+++ /dev/null
-//***************************************************************************
-// File:
-// SparcInstrSelection.cpp
-//
-// Purpose:
-//
-// History:
-// 7/02/01 - Vikram Adve - Created
-//**************************************************************************/
-
-#include "SparcInternals.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/InstrForest.h"
-#include "llvm/CodeGen/InstrSelection.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/iTerminators.h"
-#include "llvm/iMemory.h"
-#include "llvm/iOther.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/Method.h"
-#include "llvm/ConstPoolVals.h"
-
-
-//******************** Internal Data Declarations ************************/
-
-// to be used later
-struct BranchPattern {
- bool flipCondition; // should the sense of the test be reversed
- BasicBlock* targetBB; // which basic block to branch to
- MachineInstr* extraBranch; // if neither branch is fall-through, then this
- // BA must be inserted after the cond'l one
-};
-
-//************************* Forward Declarations ***************************/
-
-
-static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
- bool& isFPBranch);
-
-static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
- const BinaryOperator* setCCInst);
-
-static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
- const BinaryOperator* setCCInst);
-
-static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
-
-static MachineOpCode ChooseMovpccAfterSub (const InstructionNode* instrNode,
- bool& mustClearReg,
- int& valueToMove);
-
-static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
- const Type* opType);
-
-static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
- const Type* opType);
-
-static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
- bool checkCasts);
-
-static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
-
-static MachineOpCode ChooseLoadInstruction (const Type* resultType);
-
-static MachineOpCode ChooseStoreInstruction (const Type* valueType);
-
-static void SetOperandsForMemInstr(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- const TargetMachine& target);
-
-static void SetMemOperands_Internal (MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- Value* ptrVal,
- Value* arrayOffsetVal,
- const vector<ConstPoolVal*>& idxVec,
- const TargetMachine& target);
-
-static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr,
- TargetMachine& target);
-
-static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg,
- MachineInstr*& getMinstr2);
-
-static void ForwardOperand (InstructionNode* treeNode,
- InstructionNode* parent,
- int operandNum);
-
-
-//************************ Internal Functions ******************************/
-
-// Convenience function to get the value of an integer constant, for an
-// appropriate integer or non-integer type that can be held in an integer.
-// The type of the argument must be the following:
-// GetConstantValueAsSignedInt: any of the above, but the value
-// must fit into a int64_t.
-//
-// isValidConstant is set to true if a valid constant was found.
-//
-
-static int64_t GetConstantValueAsSignedInt(const Value *V,
- bool &isValidConstant) {
- if (!V->isConstant()) { isValidConstant = false; return 0; }
- isValidConstant = true;
-
- if (V->getType() == Type::BoolTy)
- return ((ConstPoolBool*)V)->getValue();
- if (V->getType()->isIntegral()) {
- if (V->getType()->isSigned())
- return ((ConstPoolSInt*)V)->getValue();
-
- assert(V->getType()->isUnsigned());
- uint64_t Val = ((ConstPoolUInt*)V)->getValue();
-
- if (Val < INT64_MAX) // then safe to cast to signed
- return (int64_t)Val;
- }
-
- isValidConstant = false;
- return 0;
-}
-
-
-
-//------------------------------------------------------------------------
-// External Function: ThisIsAChainRule
-//
-// Purpose:
-// Check if a given BURG rule is a chain rule.
-//------------------------------------------------------------------------
-
-extern bool
-ThisIsAChainRule(int eruleno)
-{
- switch(eruleno)
- {
- case 111: // stmt: reg
- case 112: // stmt: boolconst
- case 113: // stmt: bool
- case 121:
- case 122:
- case 123:
- case 124:
- case 125:
- case 126:
- case 127:
- case 128:
- case 129:
- case 130:
- case 131:
- case 132:
- case 153:
- case 155: return true; break;
-
- default: return false; break;
- }
-}
-
-
-static inline MachineOpCode
-ChooseBprInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode;
-
- Instruction* setCCInstr =
- ((InstructionNode*) instrNode->leftChild())->getInstruction();
-
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BRZ; break;
- case Instruction::SetNE: opCode = BRNZ; break;
- case Instruction::SetLE: opCode = BRLEZ; break;
- case Instruction::SetGE: opCode = BRGEZ; break;
- case Instruction::SetLT: opCode = BRLZ; break;
- case Instruction::SetGT: opCode = BRGZ; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- opCode = INVALID_OPCODE;
- break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseBccInstruction(const InstructionNode* instrNode,
- bool& isFPBranch)
-{
- InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
- BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
- const Type* setCCType = setCCInstr->getOperand(0)->getType();
-
- isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
-
- if (isFPBranch)
- return ChooseBFpccInstruction(instrNode, setCCInstr);
- else
- return ChooseBpccInstruction(instrNode, setCCInstr);
-}
-
-
-static inline MachineOpCode
-ChooseBpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
-
- if (isSigned)
- {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLE; break;
- case Instruction::SetGE: opCode = BGE; break;
- case Instruction::SetLT: opCode = BL; break;
- case Instruction::SetGT: opCode = BG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
- }
- else
- {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLEU; break;
- case Instruction::SetGE: opCode = BCC; break;
- case Instruction::SetLT: opCode = BCS; break;
- case Instruction::SetGT: opCode = BGU; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
- }
-
- return opCode;
-}
-
-static inline MachineOpCode
-ChooseBFpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = FBE; break;
- case Instruction::SetNE: opCode = FBNE; break;
- case Instruction::SetLE: opCode = FBLE; break;
- case Instruction::SetGE: opCode = FBGE; break;
- case Instruction::SetLT: opCode = FBL; break;
- case Instruction::SetGT: opCode = FBG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseMovFpccInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- switch(instrNode->getInstruction()->getOpcode())
- {
- case Instruction::SetEQ: opCode = MOVFE; break;
- case Instruction::SetNE: opCode = MOVFNE; break;
- case Instruction::SetLE: opCode = MOVFLE; break;
- case Instruction::SetGE: opCode = MOVFGE; break;
- case Instruction::SetLT: opCode = MOVFL; break;
- case Instruction::SetGT: opCode = MOVFG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
-
- return opCode;
-}
-
-
-// Assumes that SUBcc v1, v2 -> v3 has been executed.
-// In most cases, we want to clear v3 and then follow it by instruction
-// MOVcc 1 -> v3.
-// Set mustClearReg=false if v3 need not be cleared before conditional move.
-// Set valueToMove=0 if we want to conditionally move 0 instead of 1
-// (i.e., we want to test inverse of a condition)
-//
-//
-static MachineOpCode
-ChooseMovpccAfterSub(const InstructionNode* instrNode,
- bool& mustClearReg,
- int& valueToMove)
-{
- MachineOpCode opCode = INVALID_OPCODE;
- mustClearReg = true;
- valueToMove = 1;
-
- switch(instrNode->getInstruction()->getOpcode())
- {
- case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false;
- valueToMove = 0; break;
- case Instruction::SetLE: opCode = MOVLE; break;
- case Instruction::SetGE: opCode = MOVGE; break;
- case Instruction::SetLT: opCode = MOVL; break;
- case Instruction::SetGT: opCode = MOVG; break;
-
- case Instruction::SetNE: assert(0 && "No move required!");
-
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseConvertToFloatInstr(const InstructionNode* instrNode,
- const Type* opType)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- switch(instrNode->getOpLabel())
- {
- case ToFloatTy:
- if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
- opCode = FITOS;
- else if (opType == Type::LongTy)
- opCode = FXTOS;
- else if (opType == Type::DoubleTy)
- opCode = FDTOS;
- else if (opType == Type::FloatTy)
- ;
- else
- assert(0 && "Cannot convert this type to FLOAT on SPARC");
- break;
-
- case ToDoubleTy:
- if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
- opCode = FITOD;
- else if (opType == Type::LongTy)
- opCode = FXTOD;
- else if (opType == Type::FloatTy)
- opCode = FSTOD;
- else if (opType == Type::DoubleTy)
- ;
- else
- assert(0 && "Cannot convert this type to DOUBLE on SPARC");
- break;
-
- default:
- break;
- }
-
- return opCode;
-}
-
-static inline MachineOpCode
-ChooseConvertToIntInstr(const InstructionNode* instrNode,
- const Type* opType)
-{
- MachineOpCode opCode = INVALID_OPCODE;;
-
- int instrType = (int) instrNode->getOpLabel();
-
- if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
- {
- switch (opType->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FSTOI; break;
- case Type::DoubleTyID: opCode = FDTOI; break;
- default:
- assert(0 && "Non-numeric non-bool type cannot be converted to Int");
- break;
- }
- }
- else if (instrType == ToLongTy)
- {
- switch (opType->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FSTOX; break;
- case Type::DoubleTyID: opCode = FDTOX; break;
- default:
- assert(0 && "Non-numeric non-bool type cannot be converted to Long");
- break;
- }
- }
- else
- assert(0 && "Should not get here, Mo!");
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseAddInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral() ||
- resultType->isPointerType() ||
- resultType->isMethodType() ||
- resultType->isLabelType())
- {
- opCode = ADD;
- }
- else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FADDS; break;
- case Type::DoubleTyID: opCode = FADDD; break;
- default: assert(0 && "Invalid type for ADD instruction"); break;
- }
- }
-
- return opCode;
-}
-
-
-static inline MachineInstr*
-CreateMovFloatInstruction(const InstructionNode* instrNode,
- const Type* resultType)
-{
- MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
- ? FMOVS : FMOVD);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
- return minstr;
-}
-
-static inline MachineInstr*
-CreateAddConstInstruction(const InstructionNode* instrNode)
-{
- MachineInstr* minstr = NULL;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(constOp->isConstant());
-
- // Cases worth optimizing are:
- // (1) Add with 0 for float or double: use an FMOV of appropriate type,
- // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
- //
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType == Type::FloatTy || resultType == Type::DoubleTy) {
- double dval = ((ConstPoolFP*) constOp)->getValue();
- if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode, resultType);
- }
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseSubInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral() ||
- resultType->isPointerType())
- {
- opCode = SUB;
- }
- else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FSUBS; break;
- case Type::DoubleTyID: opCode = FSUBD; break;
- default: assert(0 && "Invalid type for SUB instruction"); break;
- }
- }
-
- return opCode;
-}
-
-
-static inline MachineInstr*
-CreateSubConstInstruction(const InstructionNode* instrNode)
-{
- MachineInstr* minstr = NULL;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(constOp->isConstant());
-
- // Cases worth optimizing are:
- // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
- // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
- //
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType == Type::FloatTy ||
- resultType == Type::DoubleTy)
- {
- double dval = ((ConstPoolFP*) constOp)->getValue();
- if (dval == 0.0)
- minstr = CreateMovFloatInstruction(instrNode, resultType);
- }
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseFcmpInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID()) {
- case Type::FloatTyID: opCode = FCMPS; break;
- case Type::DoubleTyID: opCode = FCMPD; break;
- default: assert(0 && "Invalid type for FCMP instruction"); break;
- }
-
- return opCode;
-}
-
-
-// Assumes that leftArg and rightArg are both cast instructions.
