#include "llvm/ConstPoolVals.h"
#include "llvm/DerivedTypes.h"
#include "ReaderInternals.h"
+#include <algorithm>
+
-bool BytecodeParser::parseTypeConstant(const uchar *&Buf, const uchar *EndBuf,
- ConstPoolVal *&V) {
- const Type *Val = 0;
+const Type *BytecodeParser::parseTypeConstant(const uchar *&Buf,
+ const uchar *EndBuf) {
unsigned PrimType;
- if (read_vbr(Buf, EndBuf, PrimType)) return failure(true);
+ if (read_vbr(Buf, EndBuf, PrimType)) return failure<const Type*>(0);
- if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) {
- V = new ConstPoolType(Val); // It's just a primitive ID.
- return false;
- }
+ const Type *Val = 0;
+ if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
+ return Val;
switch (PrimType) {
case Type::MethodTyID: {
unsigned Typ;
- if (read_vbr(Buf, EndBuf, Typ)) return failure(true);
+ if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *RetType = getType(Typ);
- if (RetType == 0) return failure(true);
+ if (RetType == 0) return failure(Val);
unsigned NumParams;
- if (read_vbr(Buf, EndBuf, NumParams)) return failure(true);
+ if (read_vbr(Buf, EndBuf, NumParams)) return failure(Val);
- MethodType::ParamTypes Params;
+ vector<const Type*> Params;
while (NumParams--) {
- if (read_vbr(Buf, EndBuf, Typ)) return failure(true);
+ if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
const Type *Ty = getType(Typ);
- if (Ty == 0) return failure(true);
+ if (Ty == 0) return failure(Val);
Params.push_back(Ty);
}
- Val = MethodType::getMethodType(RetType, Params);
+ Val = MethodType::get(RetType, Params);
break;
}
case Type::ArrayTyID: {
unsigned ElTyp;
- if (read_vbr(Buf, EndBuf, ElTyp)) return failure(true);
+ if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
const Type *ElementType = getType(ElTyp);
- if (ElementType == 0) return failure(true);
+ if (ElementType == 0) return failure(Val);
int NumElements;
- if (read_vbr(Buf, EndBuf, NumElements)) return failure(true);
- Val = ArrayType::getArrayType(ElementType, NumElements);
+ if (read_vbr(Buf, EndBuf, NumElements)) return failure(Val);
+ Val = ArrayType::get(ElementType, NumElements);
break;
}
case Type::StructTyID: {
unsigned Typ;
- StructType::ElementTypes Elements;
+ vector<const Type*> Elements;
- if (read_vbr(Buf, EndBuf, Typ)) return failure(true);
+ if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
while (Typ) { // List is terminated by void/0 typeid
const Type *Ty = getType(Typ);
- if (Ty == 0) return failure(true);
+ if (Ty == 0) return failure(Val);
Elements.push_back(Ty);
- if (read_vbr(Buf, EndBuf, Typ)) return failure(true);
+ if (read_vbr(Buf, EndBuf, Typ)) return failure(Val);
}
- Val = StructType::getStructType(Elements);
+ Val = StructType::get(Elements);
break;
}
case Type::PointerTyID: {
unsigned ElTyp;
- if (read_vbr(Buf, EndBuf, ElTyp)) return failure(true);
+ if (read_vbr(Buf, EndBuf, ElTyp)) return failure(Val);
const Type *ElementType = getType(ElTyp);
- if (ElementType == 0) return failure(true);
- Val = PointerType::getPointerType(ElementType);
+ if (ElementType == 0) return failure(Val);
+ Val = PointerType::get(ElementType);
break;
}
default:
cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize"
<< " primitive Type " << PrimType << "\n";
- return failure(true);
+ return failure(Val);
+ }
+
+ return Val;
+}
+
+// refineAbstractType - The callback method is invoked when one of the
+// elements of TypeValues becomes more concrete...
+//
+void BytecodeParser::refineAbstractType(const DerivedType *OldType,
+ const Type *NewType) {
+ TypeValuesListTy::iterator I = find(MethodTypeValues.begin(),
+ MethodTypeValues.end(), OldType);
+ if (I == MethodTypeValues.end()) {
+ I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), OldType);
+ assert(I != ModuleTypeValues.end() &&
+ "Can't refine a type I don't know about!");
}
- V = new ConstPoolType(Val);
+ *I = NewType; // Update to point to new, more refined type.
