Move files.
authorChris Lattner <sabre@nondot.org>
Fri, 14 Sep 2001 03:47:57 +0000 (03:47 +0000)
committerChris Lattner <sabre@nondot.org>
Fri, 14 Sep 2001 03:47:57 +0000 (03:47 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@561 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/SparcV9/Makefile [new file with mode: 0644]
lib/Target/SparcV9/SparcV9InstrSelection.cpp [new file with mode: 0644]
lib/Target/SparcV9/SparcV9RegInfo.cpp [new file with mode: 0644]
lib/Target/SparcV9/SparcV9TargetMachine.cpp [new file with mode: 0644]

diff --git a/lib/Target/SparcV9/Makefile b/lib/Target/SparcV9/Makefile
new file mode 100644 (file)
index 0000000..2daca1f
--- /dev/null
@@ -0,0 +1,14 @@
+LEVEL = ../../../..
+
+DIRS  = 
+
+LIBRARYNAME = sparc
+
+## List source files in link order
+Source  = \
+         Sparc.o \
+         Sparc.burm.o \
+         SparcInstrSelection.o
+
+include $(LEVEL)/Makefile.common
+
diff --git a/lib/Target/SparcV9/SparcV9InstrSelection.cpp b/lib/Target/SparcV9/SparcV9InstrSelection.cpp
new file mode 100644 (file)
index 0000000..c73264c
--- /dev/null
@@ -0,0 +1,2016 @@
+//***************************************************************************
+// File:
+//     SparcInstrSelection.cpp
+// 
+// Purpose:
+//     
+// History:
+//     7/02/01  -  Vikram Adve  -  Created
+//**************************************************************************/
+
+#include "SparcInternals.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/InstrForest.h"
+#include "llvm/CodeGen/InstrSelection.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+  bool         flipCondition; // should the sense of the test be reversed
+  BasicBlock*  targetBB;      // which basic block to branch to
+  MachineInstr* extraBranch;   // if neither branch is fall-through, then this
+                               // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode ChooseBprInstruction   (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseBccInstruction   (const InstructionNode* instrNode,
+                                            bool& isFPBranch);
+
+static MachineOpCode ChooseBpccInstruction  (const InstructionNode* instrNode,
+                                            const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseBFpccInstruction (const InstructionNode* instrNode,
+                                            const BinaryOperator* setCCInst);
+
+static MachineOpCode ChooseMovFpccInstruction(const InstructionNode*);
+
+static MachineOpCode ChooseMovpccAfterSub   (const InstructionNode* instrNode,
+                                            bool& mustClearReg,
+                                            int& valueToMove);
+
+static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode*,
+                                              const Type* opType);
+
+static MachineOpCode ChooseConvertToIntInstr(const InstructionNode* instrNode,
+                                            const Type* opType);
+
+static MachineOpCode ChooseAddInstruction   (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseSubInstruction   (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseFcmpInstruction  (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseMulInstruction   (const InstructionNode* instrNode,
+                                            bool checkCasts);
+
+static MachineOpCode ChooseDivInstruction   (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseLoadInstruction  (const Type* resultType);
+
+static MachineOpCode ChooseStoreInstruction (const Type* valueType);
+
+static void            SetOperandsForMemInstr(MachineInstr* minstr,
+                                        const InstructionNode* vmInstrNode,
+                                        const TargetMachine& target);
+
+static void            SetMemOperands_Internal (MachineInstr* minstr,
+                                        const InstructionNode* vmInstrNode,
+                                        Value* ptrVal,
+                                        Value* arrayOffsetVal,
+                                        const vector<ConstPoolVal*>& idxVec,
+                                        const TargetMachine& target);
+
+static unsigned                FixConstantOperands(const InstructionNode* vmInstrNode,
+                                           MachineInstr** mvec,
+                                           unsigned numInstr,
+                                           TargetMachine& target);
+
+static MachineInstr*   MakeLoadConstInstr(Instruction* vmInstr,
+                                          Value* val,
+                                          TmpInstruction*& tmpReg,
+                                          MachineInstr*& getMinstr2);
+
+static void            ForwardOperand  (InstructionNode* treeNode,
+                                        InstructionNode* parent,
+                                        int operandNum);
+
+
+//************************ Internal Functions ******************************/
+
+// Convenience function to get the value of an integer constant, for an
+// appropriate integer or non-integer type that can be held in an integer.
+// The type of the argument must be the following:
+//   GetConstantValueAsSignedInt: any of the above, but the value
+//                               must fit into a int64_t.
+// 
+// isValidConstant is set to true if a valid constant was found.