-//
-static inline bool
-BothFloatToDouble(const InstructionNode* instrNode)
-{
- InstrTreeNode* leftArg = instrNode->leftChild();
- InstrTreeNode* rightArg = instrNode->rightChild();
- InstrTreeNode* leftArgArg = leftArg->leftChild();
- InstrTreeNode* rightArgArg = rightArg->leftChild();
- assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
-
- // Check if both arguments are floats cast to double
- return (leftArg->getValue()->getType() == Type::DoubleTy &&
- leftArgArg->getValue()->getType() == Type::FloatTy &&
- rightArgArg->getValue()->getType() == Type::FloatTy);
-}
-
-
-static inline MachineOpCode
-ChooseMulInstruction(const InstructionNode* instrNode,
- bool checkCasts)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- if (checkCasts && BothFloatToDouble(instrNode))
- {
- return opCode = FSMULD;
- }
- // else fall through and use the regular multiply instructions
-
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral())
- {
- opCode = MULX;
- }
- else
- {
- switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FMULS; break;
- case Type::DoubleTyID: opCode = FMULD; break;
- default: assert(0 && "Invalid type for MUL instruction"); break;
- }
- }
-
- return opCode;
-}
-
-
-static inline MachineInstr*
-CreateIntNegInstruction(Value* vreg)
-{
- MachineInstr* minstr = new MachineInstr(SUB);
- minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
- return minstr;
-}
-
-
-static inline MachineInstr*
-CreateMulConstInstruction(const InstructionNode* instrNode,
- MachineInstr*& getMinstr2)
-{
- MachineInstr* minstr = NULL;
- getMinstr2 = NULL;
- bool needNeg = false;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(constOp->isConstant());
-
- // Cases worth optimizing are:
- // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
- // (2) Multiply by 2^x for integer types: replace with Shift
- //
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral())
- {
- unsigned pow;
- bool isValidConst;
- int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
- if (isValidConst)
- {
- bool needNeg = false;
- if (C < 0)
- {
- needNeg = true;
- C = -C;
- }
-
- if (C == 0 || C == 1)
- {
- minstr = new MachineInstr(ADD);
-
- if (C == 0)
- minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
- else
- minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- }
- else if (IsPowerOf2(C, pow))
- {
- minstr = new MachineInstr((resultType == Type::LongTy)
- ? SLLX : SLL);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- pow);
- }
-
- if (minstr && needNeg)
- { // insert <reg = SUB 0, reg> after the instr to flip the sign
- getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
- }
- }
- }
- else
- {
- if (resultType == Type::FloatTy ||
- resultType == Type::DoubleTy)
- {
- bool isValidConst;
- double dval = ((ConstPoolFP*) constOp)->getValue();
-
- if (isValidConst)
- {
- if (dval == 0)
- {
- minstr = new MachineInstr((resultType == Type::FloatTy)
- ? FITOS : FITOD);
- minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
- }
- else if (fabs(dval) == 1)
- {
- bool needNeg = (dval < 0);
-
- MachineOpCode opCode = needNeg
- ? (resultType == Type::FloatTy? FNEGS : FNEGD)
- : (resultType == Type::FloatTy? FMOVS : FMOVD);
-
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0,
- MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- }
- }
- }
- }
-
- if (minstr != NULL)
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseDivInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral())
- {
- opCode = resultType->isSigned()? SDIVX : UDIVX;
- }
- else
- {
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FDIVS; break;
- case Type::DoubleTyID: opCode = FDIVD; break;
- default: assert(0 && "Invalid type for DIV instruction"); break;
- }
- }
-
- return opCode;
-}
-
-
-static inline MachineInstr*
-CreateDivConstInstruction(const InstructionNode* instrNode,
- MachineInstr*& getMinstr2)
-{
- MachineInstr* minstr = NULL;
- getMinstr2 = NULL;
-
- Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
- assert(constOp->isConstant());
-
- // Cases worth optimizing are:
- // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
- // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
- //
- const Type* resultType = instrNode->getInstruction()->getType();
-
- if (resultType->isIntegral())
- {
- unsigned pow;
- bool isValidConst;
- int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
- if (isValidConst)
- {
- bool needNeg = false;
- if (C < 0)
- {
- needNeg = true;
- C = -C;
- }
-
- if (C == 1)
- {
- minstr = new MachineInstr(ADD);
- minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- }
- else if (IsPowerOf2(C, pow))
- {
- MachineOpCode opCode= ((resultType->isSigned())
- ? (resultType==Type::LongTy)? SRAX : SRA
- : (resultType==Type::LongTy)? SRLX : SRL);
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- pow);
- }
-
- if (minstr && needNeg)
- { // insert <reg = SUB 0, reg> after the instr to flip the sign
- getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
- }
- }
- }
- else
- {
- if (resultType == Type::FloatTy ||
- resultType == Type::DoubleTy)
- {
- bool isValidConst;
- double dval = ((ConstPoolFP*) constOp)->getValue();
-
- if (isValidConst && fabs(dval) == 1)
- {
- bool needNeg = (dval < 0);
-
- MachineOpCode opCode = needNeg
- ? (resultType == Type::FloatTy? FNEGS : FNEGD)
- : (resultType == Type::FloatTy? FMOVS : FMOVD);
-
- minstr = new MachineInstr(opCode);
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- instrNode->leftChild()->getValue());
- }
- }
- }
-
- if (minstr != NULL)
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- instrNode->getValue());
-
- return minstr;
-}
-
-
-static inline MachineOpCode
-ChooseLoadInstruction(const Type* resultType)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- switch (resultType->getPrimitiveID())
- {
- case Type::BoolTyID: opCode = LDUB; break;
- case Type::UByteTyID: opCode = LDUB; break;
- case Type::SByteTyID: opCode = LDSB; break;
- case Type::UShortTyID: opCode = LDUH; break;
- case Type::ShortTyID: opCode = LDSH; break;
- case Type::UIntTyID: opCode = LDUW; break;
- case Type::IntTyID: opCode = LDSW; break;
- case Type::ULongTyID:
- case Type::LongTyID: opCode = LDX; break;
- case Type::FloatTyID: opCode = LD; break;
- case Type::DoubleTyID: opCode = LDD; break;
- default: assert(0 && "Invalid type for Load instruction"); break;
- }
-
- return opCode;
-}
-
-
-static inline MachineOpCode
-ChooseStoreInstruction(const Type* valueType)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- switch (valueType->getPrimitiveID())
- {
- case Type::BoolTyID:
- case Type::UByteTyID:
- case Type::SByteTyID: opCode = STB; break;
- case Type::UShortTyID:
- case Type::ShortTyID: opCode = STH; break;
- case Type::UIntTyID:
- case Type::IntTyID: opCode = STW; break;
- case Type::ULongTyID:
- case Type::LongTyID: opCode = STX; break;
- case Type::FloatTyID: opCode = ST; break;
- case Type::DoubleTyID: opCode = STD; break;
- default: assert(0 && "Invalid type for Store instruction"); break;
- }
-
- return opCode;
-}
-
-
-//------------------------------------------------------------------------
-// Function SetOperandsForMemInstr
-//
-// Choose addressing mode for the given load or store instruction.
-// Use [reg+reg] if it is an indexed reference, and the index offset is
-// not a constant or if it cannot fit in the offset field.
-// Use [reg+offset] in all other cases.
-//
-// This assumes that all array refs are "lowered" to one of these forms:
-// %x = load (subarray*) ptr, constant ; single constant offset
-// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
-// Generally, this should happen via strength reduction + LICM.
-// Also, strength reduction should take care of using the same register for
-// the loop index variable and an array index, when that is profitable.
-//------------------------------------------------------------------------
-
-static void
-SetOperandsForMemInstr(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- const TargetMachine& target)
-{
- MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
-
- // Variables to hold the index vector, ptr value, and offset value.
- // The major work here is to extract these for all 3 instruction types
- // and then call the common function SetMemOperands_Internal().
- //
- const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
- vector<ConstPoolVal*>* newIdxVec = NULL;
- Value* ptrVal;
- Value* arrayOffsetVal = NULL;
-
- // Test if a GetElemPtr instruction is being folded into this mem instrn.
- // If so, it will be in the left child for Load and GetElemPtr,
- // and in the right child for Store instructions.
- //
- InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
- ? vmInstrNode->rightChild()
- : vmInstrNode->leftChild());
-
- if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
- ptrChild->getOpLabel() == GetElemPtrIdx)
- {
- // There is a GetElemPtr instruction and there may be a chain of
- // more than one. Use the pointer value of the last one in the chain.
- // Fold the index vectors from the entire chain and from the mem
- // instruction into one single index vector.
- // Finally, we never fold for an array instruction so make that NULL.
-
- newIdxVec = new vector<ConstPoolVal*>;
- ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
-
- newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
- idxVec = newIdxVec;
-
- assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
- && "GetElemPtr cannot be folded into array refs in selection");
- }
- else
- {
- // There is no GetElemPtr instruction.
- // Use the pointer value and the index vector from the Mem instruction.
- // If it is an array reference, get the array offset value.
- //
- ptrVal = memInst->getPtrOperand();
-
- const Type* opType =
- ((const PointerType*) ptrVal->getType())->getValueType();
- if (opType->isArrayType())
- {
- assert((memInst->getNumOperands()
- == (unsigned) 1 + memInst->getFirstOffsetIdx())
- && "Array refs must be lowered before Instruction Selection");
-
- arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
- }
- }
-
- SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
- *idxVec, target);
-
- if (newIdxVec != NULL)
- delete newIdxVec;
-}
-
-
-static void
-SetMemOperands_Internal(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- Value* ptrVal,
- Value* arrayOffsetVal,
- const vector<ConstPoolVal*>& idxVec,
- const TargetMachine& target)
-{
- MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
-
- // Initialize so we default to storing the offset in a register.
- int64_t smallConstOffset;
- Value* valueForRegOffset = NULL;
- MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
-
- // Check if there is an index vector and if so, if it translates to
- // a small enough constant to fit in the immediate-offset field.
- //
- if (idxVec.size() > 0)
- {
- bool isConstantOffset = false;
- unsigned offset;
-
- const PointerType* ptrType = (PointerType*) ptrVal->getType();
-
- if (ptrType->getValueType()->isStructType())
- {
- // the offset is always constant for structs
- isConstantOffset = true;
-
- // Compute the offset value using the index vector
- offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
- }
- else
- {
- // It must be an array ref. Check if the offset is a constant,
- // and that the indexing has been lowered to a single offset.
- //
- assert(ptrType->getValueType()->isArrayType());
- assert(arrayOffsetVal != NULL
- && "Expect to be given Value* for array offsets");
-
- if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
- {
- isConstantOffset = true; // always constant for structs
- assert(arrayOffsetVal->getType()->isIntegral());
- offset = (CPV->getType()->isSigned()
- ? ((ConstPoolSInt*)CPV)->getValue()
- : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
- }
- else
- {
- valueForRegOffset = arrayOffsetVal;
- }
- }
-
- if (isConstantOffset)
- {
- // create a virtual register for the constant
- valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
- }
- }
- else
- {
- offsetOpType = MachineOperand::MO_SignExtendedImmed;
- smallConstOffset = 0;
- }
-
- // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
- // It is the left child in the instruction tree in all cases.