+}
+
+
+
+// parseTypeConstants - We have to use this wierd code to handle recursive
+// types. We know that recursive types will only reference the current slab of
+// values in the type plane, but they can forward reference types before they
+// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
+// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
+// this ugly problem, we pesimistically insert an opaque type for each type we
+// are about to read. This means that forward references will resolve to
+// something and when we reread the type later, we can replace the opaque type
+// with a new resolved concrete type.
+//
+bool BytecodeParser::parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
+ TypeValuesListTy &Tab,
+ unsigned NumEntries) {
+ assert(Tab.size() == 0 && "I think table should always be empty here!"
+ "This should simplify later code");
+
+ // Record the base, starting level that we will begin with.
+ unsigned BaseLevel = Tab.size();
+
+ // Insert a bunch of opaque types to be resolved later...
+ for (unsigned i = 0; i < NumEntries; i++)
+ Tab.push_back(PATypeHandle<Type>(OpaqueType::get(), this));
+
+ // Loop through reading all of the types. Forward types will make use of the
+ // opaque types just inserted.
+ //
+ for (unsigned i = 0; i < NumEntries; i++) {
+ const Type *NewTy = parseTypeConstant(Buf, EndBuf);
+ if (NewTy == 0) return failure(true);
+ BCR_TRACE(4, "Read Type Constant: '" << NewTy << "'\n");
+
+ // Don't insertValue the new type... instead we want to replace the opaque
+ // type with the new concrete value...
+ //
+
+ // Refine the abstract type to the new type. This causes all uses of the
+ // abstract type to use the newty. This also will cause the opaque type
+ // to be deleted...
+ //
+ // FIXME when types are not const
+ const_cast<DerivedType*>(Tab[i+BaseLevel]->castDerivedTypeAsserting())->refineAbstractTypeTo(NewTy);
+
+ // This should have replace the old opaque type with the new type in the
+ // value table...
+ assert(Tab[i+BaseLevel] == NewTy && "refineAbstractType didn't work!");
+ }
+
+ BCR_TRACE(5, "Resulting types:\n");
+ for (unsigned i = 0; i < NumEntries; i++) {
+ BCR_TRACE(5, Tab[i+BaseLevel]->castTypeAsserting() << "\n");
+ }
return false;
}
+
bool BytecodeParser::parseConstPoolValue(const uchar *&Buf,
const uchar *EndBuf,
const Type *Ty, ConstPoolVal *&V) {
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (Val != 0 && Val != 1) return failure(true);
- V = new ConstPoolBool(Val == 1);
+ V = ConstPoolBool::get(Val == 1);
break;
}
unsigned Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstPoolUInt::isValueValidForType(Ty, Val)) return failure(true);
- V = new ConstPoolUInt(Ty, Val);
+ V = ConstPoolUInt::get(Ty, Val);
break;
}
case Type::ULongTyID: {
uint64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
- V = new ConstPoolUInt(Ty, Val);
+ V = ConstPoolUInt::get(Ty, Val);
break;
}
int Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
if (!ConstPoolSInt::isValueValidForType(Ty, Val)) return failure(true);
- V = new ConstPoolSInt(Ty, Val);
+ V = ConstPoolSInt::get(Ty, Val);
break;
}
case Type::LongTyID: {
int64_t Val;
if (read_vbr(Buf, EndBuf, Val)) return failure(true);
- V = new ConstPoolSInt(Ty, Val);
+ V = ConstPoolSInt::get(Ty, Val);
break;
}
case Type::FloatTyID: {
float F;
if (input_data(Buf, EndBuf, &F, &F+1)) return failure(true);
- V = new ConstPoolFP(Ty, F);
+ V = ConstPoolFP::get(Ty, F);
break;
}
case Type::DoubleTyID: {
double Val;
if (input_data(Buf, EndBuf, &Val, &Val+1)) return failure(true);
- V = new ConstPoolFP(Ty, Val);
+ V = ConstPoolFP::get(Ty, Val);
break;
}
case Type::TypeTyID:
- if (parseTypeConstant(Buf, EndBuf, V)) return failure(true);
- break;
+ assert(0 && "Type constants should be handled seperately!!!");
+ abort();
case Type::ArrayTyID: {
const ArrayType *AT = (const ArrayType*)Ty;
if (!V || !V->isConstant()) return failure(true);
Elements.push_back((ConstPoolVal*)V);
}