+// 
+
+static int64_t GetConstantValueAsSignedInt(const Value *V,
+                                          bool &isValidConstant) {
+  if (!V->isConstant()) { isValidConstant = false; return 0; }
+  isValidConstant = true;
+  
+  if (V->getType() == Type::BoolTy)
+    return ((ConstPoolBool*)V)->getValue();
+  if (V->getType()->isIntegral()) {
+    if (V->getType()->isSigned())
+      return ((ConstPoolSInt*)V)->getValue();
+    
+    assert(V->getType()->isUnsigned());
+    uint64_t Val = ((ConstPoolUInt*)V)->getValue();
+
+    if (Val < INT64_MAX)     // then safe to cast to signed
+      return (int64_t)Val;
+  }
+
+  isValidConstant = false;
+  return 0;
+}
+
+
+
+//------------------------------------------------------------------------ 
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+//   Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------ 
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+  switch(eruleno)
+    {
+    case 111:  // stmt:  reg
+    case 112:  // stmt:  boolconst
+    case 113:  // stmt:  bool
+    case 121:
+    case 122:
+    case 123:
+    case 124:
+    case 125:
+    case 126:
+    case 127:
+    case 128:
+    case 129:
+    case 130:
+    case 131:
+    case 132:
+    case 153:
+    case 155: return true; break;
+      
+    default: return false; break;
+    }
+}
+
+
+static inline MachineOpCode 
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode;
+  
+  Instruction* setCCInstr =
+    ((InstructionNode*) instrNode->leftChild())->getInstruction();
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = BRZ;   break;
+    case Instruction::SetNE: opCode = BRNZ;  break;
+    case Instruction::SetLE: opCode = BRLEZ; break;
+    case Instruction::SetGE: opCode = BRGEZ; break;
+    case Instruction::SetLT: opCode = BRLZ;  break;
+    case Instruction::SetGT: opCode = BRGZ;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      opCode = INVALID_OPCODE;
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineOpCode 
+ChooseBccInstruction(const InstructionNode* instrNode,
+                    bool& isFPBranch)
+{
+  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+  BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+  const Type* setCCType = setCCInstr->getOperand(0)->getType();
+  
+  isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); 
+  
+  if (isFPBranch) 
+    return ChooseBFpccInstruction(instrNode, setCCInstr);
+  else
+    return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static inline MachineOpCode 
+ChooseBpccInstruction(const InstructionNode* instrNode,
+                     const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+  
+  if (isSigned)
+    {
+      switch(setCCInstr->getOpcode())
+       {
+       case Instruction::SetEQ: opCode = BE;  break;
+       case Instruction::SetNE: opCode = BNE; break;
+       case Instruction::SetLE: opCode = BLE; break;
+       case Instruction::SetGE: opCode = BGE; break;
+       case Instruction::SetLT: opCode = BL;  break;
+       case Instruction::SetGT: opCode = BG;  break;
+       default:
+         assert(0 && "Unrecognized VM instruction!");
+         break; 
+       }
+    }
+  else
+    {
+      switch(setCCInstr->getOpcode())
+       {
+       case Instruction::SetEQ: opCode = BE;   break;
+       case Instruction::SetNE: opCode = BNE;  break;
+       case Instruction::SetLE: opCode = BLEU; break;
+       case Instruction::SetGE: opCode = BCC;  break;
+       case Instruction::SetLT: opCode = BCS;  break;
+       case Instruction::SetGT: opCode = BGU;  break;
+       default:
+         assert(0 && "Unrecognized VM instruction!");
+         break; 
+       }
+    }
+  
+  return opCode;
+}
+
+static inline MachineOpCode 
+ChooseBFpccInstruction(const InstructionNode* instrNode,
+                      const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = FBE;  break;
+    case Instruction::SetNE: opCode = FBNE; break;
+    case Instruction::SetLE: opCode = FBLE; break;
+    case Instruction::SetGE: opCode = FBGE; break;
+    case Instruction::SetLT: opCode = FBL;  break;
+    case Instruction::SetGT: opCode = FBG;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineOpCode 
+ChooseMovFpccInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(instrNode->getInstruction()->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = MOVFE;  break;
+    case Instruction::SetNE: opCode = MOVFNE; break;
+    case Instruction::SetLE: opCode = MOVFLE; break;
+    case Instruction::SetGE: opCode = MOVFGE; break;
+    case Instruction::SetLT: opCode = MOVFL;  break;
+    case Instruction::SetGT: opCode = MOVFG;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+// Assumes that SUBcc v1, v2 -> v3 has been executed.
+// In most cases, we want to clear v3 and then follow it by instruction
+// MOVcc 1 -> v3.
+// Set mustClearReg=false if v3 need not be cleared before conditional move.