- Value* leftVal = vmInstrNode->leftChild()->getValue();
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
-
- // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
- // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
- //
- unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
- if (offsetOpType == MachineOperand::MO_VirtualRegister)
- {
- assert(valueForRegOffset != NULL);
- minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
- }
- else
- minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
-
- if (memInst->getOpcode() == Instruction::Store)
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
- else
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- vmInstrNode->getValue());
-}
-
-
-// Special handling for constant operands:
-// -- if the constant is 0, use the hardwired 0 register, if any;
-// -- if the constant is of float or double type but has an integer value,
-// use int-to-float conversion instruction instead of generating a load;
-// -- if the constant fits in the IMMEDIATE field, use that field;
-// -- else insert instructions to put the constant into a register, either
-// directly or by loading explicitly from the constant pool.
-//
-static unsigned
-FixConstantOperands(const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr,
- TargetMachine& target)
-{
- static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
-
- unsigned numNew = 0;
- Instruction* vmInstr = vmInstrNode->getInstruction();
-
- for (unsigned i=0; i < numInstr; i++)
- {
- MachineInstr* minstr = mvec[i];
- const MachineInstrDescriptor& instrDesc =
- target.getInstrInfo().getDescriptor(minstr->getOpCode());
-
- for (unsigned op=0; op < minstr->getNumOperands(); op++)
- {
- const MachineOperand& mop = minstr->getOperand(op);
-
- // skip the result position (for efficiency below) and any other
- // positions already marked as not a virtual register
- if (instrDesc.resultPos == (int) op ||
- mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
- mop.getVRegValue() == NULL)
- {
- break;
- }
-
- Value* opValue = mop.getVRegValue();
-
- if (opValue->isConstant())
- {
- unsigned int machineRegNum;
- int64_t immedValue;
- MachineOperand::MachineOperandType opType =
- ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
- /*canUseImmed*/ (op == 1),
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_MachineRegister)
- minstr->SetMachineOperand(op, machineRegNum);
- else if (opType == MachineOperand::MO_VirtualRegister)
- {
- // value is constant and must be loaded into a register
- TmpInstruction* tmpReg;
- MachineInstr* minstr2;
- loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue,
- tmpReg, minstr2);
- minstr->SetMachineOperand(op, opType, tmpReg);
- if (minstr2 != NULL)
- loadConstVec[numNew++] = minstr2;
- }
- else
- minstr->SetMachineOperand(op, opType, immedValue);
- }
- }
- }
-
- if (numNew > 0)
- {
- // Insert the new instructions *before* the old ones by moving
- // the old ones over `numNew' positions (last-to-first, of course!).
- // We do check *after* returning that we did not exceed the vector mvec.
- for (int i=numInstr-1; i >= 0; i--)
- mvec[i+numNew] = mvec[i];
-
- for (unsigned i=0; i < numNew; i++)
- mvec[i] = loadConstVec[i];
- }
-
- return (numInstr + numNew);
-}
-
-
-static inline MachineInstr*
-MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
-{
- MachineInstr* minstr;
- if (isSigned)
- {
- minstr = new MachineInstr(SETSW);
- minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
- }
- else
- {
- minstr = new MachineInstr(SETUW);
- minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
- }
-
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
-
- return minstr;
-}
-
-
-static MachineInstr*
-MakeLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg,
- MachineInstr*& getMinstr2)
-{
- assert(val->isConstant());
-
- MachineInstr* minstr;
-
- getMinstr2 = NULL;
-
- // Create a TmpInstruction to mark the hidden register used for the constant
- tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
- vmInstr->getMachineInstrVec().addTempValue(tmpReg);
-
- // Use a "set" instruction for known constants that can go in an integer reg.
- // Use a "set" instruction followed by a int-to-float conversion for known
- // constants that must go in a floating point reg but have an integer value.
- // Use a "load" instruction for all other constants, in particular,
- // floating point constants.
- //
- const Type* valType = val->getType();
-
- if (valType->isIntegral() ||
- valType->isPointerType() ||
- valType == Type::BoolTy)
- {
- bool isValidConstant;
- int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
- assert(isValidConstant && "Unrecognized constant");
-
- minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg);
- }
- else
- {
- assert(valType == Type::FloatTy || valType == Type::DoubleTy);
- double dval = ((ConstPoolFP*) val)->getValue();
- if (dval == (int64_t) dval)
- {
- // The constant actually has an integer value, so use a
- // [set; int-to-float] sequence instead of a load instruction.
- //
- TmpInstruction* tmpReg2 = NULL;
- if (dval != 0.0)
- { // First, create an integer constant of the same value as dval
- ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
- (int64_t) dval);
- // Create another TmpInstruction for the hidden integer register
- TmpInstruction* tmpReg2 =
- new TmpInstruction(Instruction::UserOp1, ival, NULL);
- vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
-
- // Create the `SET' instruction
- minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2);
- }
-
- // In which variable do we put the second instruction?
- MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr;
-
- // Create the int-to-float instruction
- instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
-
- if (dval == 0.0)
- instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
- else
- instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
- tmpReg2);
-
- instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- tmpReg);
- }
- else
- {
- // Make a Load instruction, and make `val' both the ptr value *and*
- // the result value, and set the offset field to 0. Final code
- // generation will have to generate the base+offset for the constant.
- //
- int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
- minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val);
- minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- zeroOffset);
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- tmpReg);
- }
- }
-
- tmpReg->addMachineInstruction(minstr);
-
- assert(minstr);
- return minstr;
-}
-
-//
-// Substitute operand `operandNum' of the instruction in node `treeNode'
-// in place the use(s) of that instruction in node `parent'.
-//
-static void
-ForwardOperand(InstructionNode* treeNode,
- InstructionNode* parent,
- int operandNum)
-{
- Instruction* unusedOp = treeNode->getInstruction();
- Value* fwdOp = unusedOp->getOperand(operandNum);
- Instruction* userInstr = parent->getInstruction();
- MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
- for (unsigned i=0, N=mvec.size(); i < N; i++)
- {
- MachineInstr* minstr = mvec[i];
- for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
- {
- const MachineOperand& mop = minstr->getOperand(i);
- if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
- mop.getVRegValue() == unusedOp)
- {
- minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
- fwdOp);
- }
- }
- }
-}
-
-
-// This function is currently unused and incomplete but will be
-// used if we have a linear layout of basic blocks in LLVM code.
-// It decides which branch should fall-through, and whether an
-// extra unconditional branch is needed (when neither falls through).
-//
-void
-ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
-{
- BranchInst* brInstr = (BranchInst*) vmInstr;
-
- brPattern.flipCondition = false;
- brPattern.targetBB = brInstr->getSuccessor(0);
- brPattern.extraBranch = NULL;
-
- assert(brInstr->getNumSuccessors() > 1 &&
- "Unnecessary analysis for unconditional branch");
-
- assert(0 && "Fold branches in peephole optimization");
-}
-
-
-//******************* Externally Visible Functions *************************/
-
-
-//------------------------------------------------------------------------
-// External Function: GetInstructionsByRule
-//
-// Purpose:
-// Choose machine instructions for the SPARC according to the
-// patterns chosen by the BURG-generated parser.
-//------------------------------------------------------------------------
-
-unsigned
-GetInstructionsByRule(InstructionNode* subtreeRoot,
- int ruleForNode,
- short* nts,
- TargetMachine &target,
- MachineInstr** mvec)
-{
- int numInstr = 1; // initialize for common case
- bool checkCast = false; // initialize here to use fall-through
- Value *leftVal, *rightVal;
- const Type* opType;
- int nextRule;
- int forwardOperandNum = -1;
- BranchPattern brPattern;
- int64_t s0 = 0; // variables holding zero to avoid
- uint64_t u0 = 0; // overloading ambiguities below
-
- mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
-
- switch(ruleForNode) {
- case 1: // stmt: Ret
- case 2: // stmt: RetValue(reg)
- // NOTE: Prepass of register allocation is responsible
- // for moving return value to appropriate register.
- // Mark the return-address register as a hidden virtual reg.
- {
- Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getInstruction(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
-
- mvec[0] = new MachineInstr(RETURN);
- mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
-
- returnReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 3: // stmt: Store(reg,reg)
- case 4: // stmt: Store(reg,ptrreg)
- mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 5: // stmt: BrUncond
- mvec[0] = new MachineInstr(BA);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
-
- case 6: // stmt: BrCond(boolconst)
- // boolconst => boolean was computed with `%b = setCC type reg1 constant'
- // If the constant is ZERO, we can use the branch-on-integer-register
- // instructions and avoid the SUBcc instruction entirely.
- // Otherwise this is just the same as case 5, so just fall through.
- {
- InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
- assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
- ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
- bool isValidConst;
-
- if (constVal->getType()->isIntegral()
- && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
- && isValidConst)
- {
- // That constant ia a zero after all...
- // Use the left child of the setCC instruction as the first argument!
- mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- break;
- }
- // ELSE FALL THROUGH
- }
-
- case 7: // stmt: BrCond(bool)
- // bool => boolean was computed with `%b = setcc type reg1 reg2'
- // Need to check whether the type was a FP, signed int or unsigned int,
- // and check the branching condition in order to choose the branch to use.
- //
- {
- bool isFPBranch;
- mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
- }
-
- case 8: // stmt: BrCond(boolreg)
- // bool => boolean is stored in an existing register.
- // Just use the branch-on-integer-register instruction!
- //
- mvec[0] = new MachineInstr(BRNZ);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
- break;
-
- case 9: // stmt: Switch(reg)
- assert(0 && "*** SWITCH instruction is not implemented yet.");
- numInstr = 0;
- break;
-
- case 10: // reg: VRegList(reg, reg)
- assert(0 && "VRegList should never be the topmost non-chain rule");
- break;
-
- case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
- mvec[0] = new MachineInstr(XNOR);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- break;
-
- case 22: // reg: ToBoolTy(reg):
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 23: // reg: ToUByteTy(reg)
- case 25: // reg: ToUShortTy(reg)
- case 27: // reg: ToUIntTy(reg)
- case 29: // reg: ToULongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() ||
- opType->isPointerType() ||
- opType == Type::BoolTy && "Ignoring cast: illegal for other types");
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 24: // reg: ToSByteTy(reg)
- case 26: // reg: ToShortTy(reg)
- case 28: // reg: ToIntTy(reg)
- case 30: // reg: ToLongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- if (opType->isIntegral() || opType == Type::BoolTy)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- break;
-
- case 31: // reg: ToFloatTy(reg):
- case 32: // reg: ToDoubleTy(reg):
-
- // If this instruction has a parent (a user) in the tree
- // and the user is translated as an FsMULd instruction,
- // then the cast is unnecessary. So check that first.
- // In the future, we'll want to do the same for the FdMULq instruction,
- // so do the check here instead of only for ToFloatTy(reg).