- V = new ConstPoolArray(AT, Elements);
+ V = ConstPoolArray::get(AT, Elements);
break;
}
Elements.push_back((ConstPoolVal*)V);
}
- V = new ConstPoolStruct(ST, Elements);
+ V = ConstPoolStruct::get(ST, Elements);
break;
}
<< Ty->getName() << "'\n";
return failure(true);
}
+
return false;
}
bool BytecodeParser::ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
- SymTabValue::ConstantPoolType &CP,
- ValueTable &Tab) {
+ ValueTable &Tab,
+ TypeValuesListTy &TypeTab) {
while (Buf < EndBuf) {
unsigned NumEntries, Typ;
read_vbr(Buf, EndBuf, Typ)) return failure(true);
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(true);
+ BCR_TRACE(3, "Type: '" << Ty << "' NumEntries: " << NumEntries << "\n");
- for (unsigned i = 0; i < NumEntries; i++) {
- ConstPoolVal *I;
- if (parseConstPoolValue(Buf, EndBuf, Ty, I)) return failure(true);
-#if 0
- cerr << " Read const value: <" << I->getType()->getName()
- << ">: " << I->getStrValue() << endl;
-#endif
- insertValue(I, Tab);
- CP.insert(I);
+ if (Typ == Type::TypeTyID) {
+ if (parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries)) return true;
+ } else {
+ for (unsigned i = 0; i < NumEntries; i++) {
+ ConstPoolVal *I;
+ if (parseConstPoolValue(Buf, EndBuf, Ty, I)) return failure(true);
+ BCR_TRACE(4, "Read Constant: '" << I << "'\n");
+ insertValue(I, Tab);
+ }
}
}
#if 0
cerr << "NO: " << Result.NumOperands << " opcode: " << Result.Opcode
- << " Ty: " << Result.Ty->getName() << " arg1: " << Result.Arg1
+ << " Ty: " << Result.Ty->getDescription() << " arg1: " << Result.Arg1
<< " arg2: " << Result.Arg2 << " arg3: " << Result.Arg3 << endl;
#endif
return false;
if (Ty->isPrimitiveType()) {
Slot = Ty->getPrimitiveID();
} else {
- TypeMapType::iterator I = TypeMap.find(Ty);
- if (I == TypeMap.end()) return failure(true); // Didn't find type!
- Slot = I->second;
+ // Check the method level types first...
+ TypeValuesListTy::iterator I = find(MethodTypeValues.begin(),
+ MethodTypeValues.end(), Ty);
+ if (I != MethodTypeValues.end()) {
+ Slot = FirstDerivedTyID+ModuleTypeValues.size()+
+ (&*I - &MethodTypeValues[0]);
+ } else {
+ I = find(ModuleTypeValues.begin(), ModuleTypeValues.end(), Ty);
+ if (I == ModuleTypeValues.end()) return true; // Didn't find type!
+ Slot = FirstDerivedTyID + (&*I - &ModuleTypeValues[0]);
+ }
}
//cerr << "getTypeSlot '" << Ty->getName() << "' = " << Slot << endl;
return false;
const Value *D = getValue(Type::TypeTy, ID, false);
if (D == 0) return failure<const Type*>(0);
- assert(D->getType() == Type::TypeTy);
- return ((const ConstPoolType*)D->castConstantAsserting())->getValue();
+ return D->castTypeAsserting();
}
-bool BytecodeParser::insertValue(Value *Def, vector<ValueList> &ValueTab) {
+bool BytecodeParser::insertValue(Value *Val, vector<ValueList> &ValueTab) {
unsigned type;
- if (getTypeSlot(Def->getType(), type)) return failure(true);
+ if (getTypeSlot(Val->getType(), type)) return failure(true);
+ assert(type != Type::TypeTyID && "Types should never be insertValue'd!");
if (ValueTab.size() <= type)
ValueTab.resize(type+1, ValueList());
//cerr << "insertValue Values[" << type << "][" << ValueTab[type].size()
- // << "] = " << Def << endl;
-
- if (type == Type::TypeTyID && Def->isConstant()) {
- const Type *Ty = ((const ConstPoolType*)Def)->getValue();
- unsigned ValueOffset = FirstDerivedTyID;
-
- if (&ValueTab == &Values) // Take into consideration module level types
- ValueOffset += ModuleValues[type].size();
-
- if (TypeMap.find(Ty) == TypeMap.end())
- TypeMap[Ty] = ValueTab[type].size()+ValueOffset;
- }
-
- ValueTab[type].push_back(Def);
+ // << "] = " << Val << endl;
+ ValueTab[type].push_back(Val);
return false;
}
if (getTypeSlot(Ty, type)) return failure<Value*>(0); // TODO: true
if (type == Type::TypeTyID) { // The 'type' plane has implicit values
+ assert(Create == false);
const Type *T = Type::getPrimitiveType((Type::PrimitiveID)Num);
if (T) return (Value*)T; // Asked for a primitive type...