+// Set valueToMove=0 if we want to conditionally move 0 instead of 1
+//                      (i.e., we want to test inverse of a condition)
+//
+// 
+static MachineOpCode
+ChooseMovpccAfterSub(const InstructionNode* instrNode,
+                    bool& mustClearReg,
+                    int& valueToMove)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  mustClearReg = true;
+  valueToMove = 1;
+  
+  switch(instrNode->getInstruction()->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = MOVNE; mustClearReg = false;
+                                            valueToMove = 0; break;
+    case Instruction::SetLE: opCode = MOVLE; break;
+    case Instruction::SetGE: opCode = MOVGE; break;
+    case Instruction::SetLT: opCode = MOVL;  break;
+    case Instruction::SetGT: opCode = MOVG;  break;
+      
+    case Instruction::SetNE: assert(0 && "No move required!");
+      
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineOpCode
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+                         const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(instrNode->getOpLabel())
+    {
+    case ToFloatTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+       opCode = FITOS;
+      else if (opType == Type::LongTy)
+       opCode = FXTOS;
+      else if (opType == Type::DoubleTy)
+       opCode = FDTOS;
+      else if (opType == Type::FloatTy)
+       ;
+      else
+       assert(0 && "Cannot convert this type to FLOAT on SPARC");              
+      break;
+      
+    case ToDoubleTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+       opCode = FITOD;
+      else if (opType == Type::LongTy)
+       opCode = FXTOD;
+      else if (opType == Type::FloatTy)
+       opCode = FSTOD;
+      else if (opType == Type::DoubleTy)
+       ;
+      else
+       assert(0 && "Cannot convert this type to DOUBLE on SPARC");             
+      break;
+      
+    default:
+      break;
+    }
+  
+  return opCode;
+}
+
+static inline MachineOpCode 
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+                       const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;;
+  
+  int instrType = (int) instrNode->getOpLabel();
+  
+  if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+    {
+      switch (opType->getPrimitiveID())
+       {
+        case Type::FloatTyID:   opCode = FSTOI; break;
+        case Type::DoubleTyID:  opCode = FDTOI; break;
+       default:
+         assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+         break;
+       }
+    }
+  else if (instrType == ToLongTy)
+    {
+      switch (opType->getPrimitiveID())
+       {
+        case Type::FloatTyID:   opCode = FSTOX; break;
+        case Type::DoubleTyID:  opCode = FDTOX; break;
+       default:
+         assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+         break;
+       }
+    }
+  else
+      assert(0 && "Should not get here, Mo!");
+  
+  return opCode;
+}
+
+
+static inline MachineOpCode 
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType() ||
+      resultType->isMethodType() ||
+      resultType->isLabelType())
+    {
+      opCode = ADD;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FADDS; break;
+       case Type::DoubleTyID: opCode = FADDD; break;
+       default: assert(0 && "Invalid type for ADD instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineInstr* 
+CreateMovFloatInstruction(const InstructionNode* instrNode,
+                         const Type* resultType)
+{
+  MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
+                                         ? FMOVS : FMOVD);
+  minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                           instrNode->leftChild()->getValue());
+  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+                           instrNode->getValue());
+  return minstr;
+}
+
+static inline MachineInstr* 
+CreateAddConstInstruction(const InstructionNode* instrNode)
+{
+  MachineInstr* minstr = NULL;
+  
+  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+  assert(constOp->isConstant());
+  
+  // Cases worth optimizing are:
+  // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+  //    instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
+  // 
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType == Type::FloatTy || resultType == Type::DoubleTy) {
+    double dval = ((ConstPoolFP*) constOp)->getValue();
+    if (dval == 0.0)
+      minstr = CreateMovFloatInstruction(instrNode, resultType);
+  }
+  
+  return minstr;
+}
+
+
+static inline MachineOpCode 
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType())
+    {
+      opCode = SUB;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FSUBS; break;
+       case Type::DoubleTyID: opCode = FSUBD; break;
+       default: assert(0 && "Invalid type for SUB instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineInstr* 
+CreateSubConstInstruction(const InstructionNode* instrNode)
+{
+  MachineInstr* minstr = NULL;
+  
+  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+  assert(constOp->isConstant());
+  
+  // Cases worth optimizing are:
+  // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+  //    instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
+  // 
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType == Type::FloatTy ||
+      resultType == Type::DoubleTy)
+    {
+      double dval = ((ConstPoolFP*) constOp)->getValue();
+      if (dval == 0.0)
+       minstr = CreateMovFloatInstruction(instrNode, resultType);
+    }
+  
+  return minstr;
+}
+
+
+static inline MachineOpCode 
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+  switch(operand->getType()->getPrimitiveID()) {
+  case Type::FloatTyID:  opCode = FCMPS; break;
+  case Type::DoubleTyID: opCode = FCMPD; break;
+  default: assert(0 && "Invalid type for FCMP instruction"); break; 
+  }
+  
+  return opCode;
+}
+
+
+// Assumes that leftArg and rightArg are both cast instructions.