- //
- if (subtreeRoot->parent() != NULL &&
- ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- opType = subtreeRoot->leftChild()->getValue()->getType();
- MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType);
- if (opCode == INVALID_OPCODE) // no conversion needed
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- mvec[0] = new MachineInstr(opCode);
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- }
- break;
-
- case 19: // reg: ToArrayTy(reg):
- case 20: // reg: ToPointerTy(reg):
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 233: // reg: Add(reg, Constant)
- mvec[0] = CreateAddConstInstruction(subtreeRoot);
- if (mvec[0] != NULL)
- break;
- // ELSE FALL THROUGH
-
- case 33: // reg: Add(reg, reg)
- mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 234: // reg: Sub(reg, Constant)
- mvec[0] = CreateSubConstInstruction(subtreeRoot);
- if (mvec[0] != NULL)
- break;
- // ELSE FALL THROUGH
-
- case 34: // reg: Sub(reg, reg)
- mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 135: // reg: Mul(todouble, todouble)
- checkCast = true;
- // FALL THROUGH
-
- case 35: // reg: Mul(reg, reg)
- mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 335: // reg: Mul(todouble, todoubleConst)
- checkCast = true;
- // FALL THROUGH
-
- case 235: // reg: Mul(reg, Constant)
- mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]);
- if (mvec[0] == NULL)
- {
- mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- else
- if (mvec[1] != NULL)
- ++numInstr;
- break;
-
- case 236: // reg: Div(reg, Constant)
- mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]);
- if (mvec[0] != NULL)
- {
- if (mvec[1] != NULL)
- ++numInstr;
- }
- else
- // ELSE FALL THROUGH
-
- case 36: // reg: Div(reg, reg)
- mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 37: // reg: Rem(reg, reg)
- case 237: // reg: Rem(reg, Constant)
- assert(0 && "REM instruction unimplemented for the SPARC.");
- break;
-
- case 38: // reg: And(reg, reg)
- case 238: // reg: And(reg, Constant)
- mvec[0] = new MachineInstr(AND);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 138: // reg: And(reg, not)
- mvec[0] = new MachineInstr(ANDN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 39: // reg: Or(reg, reg)
- case 239: // reg: Or(reg, Constant)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 139: // reg: Or(reg, not)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 40: // reg: Xor(reg, reg)
- case 240: // reg: Xor(reg, Constant)
- mvec[0] = new MachineInstr(XOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 140: // reg: Xor(reg, not)
- mvec[0] = new MachineInstr(XNOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 41: // boolconst: SetCC(reg, Constant)
- // Check if this is an integer comparison, and
- // there is a parent, and the parent decided to use
- // a branch-on-integer-register instead of branch-on-condition-code.
- // If so, the SUBcc instruction is not required.
- // (However, we must still check for constants to be loaded from
- // the constant pool so that such a load can be associated with
- // this instruction.)
- //
- // Otherwise this is just the same as case 42, so just fall through.
- //
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
- subtreeRoot->parent() != NULL)
- {
- InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
- assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
- const vector<MachineInstr*>&
- minstrVec = parentNode->getInstruction()->getMachineInstrVec();
- MachineOpCode parentOpCode;
- if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
- (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
- parentOpCode <= BRGEZ)
- {
- numInstr = 0; // don't forward the operand!
- break;
- }
- }
- // ELSE FALL THROUGH
-
- case 42: // bool: SetCC(reg, reg):
- {
- // If result of the SetCC is only used for a branch, we can
- // discard the result. otherwise, it must go into an integer register.
- // Note that the user may or may not be in the same tree, so we have
- // to follow SSA def-use edges here, not BURG tree edges.
- //
- Instruction* result = subtreeRoot->getInstruction();
- Value* firstUse = (Value*) * result->use_begin();
- bool discardResult =
- (result->use_size() == 1
- && firstUse->isInstruction()
- && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
-
- bool mustClearReg;
- int valueToMove;
- MachineOpCode movOpCode;
-
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
- subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
- {
- // integer condition: destination should be %g0 or integer register
- // if result must be saved but condition is not SetEQ then we need
- // a separate instruction to compute the bool result, so discard
- // result of SUBcc instruction anyway.
- //
- mvec[0] = new MachineInstr(SUBcc);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
-
- // mark the 4th operand as being a CC register, and a "result"
- mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue(), /*def*/ true);
-
- if (!discardResult)
- { // recompute bool if needed, using the integer condition codes
- if (result->getOpcode() == Instruction::SetNE)
- discardResult = true;
- else
- movOpCode =
- ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
- }
- }
- else
- {
- // FP condition: dest of FCMP should be some FCCn register
- mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->rightChild()->getValue());
-
- if (!discardResult)
- {// recompute bool using the FP condition codes
- mustClearReg = true;
- valueToMove = 1;
- movOpCode = ChooseMovFpccInstruction(subtreeRoot);
- }
- }
-
- if (!discardResult)
- {
- if (mustClearReg)
- {// Unconditionally set register to 0
- int n = numInstr++;
- mvec[n] = new MachineInstr(SETHI);
- mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
-
- // Now conditionally move `valueToMove' (0 or 1) into the register
- int n = numInstr++;
- mvec[n] = new MachineInstr(movOpCode);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- valueToMove);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
- break;
- }
-
- case 43: // boolreg: VReg
- case 44: // boolreg: Constant
- numInstr = 0;
- break;
-
- case 51: // reg: Load(reg)
- case 52: // reg: Load(ptrreg)
- case 53: // reg: LoadIdx(reg,reg)
- case 54: // reg: LoadIdx(ptrreg,reg)
- mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 55: // reg: GetElemPtr(reg)
- case 56: // reg: GetElemPtrIdx(reg,reg)
- if (subtreeRoot->parent() != NULL)
- {
- // Check if the parent was an array access.
- // If so, we still need to generate this instruction.
- MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
- const PointerType* ptrType =
- (const PointerType*) memInst->getPtrOperand()->getType();
- if (! ptrType->getValueType()->isArrayType())
- {// we don't need a separate instr
- numInstr = 0; // don't forward operand!
- break;
- }
- }
- // else in all other cases we need to a separate ADD instruction
- mvec[0] = new MachineInstr(ADD);
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 57: // reg: Alloca: Implement as 2 instructions:
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType());
- int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
-
- // Instruction 1: sub %sp, tsize -> %sp
- // tsize is always constant, but it may have to be put into a
- // register if it doesn't fit in the immediate field.
- //
- mvec[0] = new MachineInstr(SUB);
- mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 2: add %sp, 0 -> result
- numInstr++;
- mvec[1] = new MachineInstr(ADD);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
- }
-
- case 58: // reg: Alloca(reg): Implement as 3 instructions:
- // mul num, typeSz -> tmp
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType() &&
- instrType->getValueType()->isArrayType());
- const Type* eltType =
- ((ArrayType*) instrType->getValueType())->getElementType();
- int tsize = (int) target.findOptimalStorageSize(eltType);
-
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
-
- // Create a temporary value to hold `tmp'
- Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->leftChild()->getValue(),
- NULL /*could insert tsize here*/);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
-
- // Instruction 1: mul numElements, typeSize -> tmp
- mvec[0] = new MachineInstr(MULX);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
-
- tmpInstr->addMachineInstruction(mvec[0]);
-
- // Instruction 2: sub %sp, tmp -> %sp
- numInstr++;
- mvec[1] = new MachineInstr(SUB);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
- mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 3: add %sp, 0 -> result
- numInstr++;
- mvec[2] = new MachineInstr(ADD);
- mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
- }
-
- case 61: // reg: Call
- // Generate a call-indirect (i.e., JMPL) for now to expose
- // the potential need for registers. If an absolute address
- // is available, replace this with a CALL instruction.
- // Mark both the indirection register and the return-address
- { // register as hidden virtual registers.
-
- Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
- ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
- Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getValue(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
-
- mvec[0] = new MachineInstr(JMPL);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- (int64_t) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
-
- // NOTE: jmpAddrReg will be loaded by a different instruction generated
- // by the final code generator, so we just mark the CALL instruction
- // as computing that value.
- // The retAddrReg is actually computed by the CALL instruction.
- //
- jmpAddrReg->addMachineInstruction(mvec[0]);
- retAddrReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 62: // reg: Shl(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 63: // reg: Shr(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- mvec[0] = new MachineInstr((opType->isSigned()
- ? ((opType == Type::LongTy)? SRAX : SRA)
- : ((opType == Type::LongTy)? SRLX : SRL)));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 64: // reg: Phi(reg,reg)
- { // This instruction has variable #operands, so resultPos is 0.
- Instruction* phi = subtreeRoot->getInstruction();
- mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
- mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
- phi->getOperand(i));
- break;
- }
- case 71: // reg: VReg
- case 72: // reg: Constant
- numInstr = 0; // don't forward the value
- break;
-
- case 111: // stmt: reg
- case 112: // stmt: boolconst
- case 113: // stmt: bool
- case 121:
- case 122:
- case 123:
- case 124:
- case 125:
- case 126:
- case 127:
- case 128:
- case 129:
- case 130:
- case 131:
- case 132:
- case 153:
- case 155:
- //
- // These are all chain rules, which have a single nonterminal on the RHS.
- // Get the rule that matches the RHS non-terminal and use that instead.
- //
- assert(ThisIsAChainRule(ruleForNode));
- assert(nts[0] && ! nts[1]
- && "A chain rule should have only one RHS non-terminal!");
- nextRule = burm_rule(subtreeRoot->state, nts[0]);
- nts = burm_nts[nextRule];
- numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
- break;
-
- default:
- assert(0 && "Unrecognized BURG rule");
- numInstr = 0;
- break;
- }
-
- if (forwardOperandNum >= 0)
- { // We did not generate a machine instruction but need to use operand.
- // If user is in the same tree, replace Value in its machine operand.
- // If not, insert a copy instruction which should get coalesced away
- // by register allocation.
- if (subtreeRoot->parent() != NULL)
- ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
- forwardOperandNum);
- else
- {
- int n = numInstr++;
- mvec[n] = new MachineInstr(ADD);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
- mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction());
- }
- }
-
- if (! ThisIsAChainRule(ruleForNode))
- numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
-
- return numInstr;
-}
-
-
+++ /dev/null
-//===-- SparcInternals.h - Header file for Sparc backend ---------*- C++ -*--=//
-//
-// This file defines stuff that is to be private to the Sparc backend, but is
-// shared among different portions of the backend.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef SPARC_INTERNALS_H
-#define SPARC_INTERNALS_H
-
-#include "llvm/CodeGen/Sparc.h"
-#include "SparcRegInfo.h"
-
-#include <sys/types.h>
-#include "llvm/Type.h"
-
-// OpCodeMask definitions for the Sparc V9
-//
-const OpCodeMask Immed = 0x00002000; // immed or reg operand?
-const OpCodeMask Annul = 0x20000000; // annul delay instr?
-const OpCodeMask PredictTaken = 0x00080000; // predict branch taken?
-
-
-enum SparcInstrSchedClass {
- SPARC_NONE, /* Instructions with no scheduling restrictions */
- SPARC_IEUN, /* Integer class that can use IEU0 or IEU1 */
- SPARC_IEU0, /* Integer class IEU0 */
- SPARC_IEU1, /* Integer class IEU1 */
- SPARC_FPM, /* FP Multiply or Divide instructions */
- SPARC_FPA, /* All other FP instructions */
- SPARC_CTI, /* Control-transfer instructions */
- SPARC_LD, /* Load instructions */
- SPARC_ST, /* Store instructions */
- SPARC_SINGLE, /* Instructions that must issue by themselves */
-
- SPARC_INV, /* This should stay at the end for the next value */
- SPARC_NUM_SCHED_CLASSES = SPARC_INV
-};
-
-// inline operator int (const SparcInstrSchedClass& si) {
-// return (int) si;
-// }
-//
-// inline operator SparcInstrSchedClass (int i) {
-// return (SparcInstrSchedClass) si;
-// }
-//
-// inline operator const SparcInstrSchedClass (int i) {
-// return (const SparcInstrSchedClass) si;
-// }
-
-//---------------------------------------------------------------------------
-// enum SparcMachineOpCode.