// Otherwise, derived types need offset...
Num -= FirstDerivedTyID;
+
+ // Is it a module level type?
+ if (Num < ModuleTypeValues.size())
+ return (Value*)(const Type*)ModuleTypeValues[Num];
+
+ // Nope, is it a method level type?
+ Num -= ModuleTypeValues.size();
+ if (Num < MethodTypeValues.size())
+ return (Value*)(const Type*)MethodTypeValues[Num];
+
+ return 0;
}
- if (ModuleValues.size() > type) {
- if (ModuleValues[type].size() > Num)
+ if (type < ModuleValues.size()) {
+ if (Num < ModuleValues[type].size())
return ModuleValues[type][Num];
Num -= ModuleValues[type].size();
}
BB = new BasicBlock();
while (Buf < EndBuf) {
- Instruction *Def;
- if (ParseInstruction(Buf, EndBuf, Def)) {
+ Instruction *Inst;
+ if (ParseInstruction(Buf, EndBuf, Inst)) {
delete BB;
return failure(true);
}
- if (Def == 0) { delete BB; return failure(true); }
- if (insertValue(Def, Values)) { delete BB; return failure(true); }
+ if (Inst == 0) { delete BB; return failure(true); }
+ if (insertValue(Inst, Values)) { delete BB; return failure(true); }
+
+ BB->getInstList().push_back(Inst);
- BB->getInstList().push_back(Def);
+ BCR_TRACE(4, Inst);
}
return false;
}
-bool BytecodeParser::ParseSymbolTable(const uchar *&Buf, const uchar *EndBuf) {
+bool BytecodeParser::ParseSymbolTable(const uchar *&Buf, const uchar *EndBuf,
+ SymbolTable *ST) {
while (Buf < EndBuf) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries, Typ;
const Type *Ty = getType(Typ);
if (Ty == 0) return failure(true);
+ BCR_TRACE(3, "Plane Type: '" << Ty << "' with " << NumEntries <<
+ " entries\n");
+
for (unsigned i = 0; i < NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot;
return failure(true);
Value *D = getValue(Ty, slot, false); // Find mapping...
- if (D == 0) return failure(true);
- D->setName(Name);
+ if (D == 0) {
+ BCR_TRACE(3, "FAILED LOOKUP: Slot #" << slot << endl);
+ return failure(true);
+ }
+ BCR_TRACE(4, "Map: '" << Name << "' to #" << slot << ":" << D;
+ if (!D->isInstruction()) cerr << endl);
+
+ D->setName(Name, ST);
}
}
MethodSignatureList.pop_front();
Method *M = new Method(MTy);
+ BCR_TRACE(2, "METHOD TYPE: " << MTy << endl);
+
const MethodType::ParamTypes &Params = MTy->getParamTypes();
for (MethodType::ParamTypes::const_iterator It = Params.begin();
It != Params.end(); ++It) {
switch (Type) {
case BytecodeFormat::ConstantPool:
- if (ParseConstantPool(Buf, Buf+Size, M->getConstantPool(), Values)) {
- cerr << "Error reading constant pool!\n";
+ BCR_TRACE(2, "BLOCK BytecodeFormat::ConstantPool: {\n");
+ if (ParseConstantPool(Buf, Buf+Size, Values, MethodTypeValues)) {
delete M; return failure(true);
}
break;
case BytecodeFormat::BasicBlock: {
+ BCR_TRACE(2, "BLOCK BytecodeFormat::BasicBlock: {\n");
BasicBlock *BB;
if (ParseBasicBlock(Buf, Buf+Size, BB) ||
insertValue(BB, Values)) {
- cerr << "Error parsing basic block!\n";
delete M; return failure(true); // Parse error... :(
}
}
case BytecodeFormat::SymbolTable:
- if (ParseSymbolTable(Buf, Buf+Size)) {
- cerr << "Error reading method symbol table!\n";
+ BCR_TRACE(2, "BLOCK BytecodeFormat::SymbolTable: {\n");
+ if (ParseSymbolTable(Buf, Buf+Size, M->getSymbolTableSure())) {
delete M; return failure(true);
}
break;
default:
+ BCR_TRACE(2, "BLOCK <unknown>:ignored! {\n");
Buf += Size;
if (OldBuf > Buf) return failure(true); // Wrap around!