+//
+static inline bool
+BothFloatToDouble(const InstructionNode* instrNode)
+{
+  InstrTreeNode* leftArg = instrNode->leftChild();
+  InstrTreeNode* rightArg = instrNode->rightChild();
+  InstrTreeNode* leftArgArg = leftArg->leftChild();
+  InstrTreeNode* rightArgArg = rightArg->leftChild();
+  assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+  
+  // Check if both arguments are floats cast to double
+  return (leftArg->getValue()->getType() == Type::DoubleTy &&
+         leftArgArg->getValue()->getType() == Type::FloatTy &&
+         rightArgArg->getValue()->getType() == Type::FloatTy);
+}
+
+
+static inline MachineOpCode 
+ChooseMulInstruction(const InstructionNode* instrNode,
+                    bool checkCasts)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  if (checkCasts && BothFloatToDouble(instrNode))
+    {
+      return opCode = FSMULD;
+    }
+  // else fall through and use the regular multiply instructions
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = MULX;
+    }
+  else
+    {
+      switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FMULS; break;
+       case Type::DoubleTyID: opCode = FMULD; break;
+       default: assert(0 && "Invalid type for MUL instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineInstr*
+CreateIntNegInstruction(Value* vreg)
+{
+  MachineInstr* minstr = new MachineInstr(SUB);
+  minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
+  minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
+  return minstr;
+}
+
+
+static inline MachineInstr* 
+CreateMulConstInstruction(const InstructionNode* instrNode,
+                         MachineInstr*& getMinstr2)
+{
+  MachineInstr* minstr = NULL;
+  getMinstr2 = NULL;
+  bool needNeg = false;
+
+  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+  assert(constOp->isConstant());
+  
+  // Cases worth optimizing are:
+  // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+  // (2) Multiply by 2^x for integer types: replace with Shift
+  // 
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      unsigned pow;
+      bool isValidConst;
+      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+      if (isValidConst)
+       {
+         bool needNeg = false;
+         if (C < 0)
+           {
+             needNeg = true;
+             C = -C;
+           }
+         
+         if (C == 0 || C == 1)
+           {
+             minstr = new MachineInstr(ADD);
+             
+             if (C == 0)
+               minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+             else
+               minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+                                         instrNode->leftChild()->getValue());
+             minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+           }
+         else if (IsPowerOf2(C, pow))
+           {
+             minstr = new MachineInstr((resultType == Type::LongTy)
+                                       ? SLLX : SLL);
+             minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                          instrNode->leftChild()->getValue());
+             minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+                                          pow);
+           }
+         
+         if (minstr && needNeg)
+           { // insert <reg = SUB 0, reg> after the instr to flip the sign
+             getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+           }
+       }
+    }
+  else
+    {
+      if (resultType == Type::FloatTy ||
+         resultType == Type::DoubleTy)
+       {
+         bool isValidConst;
+         double dval = ((ConstPoolFP*) constOp)->getValue();
+         
+         if (isValidConst)
+           {
+             if (dval == 0)
+               {
+                 minstr = new MachineInstr((resultType == Type::FloatTy)
+                                           ? FITOS : FITOD);
+                 minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+               }
+             else if (fabs(dval) == 1)
+               {
+                 bool needNeg = (dval < 0);
+                 
+                 MachineOpCode opCode = needNeg
+                   ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+                   : (resultType == Type::FloatTy? FMOVS : FMOVD);
+                 
+                 minstr = new MachineInstr(opCode);
+                 minstr->SetMachineOperand(0,
+                                          MachineOperand::MO_VirtualRegister,
+                                          instrNode->leftChild()->getValue());
+               } 
+           }
+       }
+    }
+  
+  if (minstr != NULL)
+    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                             instrNode->getValue());   
+  
+  return minstr;
+}
+
+
+static inline MachineOpCode 
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = resultType->isSigned()? SDIVX : UDIVX;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FDIVS; break;
+       case Type::DoubleTyID: opCode = FDIVD; break;
+       default: assert(0 && "Invalid type for DIV instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineInstr* 
+CreateDivConstInstruction(const InstructionNode* instrNode,
+                         MachineInstr*& getMinstr2)
+{
+  MachineInstr* minstr = NULL;
+  getMinstr2 = NULL;
+  
+  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+  assert(constOp->isConstant());
+  
+  // Cases worth optimizing are:
+  // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+  // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+  // 
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      unsigned pow;
+      bool isValidConst;
+      int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+      if (isValidConst)
+       {
+         bool needNeg = false;
+         if (C < 0)
+           {
+             needNeg = true;
+             C = -C;
+           }
+         
+         if (C == 1)
+           {
+             minstr = new MachineInstr(ADD);
+             minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+                                         instrNode->leftChild()->getValue());
+             minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+           }
+         else if (IsPowerOf2(C, pow))
+           {
+             MachineOpCode opCode= ((resultType->isSigned())
+                                    ? (resultType==Type::LongTy)? SRAX : SRA
+                                    : (resultType==Type::LongTy)? SRLX : SRL);
+             minstr = new MachineInstr(opCode);
+             minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                          instrNode->leftChild()->getValue());
+             minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+                                          pow);
+           }
+         
+         if (minstr && needNeg)
+           { // insert <reg = SUB 0, reg> after the instr to flip the sign
+             getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+           }
+       }
+    }
+  else
+    {
+      if (resultType == Type::FloatTy ||
+         resultType == Type::DoubleTy)
+       {
+         bool isValidConst;
+         double dval = ((ConstPoolFP*) constOp)->getValue();
+         
+         if (isValidConst && fabs(dval) == 1)
+           {
+             bool needNeg = (dval < 0);
+             
+             MachineOpCode opCode = needNeg
+               ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+               : (resultType == Type::FloatTy? FMOVS : FMOVD);
+             
+             minstr = new MachineInstr(opCode);
+             minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                          instrNode->leftChild()->getValue());
+           } 
+       }
+    }
+  
+  if (minstr != NULL)
+    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                             instrNode->getValue());   
+  
+  return minstr;
+}
+
+
+static inline MachineOpCode 
+ChooseLoadInstruction(const Type* resultType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (resultType->getPrimitiveID())
+    {
+    case Type::BoolTyID:       opCode = LDUB; break;
+    case Type::UByteTyID:      opCode = LDUB; break;
+    case Type::SByteTyID:      opCode = LDSB; break;
+    case Type::UShortTyID:     opCode = LDUH; break;
+    case Type::ShortTyID:      opCode = LDSH; break;
+    case Type::UIntTyID:       opCode = LDUW; break;
+    case Type::IntTyID:                opCode = LDSW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:       opCode = LDX;  break;
+    case Type::FloatTyID:      opCode = LD;   break;
+    case Type::DoubleTyID:     opCode = LDD;  break;
+    default: assert(0 && "Invalid type for Load instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+static inline MachineOpCode 
+ChooseStoreInstruction(const Type* valueType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (valueType->getPrimitiveID())
+    {
+    case Type::BoolTyID:
+    case Type::UByteTyID:
+    case Type::SByteTyID:      opCode = STB; break;
+    case Type::UShortTyID:
+    case Type::ShortTyID:      opCode = STH; break;
+    case Type::UIntTyID:
+    case Type::IntTyID:                opCode = STW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:       opCode = STX;  break;
+    case Type::FloatTyID:      opCode = ST;   break;
+    case Type::DoubleTyID:     opCode = STD;  break;
+    default: assert(0 && "Invalid type for Store instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+//------------------------------------------------------------------------ 
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+//              not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+// 
+// This assumes that all array refs are "lowered" to one of these forms:
+//     %x = load (subarray*) ptr, constant     ; single constant offset
+//     %x = load (subarray*) ptr, offsetVal    ; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------ 
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+                      const InstructionNode* vmInstrNode,
+                      const TargetMachine& target)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Variables to hold the index vector, ptr value, and offset value.