-// const MachineInstrDescriptor SparcMachineInstrDesc[]
-//
-// Purpose:
-// Description of UltraSparc machine instructions.
-//
-//---------------------------------------------------------------------------
-
-
-enum SparcMachineOpCode {
-
- NOP,
-
- // Synthetic SPARC assembly opcodes for setting a register to a constant
- SETSW,
- SETUW,
-
- // Set high-order bits of register and clear low-order bits
- SETHI,
-
- // Add or add with carry.
- // Immed bit specifies if second operand is immediate(1) or register(0)
- ADD,
- ADDcc,
- ADDC,
- ADDCcc,
-
- // Subtract or subtract with carry.
- // Immed bit specifies if second operand is immediate(1) or register(0)
- SUB,
- SUBcc,
- SUBC,
- SUBCcc,
-
- // Integer multiply, signed divide, unsigned divide.
- // Note that the deprecated 32-bit multiply and multiply-step are not used.
- MULX,
- SDIVX,
- UDIVX,
-
- // Floating point add, subtract, compare
- FADDS,
- FADDD,
- FADDQ,
- FSUBS,
- FSUBD,
- FSUBQ,
- FCMPS,
- FCMPD,
- FCMPQ,
- // NOTE: FCMPE{S,D,Q}: FP Compare With Exception are currently unused!
-
- // Floating point multiply or divide.
- FMULS,
- FMULD,
- FMULQ,
- FSMULD,
- FDMULQ,
- FDIVS,
- FDIVD,
- FDIVQ,
- FSQRTS,
- FSQRTD,
- FSQRTQ,
-
- // Logical operations
- AND,
- ANDcc,
- ANDN,
- ANDNcc,
- OR,
- ORcc,
- ORN,
- ORNcc,
- XOR,
- XORcc,
- XNOR,
- XNORcc,
-
- // Shift operations
- SLL,
- SRL,
- SRA,
- SLLX,
- SRLX,
- SRAX,
-
- // Floating point move, negate, and abs instructions
- FMOVS,
- FMOVD,
-//FMOVQ,
- FNEGS,
- FNEGD,
-//FNEGQ,
- FABSS,
- FABSD,
-//FABSQ,
-
- // Convert from floating point to floating point formats
- FSTOD,
- FSTOQ,
- FDTOS,
- FDTOQ,
- FQTOS,
- FQTOD,
-
- // Convert from floating point to integer formats
- FSTOX,
- FDTOX,
- FQTOX,
- FSTOI,
- FDTOI,
- FQTOI,
-
- // Convert from integer to floating point formats
- FXTOS,
- FXTOD,
- FXTOQ,
- FITOS,
- FITOD,
- FITOQ,
-
- // Branch on integer comparison with zero.
- // Annul bit specifies if intruction in delay slot is annulled(1) or not(0).
- // PredictTaken bit hints if branch should be predicted taken(1) or not(0).
- BRZ,
- BRLEZ,
- BRLZ,
- BRNZ,
- BRGZ,
- BRGEZ,
-
- // Branch on integer condition code.
- // Annul bit specifies if intruction in delay slot is annulled(1) or not(0).
- // PredictTaken bit hints if branch should be predicted taken(1) or not(0).
- BA,
- BN,
- BNE,
- BE,
- BG,
- BLE,
- BGE,
- BL,
- BGU,
- BLEU,
- BCC,
- BCS,
- BPOS,
- BNEG,
- BVC,
- BVS,
-
- // Branch on floating point condition code.
- // Annul bit specifies if intruction in delay slot is annulled(1) or not(0).
- // PredictTaken bit hints if branch should be predicted taken(1) or not(0).
- FBA,
- FBN,
- FBU,
- FBG,
- FBUG,
- FBL,
- FBUL,
- FBLG,
- FBNE,
- FBE,
- FBUE,
- FBGE,
- FBUGE,
- FBLE,
- FBULE,
- FBO,
-
- // Conditional move on integer comparison with zero.
- MOVRZ,
- MOVRLEZ,
- MOVRLZ,
- MOVRNZ,
- MOVRGZ,
- MOVRGEZ,
-
- // Conditional move on integer condition code.
- MOVA,
- MOVN,
- MOVNE,
- MOVE,
- MOVG,
- MOVLE,
- MOVGE,
- MOVL,
- MOVGU,
- MOVLEU,
- MOVCC,
- MOVCS,
- MOVPOS,
- MOVNEG,
- MOVVC,
- MOVVS,
-
- // Conditional move on floating point condition code.
- // Note that the enum name is not the same as the assembly mnemonic below
- // because that would duplicate some entries with those above.
- // Therefore, we use MOVF here instead of MOV.
- MOVFA,
- MOVFN,
- MOVFU,
- MOVFG,
- MOVFUG,
- MOVFL,
- MOVFUL,
- MOVFLG,
- MOVFNE,
- MOVFE,
- MOVFUE,
- MOVFGE,
- MOVFUGE,
- MOVFLE,
- MOVFULE,
- MOVFO,
-
- // Conditional move of floating point register on each of the above:
- // i. on integer comparison with zero.
- // ii. on integer condition code
- // iii. on floating point condition code
- // Note that the same set is repeated for S,D,Q register classes.
- FMOVRSZ,
- FMOVRSLEZ,
- FMOVRSLZ,
- FMOVRSNZ,
- FMOVRSGZ,
- FMOVRSGEZ,
-
- FMOVSA,
- FMOVSN,
- FMOVSNE,
- FMOVSE,
- FMOVSG,
- FMOVSLE,
- FMOVSGE,
- FMOVSL,
- FMOVSGU,
- FMOVSLEU,
- FMOVSCC,
- FMOVSCS,
- FMOVSPOS,
- FMOVSNEG,
- FMOVSVC,
- FMOVSVS,
-
- FMOVSFA,
- FMOVSFN,
- FMOVSFU,
- FMOVSFG,
- FMOVSFUG,
- FMOVSFL,
- FMOVSFUL,
- FMOVSFLG,
- FMOVSFNE,
- FMOVSFE,
- FMOVSFUE,
- FMOVSFGE,
- FMOVSFUGE,
- FMOVSFLE,
- FMOVSFULE,
- FMOVSFO,
-
- FMOVRDZ,
- FMOVRDLEZ,
- FMOVRDLZ,
- FMOVRDNZ,
- FMOVRDGZ,
- FMOVRDGEZ,
-
- FMOVDA,
- FMOVDN,
- FMOVDNE,
- FMOVDE,
- FMOVDG,
- FMOVDLE,
- FMOVDGE,
- FMOVDL,
- FMOVDGU,
- FMOVDLEU,
- FMOVDCC,
- FMOVDCS,
- FMOVDPOS,
- FMOVDNEG,
- FMOVDVC,
- FMOVDVS,
-
- FMOVDFA,
- FMOVDFN,
- FMOVDFU,
- FMOVDFG,
- FMOVDFUG,
- FMOVDFL,
- FMOVDFUL,
- FMOVDFLG,
- FMOVDFNE,
- FMOVDFE,
- FMOVDFUE,
- FMOVDFGE,
- FMOVDFUGE,
- FMOVDFLE,
- FMOVDFULE,
- FMOVDFO,
-
- FMOVRQZ,
- FMOVRQLEZ,
- FMOVRQLZ,
- FMOVRQNZ,
- FMOVRQGZ,
- FMOVRQGEZ,
-
- FMOVQA,
- FMOVQN,
- FMOVQNE,
- FMOVQE,
- FMOVQG,
- FMOVQLE,
- FMOVQGE,
- FMOVQL,
- FMOVQGU,
- FMOVQLEU,
- FMOVQCC,
- FMOVQCS,
- FMOVQPOS,
- FMOVQNEG,
- FMOVQVC,
- FMOVQVS,
-
- FMOVQFA,
- FMOVQFN,
- FMOVQFU,
- FMOVQFG,
- FMOVQFUG,
- FMOVQFL,
- FMOVQFUL,
- FMOVQFLG,
- FMOVQFNE,
- FMOVQFE,
- FMOVQFUE,
- FMOVQFGE,
- FMOVQFUGE,
- FMOVQFLE,
- FMOVQFULE,
- FMOVQFO,
-
- // Load integer instructions
- LDSB,
- LDSH,
- LDSW,
- LDUB,
- LDUH,
- LDUW,
- LDX,
-
- // Load floating-point instructions
- LD,
- LDD, // use of this for integers is deprecated for Sparc V9
- LDQ,
-
- // Store integer instructions
- STB,
- STH,
- STW,
- STX,
-
- // Store floating-point instructions
- ST,
- STD,
-
- // Call, Return, and "Jump and link"
- // Immed bit specifies if second operand is immediate(1) or register(0)
- CALL,
- JMPL,
- RETURN, // last valid opcode
-
- // Synthetic phi operation for near-SSA form of machine code
- PHI,
-
- // End-of-array marker
- INVALID_OPCODE,
- NUM_REAL_OPCODES = RETURN+1, // number of valid opcodes
- NUM_TOTAL_OPCODES = INVALID_OPCODE
-};
-
-const MachineInstrDescriptor SparcMachineInstrDesc[] = {
-
- // Fields of each structure:
- // opCodeString,
- // numOperands,
- // resultPosition (0-based; -1 if no result),
- // maxImmedConst,
- // immedIsSignExtended,
- // numDelaySlots (in cycles)
- // latency (in cycles)
- // instr sched class (defined above)
- // instr class flags (defined in TargretMachine.h)
-
- { "NOP", 0, -1, 0, false, 0, 1, SPARC_NONE, M_NOP_FLAG },
-
- // Synthetic SPARC assembly opcodes for setting a register to a constant.
- // Max immediate constant should be ignored for both these instructions.
- { "SETSW", 2, 1, 0, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "SETUW", 2, 1, 0, false, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG | M_ARITH_FLAG },
-
- // Set high-order bits of register and clear low-order bits
- { "SETHI", 2, 1, (1 << 22) - 1, false, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG | M_ARITH_FLAG },
-
- // Add or add with carry.
- { "ADD", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "ADDcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_ARITH_FLAG },
- { "ADDC", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "ADDCcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_ARITH_FLAG },
-
- // Sub tract or subtract with carry.
- { "SUB", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "SUBcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_ARITH_FLAG },
- { "SUBC", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "SUBCcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_ARITH_FLAG },
-
- // Integer multiply, signed divide, unsigned divide.
- // Note that the deprecated 32-bit multiply and multiply-step are not used.
- { "MULX", 3, 2, (1 << 12) - 1, true, 0, 3, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "SDIVX", 3, 2, (1 << 12) - 1, true, 0, 6, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
- { "UDIVX", 3, 2, (1 << 12) - 1, true, 0, 6, SPARC_IEUN, M_INT_FLAG | M_ARITH_FLAG },
-
- // Floating point add, subtract, compare.
- // Note that destination of FCMP* instructions is operand 0, not operand 2.
