ~PrintModulePass() {
+ if (DeleteStream) delete Out;
+ }
+
+ // doPerMethodWork - This pass just prints a banner followed by the method as
+ // it's processed.
+ //
+ bool doPerMethodWorkVirt(Method *M) {
+ (*Out) << Banner << M;
+ return false;
+ }
+};
+
+#endif
--- /dev/null
+//===- llvm/Transforms/HoistPHIConstants.h - Normalize PHI nodes ------------=//
+//
+// HoistPHIConstants - Remove literal constants that are arguments of PHI nodes
+// by inserting cast instructions in the preceeding basic blocks, and changing
+// constant references into references of the casted value.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/HoistPHIConstants.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include <map>
+
+typedef pair<BasicBlock *, Value*> BBConstTy;
+typedef map<BBConstTy, CastInst *> CachedCopyMap;
+
+static Value *NormalizePhiOperand(PHINode *PN, Value *CPV,
+ BasicBlock *Pred, CachedCopyMap &CopyCache) {
+
+ // Check if we've already inserted a copy for this constant in Pred
+ // Note that `copyCache[Pred]' will create an empty vector the first time
+ //
+ CachedCopyMap::iterator CCI = CopyCache.find(BBConstTy(Pred, CPV));
+ if (CCI != CopyCache.end()) return CCI->second;
+
+ // Create a copy instruction and add it to the cache...
+ CastInst *Inst = new CastInst(CPV, CPV->getType());
+ CopyCache.insert(make_pair(BBConstTy(Pred, CPV), Inst));
+
+ // Insert the copy just before the terminator inst of the predecessor BB
+ assert(Pred->getTerminator() && "Degenerate BB encountered!");
+ Pred->getInstList().insert(Pred->getInstList().end()-1, Inst);
+
+ return Inst;
+}
+
+
+//---------------------------------------------------------------------------
+// Entry point for normalizing constant args in PHIs
+//---------------------------------------------------------------------------
+
+bool HoistPHIConstants::doPerMethodWork(Method *M) {
+ CachedCopyMap Cache;
+
+ for (Method::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI)
+ for (BasicBlock::iterator II = (*BI)->begin(); II != (*BI)->end(); ++II) {
+ Instruction *Inst = *II;
+ if (!isa<PHINode>(Inst)) break; // All PHIs occur at top of BB!
+
+ PHINode *PN = cast<PHINode>(Inst);
+ for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i) {
+ Value *Op = PN->getIncomingValue(i);
+ if (isa<ConstPoolVal>(Op))
+ PN->setIncomingValue(i,
+ NormalizePhiOperand(PN, Op, PN->getIncomingBlock(i), Cache));
+ }
+ }
+
+ return false;
+}
--- /dev/null
+//===- llvm/Transforms/LowerAllocations.h - Remove Malloc & Free Insts ------=//
+//
+// This file implements a pass that lowers malloc and free instructions to
+// calls to %malloc & %free functions. This transformation is a target
+// dependant tranformation because we depend on the size of data types and
+// alignment constraints.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/LowerAllocations.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/SymbolTable.h"
+
+// doPassInitialization - For the lower allocations pass, this ensures that a
+// module contains a declaration for a malloc and a free function.
+//
+// This function is always successful.