+  // The major work here is to extract these for all 3 instruction types
+  // and then call the common function SetMemOperands_Internal().
+  // 
+  const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+  vector<ConstPoolVal*>* newIdxVec = NULL;
+  Value* ptrVal;
+  Value* arrayOffsetVal = NULL;
+  
+  // Test if a GetElemPtr instruction is being folded into this mem instrn.
+  // If so, it will be in the left child for Load and GetElemPtr,
+  // and in the right child for Store instructions.
+  // 
+  InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+                            ? vmInstrNode->rightChild()
+                            : vmInstrNode->leftChild()); 
+  
+  if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+      ptrChild->getOpLabel() == GetElemPtrIdx)
+    {
+      // There is a GetElemPtr instruction and there may be a chain of
+      // more than one.  Use the pointer value of the last one in the chain.
+      // Fold the index vectors from the entire chain and from the mem
+      // instruction into one single index vector.
+      // Finally, we never fold for an array instruction so make that NULL.
+      
+      newIdxVec = new vector<ConstPoolVal*>;
+      ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+      
+      newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+      idxVec = newIdxVec;
+      
+      assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+            && "GetElemPtr cannot be folded into array refs in selection");
+    }
+  else
+    {
+      // There is no GetElemPtr instruction.
+      // Use the pointer value and the index vector from the Mem instruction.
+      // If it is an array reference, get the array offset value.
+      // 
+      ptrVal = memInst->getPtrOperand();
+
+      const Type* opType =
+       ((const PointerType*) ptrVal->getType())->getValueType();
+      if (opType->isArrayType())
+       {
+         assert((memInst->getNumOperands()
+                 == (unsigned) 1 + memInst->getFirstOffsetIdx())
+                && "Array refs must be lowered before Instruction Selection");
+         
+         arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+       }
+    }
+  
+  SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+                         *idxVec, target);
+  
+  if (newIdxVec != NULL)
+    delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+                       const InstructionNode* vmInstrNode,
+                       Value* ptrVal,
+                       Value* arrayOffsetVal,
+                       const vector<ConstPoolVal*>& idxVec,
+                       const TargetMachine& target)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Initialize so we default to storing the offset in a register.
+  int64_t smallConstOffset;
+  Value* valueForRegOffset = NULL;
+  MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
+
+  // Check if there is an index vector and if so, if it translates to
+  // a small enough constant to fit in the immediate-offset field.
+  // 
+  if (idxVec.size() > 0)
+    {
+      bool isConstantOffset = false;
+      unsigned offset;
+      
+      const PointerType* ptrType = (PointerType*) ptrVal->getType();
+      
+      if (ptrType->getValueType()->isStructType())
+       {
+         // the offset is always constant for structs
+         isConstantOffset = true;
+         
+         // Compute the offset value using the index vector
+         offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
+       }
+      else
+       {
+         // It must be an array ref.  Check if the offset is a constant,
+         // and that the indexing has been lowered to a single offset.
+         // 
+         assert(ptrType->getValueType()->isArrayType());
+         assert(arrayOffsetVal != NULL
+                && "Expect to be given Value* for array offsets");
+         
+         if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
+           {
+             isConstantOffset = true;  // always constant for structs
+             assert(arrayOffsetVal->getType()->isIntegral());
+             offset = (CPV->getType()->isSigned()
+                       ? ((ConstPoolSInt*)CPV)->getValue()
+                       : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
+           }
+         else
+           {
+             valueForRegOffset = arrayOffsetVal;
+           }
+       }
+      
+      if (isConstantOffset)
+       {
+         // create a virtual register for the constant
+         valueForRegOffset = ConstPoolSInt::get(Type::IntTy, offset);
+       }
+    }
+  else
+    {
+      offsetOpType = MachineOperand::MO_SignExtendedImmed;
+      smallConstOffset = 0;
+    }
+  
+  // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+  // It is the left child in the instruction tree in all cases.