- { "FADDS", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FADDD", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FADDQ", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSUBS", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSUBD", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSUBQ", 3, 2, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FCMPS", 3, 0, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FCMPD", 3, 0, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FCMPQ", 3, 0, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- // NOTE: FCMPE{S,D,Q}: FP Compare With Exception are currently unused!
-
- // Floating point multiply or divide.
- { "FMULS", 3, 2, 0, false, 0, 3, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FMULD", 3, 2, 0, false, 0, 3, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FMULQ", 3, 2, 0, false, 0, 0, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSMULD", 3, 2, 0, false, 0, 3, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDMULQ", 3, 2, 0, false, 0, 0, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDIVS", 3, 2, 0, false, 0, 12, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDIVD", 3, 2, 0, false, 0, 22, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDIVQ", 3, 2, 0, false, 0, 0, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSQRTS", 3, 2, 0, false, 0, 12, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSQRTD", 3, 2, 0, false, 0, 22, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSQRTQ", 3, 2, 0, false, 0, 0, SPARC_FPM, M_FLOAT_FLAG | M_ARITH_FLAG },
-
- // Logical operations
- { "AND", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ANDcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ANDN", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ANDNcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
- { "OR", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ORcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ORN", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "ORNcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
- { "XOR", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "XORcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
- { "XNOR", 3, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEUN, M_INT_FLAG | M_LOGICAL_FLAG},
- { "XNORcc", 4, 2, (1 << 12) - 1, true, 0, 1, SPARC_IEU1, M_INT_FLAG | M_LOGICAL_FLAG},
-
- // Shift operations
- { "SLL", 3, 2, (1 << 5) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_LOGICAL_FLAG},
- { "SRL", 3, 2, (1 << 5) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_LOGICAL_FLAG},
- { "SRA", 3, 2, (1 << 5) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_ARITH_FLAG },
- { "SLLX", 3, 2, (1 << 6) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_LOGICAL_FLAG},
- { "SRLX", 3, 2, (1 << 6) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_LOGICAL_FLAG},
- { "SRAX", 3, 2, (1 << 6) - 1, true, 0, 1, SPARC_IEU0, M_INT_FLAG | M_ARITH_FLAG },
-
- // Floating point move, negate, and abs instructions
- { "FMOVS", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
- { "FMOVD", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
-//{ "FMOVQ", 2, 1, 0, false, 0, ?, SPARC_FPA, M_FLOAT_FLAG },
- { "FNEGS", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
- { "FNEGD", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
-//{ "FNEGQ", 2, 1, 0, false, 0, ?, SPARC_FPA, M_FLOAT_FLAG },
- { "FABSS", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
- { "FABSD", 2, 1, 0, false, 0, 1, SPARC_FPA, M_FLOAT_FLAG },
-//{ "FABSQ", 2, 1, 0, false, 0, ?, SPARC_FPA, M_FLOAT_FLAG },
-
- // Convert from floating point to floating point formats
- { "FSTOD", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FSTOQ", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDTOS", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FDTOQ", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FQTOS", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
- { "FQTOD", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_ARITH_FLAG },
-
- // Convert from floating point to integer formats.
- // Note that this accesses both integer and floating point registers.
- { "FSTOX", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FDTOX", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FQTOX", 2, 1, 0, false, 0, 2, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FSTOI", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FDTOI", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FQTOI", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
-
- // Convert from integer to floating point formats
- // Note that this accesses both integer and floating point registers.
- { "FXTOS", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FXTOD", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FXTOQ", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FITOS", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FITOD", 2, 1, 0, false, 0, 3, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
- { "FITOQ", 2, 1, 0, false, 0, 0, SPARC_FPA, M_FLOAT_FLAG | M_INT_FLAG | M_ARITH_FLAG },
-
- // Branch on integer comparison with zero.
- // Latency includes the delay slot.
- { "BRZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
- { "BRLEZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
- { "BRLZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
- { "BRNZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
- { "BRGZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
- { "BRGEZ", 2, -1, (1 << 15) - 1, true, 1, 2, SPARC_CTI, M_INT_FLAG | M_BRANCH_FLAG },
-
- // Branch on condition code.
- // The first argument specifies the ICC register: %icc or %xcc
- // Latency includes the delay slot.
- { "BA", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BN", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BNE", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BE", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BG", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BLE", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BGE", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BL", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BGU", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BLEU", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BCC", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BCS", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BPOS", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BNEG", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BVC", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "BVS", 2, -1, (1 << 21) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
-
- // Branch on floating point condition code.
- // Annul bit specifies if intruction in delay slot is annulled(1) or not(0).
- // PredictTaken bit hints if branch should be predicted taken(1) or not(0).
- // The first argument is the FCCn register (0 <= n <= 3).
- // Latency includes the delay slot.
- { "FBA", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBN", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBU", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBG", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBUG", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBL", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBUL", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBLG", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBNE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBUE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBGE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBUGE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBLE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBULE", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
- { "FBO", 2, -1, (1 << 18) - 1, true, 1, 2, SPARC_CTI, M_CC_FLAG | M_BRANCH_FLAG },
-
- // Conditional move on integer comparison with zero.
- { "MOVRZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
- { "MOVRLEZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
- { "MOVRLZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
- { "MOVRNZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
- { "MOVRGZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
- { "MOVRGEZ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_INT_FLAG },
-
- // Conditional move on integer condition code.
- // The first argument specifies the ICC register: %icc or %xcc
- { "MOVA", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVN", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVNE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVG", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVLE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVGE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVL", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVGU", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVLEU", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVCC", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVCS", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVPOS", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVNEG", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVVC", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVVS", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
-
- // Conditional move (of integer register) on floating point condition code.
- // The first argument is the FCCn register (0 <= n <= 3).
- // Note that the enum name above is not the same as the assembly mnemonic
- // because some of the assembly mnemonics are the same as the move on
- // integer CC (e.g., MOVG), and we cannot have the same enum entry twice.
- { "MOVA", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVN", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVU", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVG", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVUG", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVL", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVUL", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVLG", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVNE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVUE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVGE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVUGE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVLE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVULE", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
- { "MOVO", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_INT_FLAG },
-
- // Conditional move of floating point register on each of the above:
- // i. on integer comparison with zero.
- // ii. on integer condition code
- // iii. on floating point condition code
- // Note that the same set is repeated for S,D,Q register classes.
- { "FMOVRSZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRSLEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRSLZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRSNZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRSGZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRSGEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
-
- { "FMOVSA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSGU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSLEU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSCC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSCS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSPOS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSNEG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSVC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSVS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- { "FMOVSA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSUG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSUL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSLG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSUE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSUGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSULE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVSO", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- { "FMOVRDZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRDLEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRDLZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRDNZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRDGZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRDGEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
-
- { "FMOVDA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDGU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDLEU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDCC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDCS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDPOS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDNEG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDVC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDVS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- { "FMOVDA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDUG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDUL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDLG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDUE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDUGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDULE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVDO", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- { "FMOVRQZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRQLEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRQLZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRQNZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRQGZ", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
- { "FMOVRQGEZ",3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CONDL_FLAG | M_FLOAT_FLAG | M_INT_FLAG },
-
- { "FMOVQA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQGU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQLEU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQCC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQCS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQPOS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQNEG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQVC", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQVS", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- { "FMOVQA", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQN", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQU", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQUG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQUL", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQLG", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQNE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQUE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQUGE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQLE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQULE", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
- { "FMOVQO", 3, 2, 0, false, 0, 2, SPARC_SINGLE, M_CC_FLAG | M_FLOAT_FLAG },
-
- // Load integer instructions
- // Latency includes 1 cycle for address generation (Sparc IIi)
- // Signed loads of less than 64 bits need an extra cycle for sign-extension.
- //
- // Not reflected here: After a 3-cycle loads, all subsequent consecutive
- // loads also require 3 cycles to avoid contention for the load return
- // stage. Latency returns to 2 cycles after the first cycle with no load.
- { "LDSB", 3, 2, (1 << 12) - 1, true, 0, 3, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDSH", 3, 2, (1 << 12) - 1, true, 0, 3, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDSW", 3, 2, (1 << 12) - 1, true, 0, 3, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDUB", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDUH", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDUW", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
- { "LDX", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_INT_FLAG | M_LOAD_FLAG },
-
- // Load floating-point instructions
- // Latency includes 1 cycle for address generation (Sparc IIi)
- { "LD", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_FLOAT_FLAG | M_LOAD_FLAG },
- { "LDD", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_FLOAT_FLAG | M_LOAD_FLAG },
- { "LDQ", 3, 2, (1 << 12) - 1, true, 0, 2, SPARC_LD, M_FLOAT_FLAG | M_LOAD_FLAG },
-
- // Store integer instructions
- // Latency includes 1 cycle for address generation (Sparc IIi)
- { "STB", 3, -1, (1 << 12) - 1, true, 0, 2, SPARC_ST, M_INT_FLAG | M_STORE_FLAG },
- { "STH", 3, -1, (1 << 12) - 1, true, 0, 2, SPARC_ST, M_INT_FLAG | M_STORE_FLAG },
- { "STW", 3, -1, (1 << 12) - 1, true, 0, 2, SPARC_ST, M_INT_FLAG | M_STORE_FLAG },
- { "STX", 3, -1, (1 << 12) - 1, true, 0, 3, SPARC_ST, M_INT_FLAG | M_STORE_FLAG },
-
- // Store floating-point instructions (Sparc IIi)
- { "ST", 3, -1, (1 << 12) - 1, true, 0, 2, SPARC_ST, M_FLOAT_FLAG | M_STORE_FLAG},
- { "STD", 3, -1, (1 << 12) - 1, true, 0, 2, SPARC_ST, M_FLOAT_FLAG | M_STORE_FLAG},
-
- // Call, Return and "Jump and link".
- // Latency includes the delay slot.
- { "CALL", 1, -1, (1 << 29) - 1, true, 1, 2, SPARC_CTI, M_BRANCH_FLAG | M_CALL_FLAG},
- { "JMPL", 3, -1, (1 << 12) - 1, true, 1, 2, SPARC_CTI, M_BRANCH_FLAG | M_CALL_FLAG},
- { "RETURN", 2, -1, 0, false, 1, 2, SPARC_CTI, M_BRANCH_FLAG | M_RET_FLAG },
-
- // Synthetic phi operation for near-SSA form of machine code
- // Number of operands is variable, indicated by -1. Result is the first op.
-
- { "PHI", -1, 0, 0, false, 0, 0, SPARC_INV, M_DUMMY_PHI_FLAG },
-
-};
-
-
-
-//---------------------------------------------------------------------------
-// class UltraSparcInstrInfo
-//
-// Purpose:
-// Information about individual instructions.
-// Most information is stored in the SparcMachineInstrDesc array above.
-// Other information is computed on demand, and most such functions
-// default to member functions in base class MachineInstrInfo.
-//---------------------------------------------------------------------------
-
-class UltraSparcInstrInfo : public MachineInstrInfo {
-public:
- /*ctor*/ UltraSparcInstrInfo();
-
- virtual bool hasResultInterlock (MachineOpCode opCode)
- {
- // All UltraSPARC instructions have interlocks (note that delay slots
- // are not considered here).
- // However, instructions that use the result of an FCMP produce a
- // 9-cycle stall if they are issued less than 3 cycles after the FCMP.
- // Force the compiler to insert a software interlock (i.e., gap of
- // 2 other groups, including NOPs if necessary).