break;
}
+ BCR_TRACE(2, "} end block\n");
+
if (align32(Buf, EndBuf)) {
delete M; // Malformed bc file, read past end of block.
return failure(true);
while (MethSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(MethSignature);
if (!Ty || !Ty->isMethodType()) {
- cerr << "Method not meth type! ";
+ cerr << "Method not meth type! Ty = " << Ty << endl;
if (Ty) cerr << Ty->getName(); else cerr << MethSignature; cerr << endl;
return failure(true);
}
- // When the ModuleGlobalInfo section is read, we load the type of each method
- // and the 'ModuleValues' slot that it lands in. We then load a placeholder
- // into its slot to reserve it. When the method is loaded, this placeholder
- // is replaced.
+ // When the ModuleGlobalInfo section is read, we load the type of each
+ // method and the 'ModuleValues' slot that it lands in. We then load a
+ // placeholder into its slot to reserve it. When the method is loaded, this
+ // placeholder is replaced.
// Insert the placeholder...
Value *Def = new MethPHolder(Ty, 0);
//
MethodSignatureList.push_back(make_pair((const MethodType*)Ty, SlotNo));
if (read_vbr(Buf, End, MethSignature)) return failure(true);
+ BCR_TRACE(2, "Method of type: " << Ty << endl);
}
if (align32(Buf, End)) return failure(true);
if (Type != BytecodeFormat::Module || Buf+Size != EndBuf)
return failure(true); // Hrm, not a class?
+ BCR_TRACE(0, "BLOCK BytecodeFormat::Module: {\n");
MethodSignatureList.clear(); // Just in case...
// Read into instance variables...
if (read_vbr(Buf, EndBuf, FirstDerivedTyID)) return failure(true);
if (align32(Buf, EndBuf)) return failure(true);
+ BCR_TRACE(1, "FirstDerivedTyID = " << FirstDerivedTyID << "\n");
C = new Module();
-
while (Buf < EndBuf) {
const uchar *OldBuf = Buf;
if (readBlock(Buf, EndBuf, Type, Size)) { delete C; return failure(true); }
switch (Type) {
- case BytecodeFormat::ModuleGlobalInfo:
- if (ParseModuleGlobalInfo(Buf, Buf+Size, C)) {
- cerr << "Error reading class global info section!\n";
+ case BytecodeFormat::ConstantPool:
+ BCR_TRACE(1, "BLOCK BytecodeFormat::ConstantPool: {\n");
+ if (ParseConstantPool(Buf, Buf+Size, ModuleValues, ModuleTypeValues)) {
delete C; return failure(true);
}
break;
- case BytecodeFormat::ConstantPool:
- if (ParseConstantPool(Buf, Buf+Size, C->getConstantPool(), ModuleValues)) {
- cerr << "Error reading class constant pool!\n";
+ case BytecodeFormat::ModuleGlobalInfo:
+ BCR_TRACE(1, "BLOCK BytecodeFormat::ModuleGlobalInfo: {\n");
+
+ if (ParseModuleGlobalInfo(Buf, Buf+Size, C)) {
delete C; return failure(true);
}
break;
case BytecodeFormat::Method: {
+ BCR_TRACE(1, "BLOCK BytecodeFormat::Method: {\n");
if (ParseMethod(Buf, Buf+Size, C)) {
delete C; return failure(true); // Error parsing method
}
}
case BytecodeFormat::SymbolTable:
- if (ParseSymbolTable(Buf, Buf+Size)) {
- cerr << "Error reading class symbol table!\n";
+ BCR_TRACE(1, "BLOCK BytecodeFormat::SymbolTable: {\n");
+ if (ParseSymbolTable(Buf, Buf+Size, C->getSymbolTableSure())) {
delete C; return failure(true);
}
break;
default:
- cerr << "Unknown class block: " << Type << endl;
+ cerr << " Unknown class block: " << Type << endl;
Buf += Size;
if (OldBuf > Buf) return failure(true); // Wrap around!