+  Value* leftVal = vmInstrNode->leftChild()->getValue();
+  minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
+  
+  // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+  // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+  //
+  unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+  if (offsetOpType == MachineOperand::MO_VirtualRegister)
+    {
+      assert(valueForRegOffset != NULL);
+      minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); 
+    }
+  else
+    minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+  
+  if (memInst->getOpcode() == Instruction::Store)
+    minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
+  else
+    minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                vmInstrNode->getValue());
+}
+
+
+// Special handling for constant operands:
+// -- if the constant is 0, use the hardwired 0 register, if any;
+// -- if the constant is of float or double type but has an integer value,
+//    use int-to-float conversion instruction instead of generating a load;
+// -- if the constant fits in the IMMEDIATE field, use that field;
+// -- else insert instructions to put the constant into a register, either
+//    directly or by loading explicitly from the constant pool.
+// 
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+                   MachineInstr** mvec,
+                   unsigned numInstr,
+                   TargetMachine& target)
+{
+  static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+  unsigned numNew = 0;
+  Instruction* vmInstr = vmInstrNode->getInstruction();
+  
+  for (unsigned i=0; i < numInstr; i++)
+    {
+      MachineInstr* minstr = mvec[i];
+      const MachineInstrDescriptor& instrDesc =
+       target.getInstrInfo().getDescriptor(minstr->getOpCode());
+      
+      for (unsigned op=0; op < minstr->getNumOperands(); op++)
+       {
+         const MachineOperand& mop = minstr->getOperand(op);
+         
+         // skip the result position (for efficiency below) and any other
+         // positions already marked as not a virtual register
+         if (instrDesc.resultPos == (int) op || 
+             mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
+             mop.getVRegValue() == NULL)
+           {
+             break;
+           }
+         
+         Value* opValue = mop.getVRegValue();
+         
+         if (opValue->isConstant())
+           {
+             unsigned int machineRegNum;
+             int64_t immedValue;
+             MachineOperand::MachineOperandType opType =
+               ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
+                                /*canUseImmed*/ (op == 1),
+                                machineRegNum, immedValue);
+             
+             if (opType == MachineOperand::MO_MachineRegister)
+               minstr->SetMachineOperand(op, machineRegNum);
+             else if (opType == MachineOperand::MO_VirtualRegister)
+               {
+                 // value is constant and must be loaded into a register
+                 TmpInstruction* tmpReg;
+                 MachineInstr* minstr2;
+                 loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue,
+                                                             tmpReg, minstr2);
+                 minstr->SetMachineOperand(op, opType, tmpReg);
+                 if (minstr2 != NULL)
+                   loadConstVec[numNew++] = minstr2;
+               }
+             else
+               minstr->SetMachineOperand(op, opType, immedValue);
+           }
+       }
+    }
+  
+  if (numNew > 0)
+    {
+      // Insert the new instructions *before* the old ones by moving
+      // the old ones over `numNew' positions (last-to-first, of course!).
+      // We do check *after* returning that we did not exceed the vector mvec.
+      for (int i=numInstr-1; i >= 0; i--)
+       mvec[i+numNew] = mvec[i];
+      
+      for (unsigned i=0; i < numNew; i++)
+       mvec[i] = loadConstVec[i];
+    }
+  
+  return (numInstr + numNew);
+}
+
+
+static inline MachineInstr*
+MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
+{
+  MachineInstr* minstr;
+  if (isSigned)
+    {
+      minstr = new MachineInstr(SETSW);
+      minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
+    }
+  else
+    {
+      minstr = new MachineInstr(SETUW);
+      minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
+    }
+  
+  minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
+  
+  return minstr;
+}
+
+
+static MachineInstr*
+MakeLoadConstInstr(Instruction* vmInstr,
+                  Value* val,
+                  TmpInstruction*& tmpReg,
+                  MachineInstr*& getMinstr2)
+{
+  assert(val->isConstant());
+  
+  MachineInstr* minstr;
+  
+  getMinstr2 = NULL;
+  
+  // Create a TmpInstruction to mark the hidden register used for the constant
+  tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
+  vmInstr->getMachineInstrVec().addTempValue(tmpReg);
+  
+  // Use a "set" instruction for known constants that can go in an integer reg.
+  // Use a "set" instruction followed by a int-to-float conversion for known
+  // constants that must go in a floating point reg but have an integer value.
+  // Use a "load" instruction for all other constants, in particular,
+  // floating point constants.
+  // 
+  const Type* valType = val->getType();
+  
+  if (valType->isIntegral() ||
+      valType->isPointerType() ||
+      valType == Type::BoolTy)
+    {
+      bool isValidConstant;
+      int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
+      assert(isValidConstant && "Unrecognized constant");
+      
+      minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg);
+    }
+  else
+    {
+      assert(valType == Type::FloatTy || valType == Type::DoubleTy);
+      double dval = ((ConstPoolFP*) val)->getValue();
+      if (dval == (int64_t) dval)
+       {
+         // The constant actually has an integer value, so use a
+         // [set; int-to-float] sequence instead of a load instruction.