- return (opCode == FCMPS || opCode == FCMPD || opCode == FCMPQ);
- }
-
-};
-
-//---------------------------------------------------------------------------
-// class UltraSparcInstrInfo
-//
-// Purpose:
-// This class provides info about sparc register classes.
-//---------------------------------------------------------------------------
-
-class LiveRange;
-
-class UltraSparcRegInfo : public MachineRegInfo
-{
-
- private:
- enum RegClassIDs { IntRegClassID, FloatRegClassID, FloatCCREgClassID };
-
- // reverse pointer to get info about the ultra sparc machine
- const UltraSparc *const UltraSparcInfo;
-
- // Int arguments can be passed in 6 int regs - %o0 to %o5 (cannot be changed)
- unsigned const NumOfIntArgRegs;
-
- // Float arguments can be passed in this many regs - can be canged if needed
- // %f0 - %f5 are used (can hold 6 floats or 3 doubles)
- unsigned const NumOfFloatArgRegs;
-
- void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
-
-
- public:
-
- UltraSparcRegInfo(const UltraSparc *USI ) : UltraSparcInfo(USI),
- NumOfIntArgRegs(6),
- NumOfFloatArgRegs(6)
- {
-
- MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
- MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
-
- assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 6 &&
- "6 Float regs are used for float arg passing");
-
- }
-
- inline const UltraSparc & getUltraSparcInfo() const {
- return *UltraSparcInfo;
- }
-
- inline unsigned getRegClassIDOfValue (const Value *const Val) const {
- Type::PrimitiveID ty = (Val->getType())->getPrimitiveID();
-
- if( ty && ty <= Type::LongTyID || (ty == Type::PointerTyID) )
- return IntRegClassID; // sparc int reg (ty=0: void)
- else if( ty <= Type::DoubleTyID)
- return FloatRegClassID; // sparc float reg class
- else {
- cout << "TypeID: " << ty << endl;
- assert(0 && "Cannot resolve register class for type");
-
- }
- }
-
- void colorArgs(const Method *const Meth, LiveRangeInfo& LRI) const;
-
- static void printReg(const LiveRange *const LR) ;
-
- void colorCallArgs(vector<const Instruction *> & CallInstrList,
- LiveRangeInfo& LRI,
- AddedInstrMapType& AddedInstrMap ) const;
-
- // this method provides a unique number for each register
- inline int getUnifiedRegNum(int RegClassID, int reg) const {
-
- if( RegClassID == IntRegClassID && reg < 32 )
- return reg;
- else if ( RegClassID == FloatRegClassID && reg < 64)
- return reg + 32; // we have 32 int regs
- else if( RegClassID == FloatCCREgClassID && reg < 4)
- return reg + 32 + 64; // 32 int, 64 float
- else
- assert(0 && "Invalid register class or reg number");
-
- }
-
- // given the unified register number, this gives the name
- inline const string getUnifiedRegName(int reg) const {
-
- if( reg < 32 )
- return SparcIntRegOrder::getRegName(reg);
- else if ( reg < (64 + 32) )
- return SparcFloatRegOrder::getRegName( reg - 32);
- else if( reg < (64+32+4) )
- assert( 0 && "no float condition reg class yet");
- // return reg + 32 + 64;
- else
- assert(0 && "Invalid register number");
- }
-
-
-};
-
-
-
-
-
-
-
-/*---------------------------------------------------------------------------
-Scheduling guidelines for SPARC IIi:
-
-I-Cache alignment rules (pg 326)
--- Align a branch target instruction so that it's entire group is within
- the same cache line (may be 1-4 instructions).
-** Don't let a branch that is predicted taken be the last instruction
- on an I-cache line: delay slot will need an entire line to be fetched
--- Make a FP instruction or a branch be the 4th instruction in a group.
- For branches, there are tradeoffs in reordering to make this happen
- (see pg. 327).
-** Don't put a branch in a group that crosses a 32-byte boundary!
- An artificial branch is inserted after every 32 bytes, and having
- another branch will force the group to be broken into 2 groups.
-
-iTLB rules:
--- Don't let a loop span two memory pages, if possible
-
-Branch prediction performance:
--- Don't make the branch in a delay slot the target of a branch
--- Try not to have 2 predicted branches within a group of 4 instructions
- (because each such group has a single branch target field).
--- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
- the wrong prediction bits being used in some cases).
-
-D-Cache timing constraints:
--- Signed int loads of less than 64 bits have 3 cycle latency, not 2
--- All other loads that hit in D-Cache have 2 cycle latency
--- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
--- Mis-aligned loads or stores cause a trap. In particular, replace
- mis-aligned FP double precision l/s with 2 single-precision l/s.
--- Simulations of integer codes show increase in avg. group size of
- 33% when code (including esp. non-faulting loads) is moved across
- one branch, and 50% across 2 branches.
-
-E-Cache timing constraints:
--- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
-
-Store buffer timing constraints:
--- Stores can be executed in same cycle as instruction producing the value
--- Stores are buffered and have lower priority for E-cache until
- highwater mark is reached in the store buffer (5 stores)
-
-Pipeline constraints:
--- Shifts can only use IEU0.
--- CC setting instructions can only use IEU1.
--- Several other instructions must only use IEU1:
- EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
--- Two instructions cannot store to the same register file in a single cycle
- (single write port per file).
-
-Issue and grouping constraints:
--- FP and branch instructions must use slot 4.
--- Shift instructions cannot be grouped with other IEU0-specific instructions.
--- CC setting instructions cannot be grouped with other IEU1-specific instrs.
--- Several instructions must be issued in a single-instruction group:
- MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
--- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
---
---
-
-Branch delay slot scheduling rules:
--- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
- has a 9-instruction penalty: the entire pipeline is flushed when the
- second instruction reaches stage 9 (W-Writeback).
--- Avoid putting multicycle instructions, and instructions that may cause
- load misses, in the delay slot of an annulling branch.
--- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
- delay slot of an annulling branch.
-
- *--------------------------------------------------------------------------- */
-
-//---------------------------------------------------------------------------
-// List of CPUResources for UltraSPARC IIi.
-//---------------------------------------------------------------------------
-
-const CPUResource AllIssueSlots( "All Instr Slots", 4);
-const CPUResource IntIssueSlots( "Int Instr Slots", 3);
-const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
-const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
-const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
-const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1);
-const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1);
-
-// IEUN instructions can use either Alu and should use IAluN.
-// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
-// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
-const CPUResource IAluN("Int ALU 1or2", 2);
-const CPUResource IAlu0("Int ALU 1", 1);
-const CPUResource IAlu1("Int ALU 2", 1);
-
-const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
-const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
-const CPUResource LdReturn("Load Return Unit", 1);
-
-const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
-const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
-const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
-
-const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
-const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
-const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
-
-const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
-const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
-const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX); // CHECK
-const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
-
-const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
-const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
-
-
-//---------------------------------------------------------------------------
-// const InstrClassRUsage SparcRUsageDesc[]
-//
-// Purpose:
-// Resource usage information for instruction in each scheduling class.
-// The InstrRUsage Objects for individual classes are specified first.
-// Note that fetch and decode are decoupled from the execution pipelines
-// via an instr buffer, so they are not included in the cycles below.
-//---------------------------------------------------------------------------
-
-const InstrClassRUsage NoneClassRUsage = {
- SPARC_NONE,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 4,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 4,
- /* feasibleSlots[] */ { 0, 1, 2, 3 },
-
- /*numEntries*/ 0,
- /* V[] */ {
- /*Cycle G */
- /*Cycle E */
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */
- }
-};
-
-const InstrClassRUsage IEUNClassRUsage = {
- SPARC_IEUN,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 3,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 3,
- /* feasibleSlots[] */ { 0, 1, 2 },
-
- /*numEntries*/ 4,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { IntIssueSlots.rid, 0, 1 },
- /*Cycle E */ { IAluN.rid, 1, 1 },
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage IEU0ClassRUsage = {
- SPARC_IEU0,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 3,
- /* feasibleSlots[] */ { 0, 1, 2 },
-
- /*numEntries*/ 5,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { IntIssueSlots.rid, 0, 1 },
- /*Cycle E */ { IAluN.rid, 1, 1 },
- { IAlu0.rid, 1, 1 },
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage IEU1ClassRUsage = {
- SPARC_IEU1,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 3,
- /* feasibleSlots[] */ { 0, 1, 2 },
-
- /*numEntries*/ 5,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { IntIssueSlots.rid, 0, 1 },
- /*Cycle E */ { IAluN.rid, 1, 1 },
- { IAlu1.rid, 1, 1 },
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage FPMClassRUsage = {
- SPARC_FPM,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 4,
- /* feasibleSlots[] */ { 0, 1, 2, 3 },
-
- /*numEntries*/ 7,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { FPMIssueSlots.rid, 0, 1 },
- /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
- /*Cycle C */ { FPMAluC1.rid, 2, 1 },
- /*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
- /*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
- /*Cycle N1*/
- /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage FPAClassRUsage = {
- SPARC_FPA,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 4,
- /* feasibleSlots[] */ { 0, 1, 2, 3 },
-
- /*numEntries*/ 7,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { FPAIssueSlots.rid, 0, 1 },
- /*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
- /*Cycle C */ { FPAAluC1.rid, 2, 1 },
- /*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
- /*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
- /*Cycle N1*/
- /*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage LDClassRUsage = {
- SPARC_LD,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 3,
- /* feasibleSlots[] */ { 0, 1, 2, },
-
- /*numEntries*/ 6,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { First3IssueSlots.rid, 0, 1 },
- { LSIssueSlots.rid, 0, 1 },
- /*Cycle E */ { LSAluC1.rid, 1, 1 },
- /*Cycle C */ { LSAluC2.rid, 2, 1 },
- { LdReturn.rid, 2, 1 },
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */ { IRegWritePorts.rid, 6, 1 }
- }
-};
-
-const InstrClassRUsage STClassRUsage = {
- SPARC_ST,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 3,
- /* feasibleSlots[] */ { 0, 1, 2 },
-
- /*numEntries*/ 4,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { First3IssueSlots.rid, 0, 1 },
- { LSIssueSlots.rid, 0, 1 },
- /*Cycle E */ { LSAluC1.rid, 1, 1 },
- /*Cycle C */ { LSAluC2.rid, 2, 1 }
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */
- }
-};
-
-const InstrClassRUsage CTIClassRUsage = {
- SPARC_CTI,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ false,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 4,
- /* feasibleSlots[] */ { 0, 1, 2, 3 },
-
- /*numEntries*/ 4,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { CTIIssueSlots.rid, 0, 1 },
- /*Cycle E */ { IAlu0.rid, 1, 1 },
- /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */
- }
-};
-
-const InstrClassRUsage SingleClassRUsage = {
- SPARC_SINGLE,
- /*totCycles*/ 7,
-
- /* maxIssueNum */ 1,
- /* isSingleIssue */ true,
- /* breaksGroup */ false,
- /* numBubbles */ 0,
-
- /*numSlots*/ 1,
- /* feasibleSlots[] */ { 0 },
-
- /*numEntries*/ 5,
- /* V[] */ {
- /*Cycle G */ { AllIssueSlots.rid, 0, 1 },
- { AllIssueSlots.rid, 0, 1 },
- { AllIssueSlots.rid, 0, 1 },
- { AllIssueSlots.rid, 0, 1 },
- /*Cycle E */ { IAlu0.rid, 1, 1 }
- /*Cycle C */
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle N1*/
- /*Cycle W */
- }
-};
-
-
-const InstrClassRUsage SparcRUsageDesc[] = {
- NoneClassRUsage,
- IEUNClassRUsage,
- IEU0ClassRUsage,
- IEU1ClassRUsage,
- FPMClassRUsage,
- FPAClassRUsage,
- CTIClassRUsage,
- LDClassRUsage,
- STClassRUsage,
- SingleClassRUsage
-};
-
-
-//---------------------------------------------------------------------------
-// const InstrIssueDelta SparcInstrIssueDeltas[]
-//
-// Purpose:
-// Changes to issue restrictions information in InstrClassRUsage for
-// instructions that differ from other instructions in their class.