+//
+bool LowerAllocations::doPassInitializationVirt(Module *M) {
+ const MethodType *MallocType =
+ MethodType::get(PointerType::get(Type::UByteTy),
+ vector<const Type*>(1, Type::UIntTy), false);
+
+ SymbolTable *SymTab = M->getSymbolTableSure();
+
+ // Check for a definition of malloc
+ if (Value *V = SymTab->lookup(PointerType::get(MallocType), "malloc")) {
+ MallocMeth = cast<Method>(V); // Yup, got it
+ } else { // Nope, add one
+ M->getMethodList().push_back(MallocMeth = new Method(MallocType, "malloc"));
+ }
+
+ const MethodType *FreeType =
+ MethodType::get(Type::VoidTy,
+ vector<const Type*>(1, PointerType::get(Type::UByteTy)),
+ false);
+
+ // Check for a definition of free
+ if (Value *V = SymTab->lookup(PointerType::get(FreeType), "free")) {
+ FreeMeth = cast<Method>(V); // Yup, got it
+ } else { // Nope, add one
+ M->getMethodList().push_back(FreeMeth = new Method(FreeType, "free"));
+ }
+
+ return false; // Always successful
+}
+
+// doPerMethodWork - This method does the actual work of converting
+// instructions over, assuming that the pass has already been initialized.
+//
+bool LowerAllocations::doPerMethodWorkVirt(Method *M) {
+ assert(MallocMeth && FreeMeth && M && "Pass not initialized!");
+
+ // Loop over all of the instructions, looking for malloc or free instructions
+ for (Method::iterator BBI = M->begin(), BBE = M->end(); BBI != BBE; ++BBI) {
+ BasicBlock *BB = *BBI;
+ for (unsigned i = 0; i < BB->size(); ++i) {
+ BasicBlock::InstListType &BBIL = BB->getInstList();
+ if (MallocInst *MI = dyn_cast<MallocInst>(*(BBIL.begin()+i))) {
+ BBIL.remove(BBIL.begin()+i); // remove the malloc instr...
+
+ const Type *AllocTy = cast<PointerType>(MI->getType())->getValueType();
+
+ // If the user is allocating an unsized array with a dynamic size arg,
+ // start by getting the size of one element.
+ //
+ if (const ArrayType *ATy = dyn_cast<ArrayType>(AllocTy))
+ if (ATy->isUnsized()) AllocTy = ATy->getElementType();
+
+ // Get the number of bytes to be allocated for one element of the
+ // requested type...
+ unsigned Size = DataLayout.getTypeSize(AllocTy);
+
+ // malloc(type) becomes sbyte *malloc(constint)
+ Value *MallocArg = ConstPoolUInt::get(Type::UIntTy, Size);
+ if (MI->getNumOperands() && Size == 1) {
+ MallocArg = MI->getOperand(0); // Operand * 1 = Operand
+ } else if (MI->getNumOperands()) {
+ // Multiply it by the array size if neccesary...
+ MallocArg = BinaryOperator::create(Instruction::Mul,MI->getOperand(0),
+ MallocArg);
+ BBIL.insert(BBIL.begin()+i++, cast<Instruction>(MallocArg));
+ }
+
+ // Create the call to Malloc...
+ CallInst *MCall = new CallInst(MallocMeth,
+ vector<Value*>(1, MallocArg));
+ BBIL.insert(BBIL.begin()+i, MCall);
+
+ // Create a cast instruction to convert to the right type...
+ CastInst *MCast = new CastInst(MCall, MI->getType());
+ BBIL.insert(BBIL.begin()+i+1, MCast);
+
+ // Replace all uses of the old malloc inst with the cast inst
+ MI->replaceAllUsesWith(MCast);
+ delete MI; // Delete the malloc inst
+ } else if (FreeInst *FI = dyn_cast<FreeInst>(*(BBIL.begin()+i))) {
+ BBIL.remove(BB->getInstList().begin()+i);
+
+ // Cast the argument to free into a ubyte*...
+ CastInst *MCast = new CastInst(FI->getOperand(0),
+ PointerType::get(Type::UByteTy));
+ BBIL.insert(BBIL.begin()+i, MCast);
+
+ // Insert a call to the free function...
+ CallInst *FCall = new CallInst(FreeMeth,
+ vector<Value*>(1, MCast));
+ BBIL.insert(BBIL.begin()+i+1, FCall);
+
+ // Delete the old free instruction
+ delete FI;
+ }
+ }
+ }
+
+ return false; // Always successful
+}
+