break;
}
+ BCR_TRACE(1, "} end block\n");
if (align32(Buf, EndBuf)) { delete C; return failure(true); }
}
if (!MethodSignatureList.empty()) // Expected more methods!
return failure(true);
+
+ BCR_TRACE(0, "} end block\n\n");
return false;
}
#include <map>
#include <utility>
+// Enable to trace to figure out what the heck is going on when parsing fails
+#define TRACE_LEVEL 0
+
+#if TRACE_LEVEL // ByteCodeReading_TRACEer
+#include "llvm/Assembly/Writer.h"
+#define BCR_TRACE(n, X) if (n < TRACE_LEVEL) cerr << string(n*2, ' ') << X
+#else
+#define BCR_TRACE(n, X)
+#endif
+
class BasicBlock;
class Method;
class Module;
};
};
-class BytecodeParser {
+class BytecodeParser : public AbstractTypeUser {
public:
BytecodeParser() {
// Define this in case we don't see a ModuleGlobalInfo block.
private: // All of this data is transient across calls to ParseBytecode
typedef vector<Value *> ValueList;
typedef vector<ValueList> ValueTable;
- typedef map<const Type *, unsigned> TypeMapType;
ValueTable Values, LateResolveValues;
ValueTable ModuleValues, LateResolveModuleValues;
- TypeMapType TypeMap;
+
+ // TypesLoaded - This vector mirrors the Values[TypeTyID] plane. It is used
+ // to deal with forward references to types.
+ //
+ typedef vector<PATypeHandle<Type> > TypeValuesListTy;
+ TypeValuesListTy ModuleTypeValues;
+ TypeValuesListTy MethodTypeValues;
// Information read from the ModuleGlobalInfo section of the file...
unsigned FirstDerivedTyID;
private:
bool ParseModule (const uchar * Buf, const uchar *End, Module *&);
bool ParseModuleGlobalInfo (const uchar *&Buf, const uchar *End, Module *);
- bool ParseSymbolTable (const uchar *&Buf, const uchar *End);
- bool ParseMethod (const uchar *&Buf, const uchar *End, Module *);
+ bool ParseSymbolTable (const uchar *&Buf, const uchar *End, SymbolTable *);
+ bool ParseMethod (const uchar *&Buf, const uchar *End, Module *);
bool ParseBasicBlock (const uchar *&Buf, const uchar *End, BasicBlock *&);
bool ParseInstruction (const uchar *&Buf, const uchar *End, Instruction *&);
bool ParseRawInst (const uchar *&Buf, const uchar *End, RawInst &);
bool ParseConstantPool(const uchar *&Buf, const uchar *EndBuf,
- SymTabValue::ConstantPoolType &CP, ValueTable &Tab);
-
-
+ ValueTable &Tab, TypeValuesListTy &TypeTab);
bool parseConstPoolValue(const uchar *&Buf, const uchar *End,
const Type *Ty, ConstPoolVal *&V);
- bool parseTypeConstant (const uchar *&Buf, const uchar *, ConstPoolVal *&);
+ bool parseTypeConstants(const uchar *&Buf, const uchar *EndBuf,
+ TypeValuesListTy &Tab, unsigned NumEntries);
+ const Type *parseTypeConstant(const uchar *&Buf, const uchar *EndBuf);
Value *getValue(const Type *Ty, unsigned num, bool Create = true);
const Type *getType(unsigned ID);
bool postResolveValues(ValueTable &ValTab);
bool getTypeSlot(const Type *Ty, unsigned &Slot);
+
+
+ // refineAbstractType - The callback method is invoked when one of the
+ // elements of TypeValues becomes more concrete...
+ //
+ virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
template<class SuperType>