-//---------------------------------------------------------------------------
-
-const InstrIssueDelta SparcInstrIssueDeltas[] = {
-
- // opCode, isSingleIssue, breaksGroup, numBubbles
-
- // Special cases for single-issue only
- // Other single issue cases are below.
-//{ LDDA, true, true, 0 },
-//{ STDA, true, true, 0 },
-//{ LDDF, true, true, 0 },
-//{ LDDFA, true, true, 0 },
- { ADDC, true, true, 0 },
- { ADDCcc, true, true, 0 },
- { SUBC, true, true, 0 },
- { SUBCcc, true, true, 0 },
-//{ SAVE, true, true, 0 },
-//{ RESTORE, true, true, 0 },
-//{ LDSTUB, true, true, 0 },
-//{ SWAP, true, true, 0 },
-//{ SWAPA, true, true, 0 },
-//{ CAS, true, true, 0 },
-//{ CASA, true, true, 0 },
-//{ CASX, true, true, 0 },
-//{ CASXA, true, true, 0 },
-//{ LDFSR, true, true, 0 },
-//{ LDFSRA, true, true, 0 },
-//{ LDXFSR, true, true, 0 },
-//{ LDXFSRA, true, true, 0 },
-//{ STFSR, true, true, 0 },
-//{ STFSRA, true, true, 0 },
-//{ STXFSR, true, true, 0 },
-//{ STXFSRA, true, true, 0 },
-//{ SAVED, true, true, 0 },
-//{ RESTORED, true, true, 0 },
-//{ FLUSH, true, true, 9 },
-//{ FLUSHW, true, true, 9 },
-//{ ALIGNADDR, true, true, 0 },
- { RETURN, true, true, 0 },
-//{ DONE, true, true, 0 },
-//{ RETRY, true, true, 0 },
-//{ WR, true, true, 0 },
-//{ WRPR, true, true, 4 },
-//{ RD, true, true, 0 },
-//{ RDPR, true, true, 0 },
-//{ TCC, true, true, 0 },
-//{ SHUTDOWN, true, true, 0 },
-
- // Special cases for breaking group *before*
- // CURRENTLY NOT SUPPORTED!
- { CALL, false, false, 0 },
- { JMPL, false, false, 0 },
-
- // Special cases for breaking the group *after*
- { MULX, true, true, (4+34)/2 },
- { FDIVS, false, true, 0 },
- { FDIVD, false, true, 0 },
- { FDIVQ, false, true, 0 },
- { FSQRTS, false, true, 0 },
- { FSQRTD, false, true, 0 },
- { FSQRTQ, false, true, 0 },
-//{ FCMP{LE,GT,NE,EQ}, false, true, 0 },
-
- // Instructions that introduce bubbles
-//{ MULScc, true, true, 2 },
-//{ SMULcc, true, true, (4+18)/2 },
-//{ UMULcc, true, true, (4+19)/2 },
- { SDIVX, true, true, 68 },
- { UDIVX, true, true, 68 },
-//{ SDIVcc, true, true, 36 },
-//{ UDIVcc, true, true, 37 },
-//{ WR, false, false, 4 },
-//{ WRPR, false, false, 4 },
-};
-
-
-//---------------------------------------------------------------------------
-// const InstrRUsageDelta SparcInstrUsageDeltas[]
-//
-// Purpose:
-// Changes to resource usage information in InstrClassRUsage for
-// instructions that differ from other instructions in their class.
-//---------------------------------------------------------------------------
-
-const InstrRUsageDelta SparcInstrUsageDeltas[] = {
-
- // MachineOpCode, Resource, Start cycle, Num cycles
-
- //
- // JMPL counts as a load/store instruction for issue!
- //
- { JMPL, LSIssueSlots.rid, 0, 1 },
-
- //
- // Many instructions cannot issue for the next 2 cycles after an FCMP
- // We model that with a fake resource FCMPDelayCycle.
- //
- { FCMPS, FCMPDelayCycle.rid, 1, 3 },
- { FCMPD, FCMPDelayCycle.rid, 1, 3 },
- { FCMPQ, FCMPDelayCycle.rid, 1, 3 },
-
- { MULX, FCMPDelayCycle.rid, 1, 1 },
- { SDIVX, FCMPDelayCycle.rid, 1, 1 },
- { UDIVX, FCMPDelayCycle.rid, 1, 1 },
-//{ SMULcc, FCMPDelayCycle.rid, 1, 1 },
-//{ UMULcc, FCMPDelayCycle.rid, 1, 1 },
-//{ SDIVcc, FCMPDelayCycle.rid, 1, 1 },
-//{ UDIVcc, FCMPDelayCycle.rid, 1, 1 },
- { STD, FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
- { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
-
- //
- // Some instructions are stalled in the GROUP stage if a CTI is in
- // the E or C stage
- //
- { LDD, CTIDelayCycle.rid, 1, 1 },
-//{ LDDA, CTIDelayCycle.rid, 1, 1 },
-//{ LDDSTUB, CTIDelayCycle.rid, 1, 1 },
-//{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
-//{ SWAP, CTIDelayCycle.rid, 1, 1 },
-//{ SWAPA, CTIDelayCycle.rid, 1, 1 },
-//{ CAS, CTIDelayCycle.rid, 1, 1 },
-//{ CASA, CTIDelayCycle.rid, 1, 1 },
-//{ CASX, CTIDelayCycle.rid, 1, 1 },
-//{ CASXA, CTIDelayCycle.rid, 1, 1 },
-
- //
- // Signed int loads of less than dword size return data in cycle N1 (not C)
- // and put all loads in consecutive cycles into delayed load return mode.
- //
- { LDSB, LdReturn.rid, 2, -1 },
- { LDSB, LdReturn.rid, 3, 1 },
-
- { LDSH, LdReturn.rid, 2, -1 },
- { LDSH, LdReturn.rid, 3, 1 },
-
- { LDSW, LdReturn.rid, 2, -1 },
- { LDSW, LdReturn.rid, 3, 1 },
-
-
-#undef EXPLICIT_BUBBLES_NEEDED
-#ifdef EXPLICIT_BUBBLES_NEEDED
- //
- // MULScc inserts one bubble.
- // This means it breaks the current group (captured in UltraSparcSchedInfo)
- // *and occupies all issue slots for the next cycle
- //
-//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
-//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
-//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
-//{ MULScc, AllIssueSlots.rid, 2, 2-1 },
-
- //
- // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
- // We just model this with a simple average.
- //
-//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
-//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
-//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
-//{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
-
- // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
-//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
-//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
-//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
-//{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
-
- //
- // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
- //
- { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
- { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
- { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
- { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
-
- //
- // SDIVcc inserts 36 bubbles.
- //
-//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
-//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
-//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
-//{ SDIVcc, AllIssueSlots.rid, 2, 36-1 },
-
- // UDIVcc inserts 37 bubbles.
-//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
-//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
-//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
-//{ UDIVcc, AllIssueSlots.rid, 2, 37-1 },
-
- //
- // SDIVX inserts 68 bubbles.
- //
- { SDIVX, AllIssueSlots.rid, 2, 68-1 },
- { SDIVX, AllIssueSlots.rid, 2, 68-1 },
- { SDIVX, AllIssueSlots.rid, 2, 68-1 },
- { SDIVX, AllIssueSlots.rid, 2, 68-1 },
-
- //
- // UDIVX inserts 68 bubbles.
- //
- { UDIVX, AllIssueSlots.rid, 2, 68-1 },
- { UDIVX, AllIssueSlots.rid, 2, 68-1 },
- { UDIVX, AllIssueSlots.rid, 2, 68-1 },
- { UDIVX, AllIssueSlots.rid, 2, 68-1 },
-
- //
- // WR inserts 4 bubbles.
- //
-//{ WR, AllIssueSlots.rid, 2, 68-1 },
-//{ WR, AllIssueSlots.rid, 2, 68-1 },
-//{ WR, AllIssueSlots.rid, 2, 68-1 },
-//{ WR, AllIssueSlots.rid, 2, 68-1 },
-
- //
- // WRPR inserts 4 bubbles.
- //
-//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
-//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
-//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
-//{ WRPR, AllIssueSlots.rid, 2, 68-1 },
-
- //
- // DONE inserts 9 bubbles.
- //
-//{ DONE, AllIssueSlots.rid, 2, 9-1 },
-//{ DONE, AllIssueSlots.rid, 2, 9-1 },
-//{ DONE, AllIssueSlots.rid, 2, 9-1 },
-//{ DONE, AllIssueSlots.rid, 2, 9-1 },
-
- //
- // RETRY inserts 9 bubbles.
- //
-//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
-//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
-//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
-//{ RETRY, AllIssueSlots.rid, 2, 9-1 },
-
-#endif EXPLICIT_BUBBLES_NEEDED
-};
-
-
-
-// Additional delays to be captured in code:
-// 1. RDPR from several state registers (page 349)
-// 2. RD from *any* register (page 349)
-// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
-// 4. Integer store can be in same group as instr producing value to store.
-// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
-// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
-// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
-// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
-// follow an annulling branch cannot be issued in the same group or in
-// the 3 groups following the branch.
-// 9. A predicted annulled load does not stall dependent instructions.
-// Other annulled delay slot instructions *do* stall dependents, so
-// nothing special needs to be done for them during scheduling.
-//10. Do not put a load use that may be annulled in the same group as the
-// branch. The group will stall until the load returns.
-//11. Single-prec. FP loads lock 2 registers, for dependency checking.
-//
-//
-// Additional delays we cannot or will not capture:
-// 1. If DCTI is last word of cache line, it is delayed until next line can be
-// fetched. Also, other DCTI alignment-related delays (pg 352)
-// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
-// Also, several other store-load and load-store conflicts (pg 358)
-// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
-// 4. There can be at most 8 outstanding buffered store instructions
-// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
-
-
-
-//---------------------------------------------------------------------------
-// class UltraSparcSchedInfo
-//
-// Purpose:
-// Interface to instruction scheduling information for UltraSPARC.
-// The parameter values above are based on UltraSPARC IIi.
-//---------------------------------------------------------------------------
-
-
-class UltraSparcSchedInfo: public MachineSchedInfo {
-public:
- /*ctor*/ UltraSparcSchedInfo (const MachineInstrInfo* mii);
- /*dtor*/ virtual ~UltraSparcSchedInfo () {}
-protected:
- virtual void initializeResources ();
-};
-
-#endif