+         // 
+         TmpInstruction* tmpReg2 = NULL;
+         if (dval != 0.0)
+           { // First, create an integer constant of the same value as dval
+             ConstPoolSInt* ival = ConstPoolSInt::get(Type::IntTy,
+                                                      (int64_t) dval);
+             // Create another TmpInstruction for the hidden integer register
+             TmpInstruction* tmpReg2 =
+               new TmpInstruction(Instruction::UserOp1, ival, NULL);
+             vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
+         
+             // Create the `SET' instruction
+             minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2);
+           }
+         
+         // In which variable do we put the second instruction?
+         MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr;
+         
+         // Create the int-to-float instruction
+         instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
+         
+         if (dval == 0.0)
+           instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+         else
+           instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+                                         tmpReg2);
+         
+         instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+                                          tmpReg);
+       }
+      else
+       {
+         // Make a Load instruction, and make `val' both the ptr value *and*
+         // the result value, and set the offset field to 0.  Final code
+         // generation will have to generate the base+offset for the constant.
+         // 
+         int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
+         minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+         minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val);
+         minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+                                      zeroOffset);
+         minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                      tmpReg);
+       }
+    }
+  
+  tmpReg->addMachineInstruction(minstr);
+  
+  assert(minstr);
+  return minstr;
+}
+
+// 
+// Substitute operand `operandNum' of the instruction in node `treeNode'
+// in place the use(s) of that instruction in node `parent'.
+// 
+static void
+ForwardOperand(InstructionNode* treeNode,
+              InstructionNode* parent,
+              int operandNum)
+{
+  Instruction* unusedOp = treeNode->getInstruction();
+  Value* fwdOp = unusedOp->getOperand(operandNum);
+  Instruction* userInstr = parent->getInstruction();
+  MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
+  for (unsigned i=0, N=mvec.size(); i < N; i++)
+    {
+      MachineInstr* minstr = mvec[i];
+      for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
+       {
+         const MachineOperand& mop = minstr->getOperand(i);
+         if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
+             mop.getVRegValue() == unusedOp)
+           {
+             minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
+                                          fwdOp);
+           }
+       }
+    }
+}
+
+
+// This function is currently unused and incomplete but will be 
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+// 
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+  BranchInst* brInstr = (BranchInst*) vmInstr;
+  
+  brPattern.flipCondition = false;
+  brPattern.targetBB     = brInstr->getSuccessor(0);
+  brPattern.extraBranch   = NULL;
+  
+  assert(brInstr->getNumSuccessors() > 1 &&
+        "Unnecessary analysis for unconditional branch");
+  
+  assert(0 && "Fold branches in peephole optimization");
+}
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------ 
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+//   Choose machine instructions for the SPARC according to the
+//   patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------ 
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+                     int ruleForNode,
+                     short* nts,
+                     TargetMachine &target,
+                     MachineInstr** mvec)
+{
+  int numInstr = 1;                    // initialize for common case
+  bool checkCast = false;              // initialize here to use fall-through
+  Value *leftVal, *rightVal;
+  const Type* opType;
+  int nextRule;
+  int forwardOperandNum = -1;
+  BranchPattern brPattern;
+  int64_t s0 = 0;                      // variables holding zero to avoid
+  uint64_t u0 = 0;                     // overloading ambiguities below
+  
+  mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL;        // just for safety
+  
+  switch(ruleForNode) {
+  case 1:      // stmt:   Ret
+  case 2:      // stmt:   RetValue(reg)
+               // NOTE: Prepass of register allocation is responsible
+               //       for moving return value to appropriate register.
+               // Mark the return-address register as a hidden virtual reg.
+    {          
+    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+                                       subtreeRoot->getInstruction(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+    
+    mvec[0] = new MachineInstr(RETURN);
+    mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
+    
+    returnReg->addMachineInstruction(mvec[0]);
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }  
+    
+  case 3:      // stmt:   Store(reg,reg)
+  case 4:      // stmt:   Store(reg,ptrreg)
+    mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 5:      // stmt:   BrUncond
+    mvec[0] = new MachineInstr(BA);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    // delay slot
+    mvec[numInstr++] = new MachineInstr(NOP);
+    break;
+    
+  case 6:      // stmt:   BrCond(boolconst)
+    // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+    // If the constant is ZERO, we can use the branch-on-integer-register
+    // instructions and avoid the SUBcc instruction entirely.
+    // Otherwise this is just the same as case 5, so just fall through.
+    {
+    InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+    assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+    ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+    bool isValidConst;
+    
+    if (constVal->getType()->isIntegral()
+       && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
+       && isValidConst)
+      {
+       // That constant ia a zero after all...
+       // Use the left child of the setCC instruction as the first argument!
+       mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+       mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                     subtreeRoot->leftChild()->leftChild()->getValue());
+       mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+       // delay slot
+       mvec[numInstr++] = new MachineInstr(NOP);
+       
+       // false branch
+       mvec[numInstr++] = new MachineInstr(BA);
+       mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                               (Value*) NULL);
+       mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+       // delay slot
+       mvec[numInstr++] = new MachineInstr(NOP);
+       
+       break;
+      }
+    // ELSE FALL THROUGH
+    }
+    
+  case 7:      // stmt:   BrCond(bool)
+    // bool => boolean was computed with `%b = setcc type reg1 reg2'
+    // Need to check whether the type was a FP, signed int or unsigned int,
+    // and check the branching condition in order to choose the branch to use.
+    // 
+    {
+    bool isFPBranch;
+    mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                 subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    // delay slot
+    mvec[numInstr++] = new MachineInstr(NOP);
+    
+    // false branch
+    mvec[numInstr++] = new MachineInstr(BA);
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                          (Value*) NULL);
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+    
+    // delay slot
+    mvec[numInstr++] = new MachineInstr(NOP);
+    break;
+    }
+    
+  case 8:      // stmt:   BrCond(boolreg)
+    // bool => boolean is stored in an existing register.
+    // Just use the branch-on-integer-register instruction!
+    // 
+    mvec[0] = new MachineInstr(BRNZ);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                 subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    // delay slot
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+
+    // false branch
+    mvec[numInstr++] = new MachineInstr(BA);
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                          (Value*) NULL);
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+    
+    // delay slot
+    mvec[numInstr++] = new MachineInstr(NOP);
+    break;
+    
+  case 9:      // stmt:   Switch(reg)
+    assert(0 && "*** SWITCH instruction is not implemented yet.");
+    numInstr = 0;
+    break;
+    
+  case 10:     // reg:   VRegList(reg, reg)
+    assert(0 && "VRegList should never be the topmost non-chain rule");
+    break;
+    
+  case 21:     // reg:   Not(reg):     Implemented as reg = reg XOR-NOT 0
+    mvec[0] = new MachineInstr(XNOR);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                 subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                subtreeRoot->getValue());
+    break;
+    
+  case 22:     // reg:   ToBoolTy(reg):
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy);
+    numInstr = 0;
+    forwardOperandNum = 0;
+    break;
+    
+  case 23:     // reg:   ToUByteTy(reg)
+  case 25:     // reg:   ToUShortTy(reg)
+  case 27:     // reg:   ToUIntTy(reg)
+  case 29:     // reg:   ToULongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() ||
+          opType->isPointerType() ||
+          opType == Type::BoolTy && "Ignoring cast: illegal for other types");
+    numInstr = 0;
+    forwardOperandNum = 0;
+    break;
+    
+  case 24:     // reg:   ToSByteTy(reg)
+  case 26:     // reg:   ToShortTy(reg)
+  case 28:     // reg:   ToIntTy(reg)
+  case 30:     // reg:   ToLongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    if (opType->isIntegral() || opType == Type::BoolTy)
+      {
+       numInstr = 0;
+       forwardOperandNum = 0;
+      }
+    else
+      {
+       mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+       Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+      }
+    break;
+    
+  case 31:     // reg:   ToFloatTy(reg):
+  case 32:     // reg:   ToDoubleTy(reg):
+    
+    // If this instruction has a parent (a user) in the tree 
+    // and the user is translated as an FsMULd instruction,
+    // then the cast is unnecessary.  So check that first.
+    // In the future, we'll want to do the same for the FdMULq instruction,
+    // so do the check here instead of only for ToFloatTy(reg).
+    // 
+    if (subtreeRoot->parent() != NULL &&
+       ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+      {
+       numInstr = 0;
+       forwardOperandNum = 0;
+      }
+    else
+      {
+       opType = subtreeRoot->leftChild()->getValue()->getType();
+       MachineOpCode opCode = ChooseConvertToFloatInstr(subtreeRoot, opType);
+       if (opCode == INVALID_OPCODE)   // no conversion needed
+         {
+           numInstr = 0;
+           forwardOperandNum = 0;
+         }
+       else
+         {
+           mvec[0] = new MachineInstr(opCode);
+           Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+         }
+      }
+    break;
+    
+  case 19:     // reg:   ToArrayTy(reg):
+  case 20:     // reg:   ToPointerTy(reg):
+    numInstr = 0;
+    forwardOperandNum = 0;
+    break;
+    
+  case 233:    // reg:   Add(reg, Constant)
+    mvec[0] = CreateAddConstInstruction(subtreeRoot);
+    if (mvec[0] != NULL)
+      break;
+    // ELSE FALL THROUGH
+    
+  case 33:     // reg:   Add(reg, reg)
+    mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 234:    // reg:   Sub(reg, Constant)
+    mvec[0] = CreateSubConstInstruction(subtreeRoot);
+    if (mvec[0] != NULL)
+      break;
+    // ELSE FALL THROUGH
+    
+  case 34:     // reg:   Sub(reg, reg)
+    mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 135:    // reg:   Mul(todouble, todouble)
+    checkCast = true;
+    // FALL THROUGH 
+    
+  case 35:     // reg:   Mul(reg, reg)
+    mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+
+  case 335:    // reg:   Mul(todouble, todoubleConst)
+    checkCast = true;
+    // FALL THROUGH 
+   
+  case 235:    // reg:   Mul(reg, Constant)
+    mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]);
+    if (mvec[0] == NULL)
+      {
+       mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+       Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+      }
+    else
+      if (mvec[1] != NULL)
+       ++numInstr;
+    break;
+    
+  case 236:    // reg:   Div(reg, Constant)
+    mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]);
+    if (mvec[0] != NULL)
+      {
+       if (mvec[1] != NULL)
+         ++numInstr;
+      }
+    else
+    // ELSE FALL THROUGH
+    
+  case 36:     // reg:   Div(reg, reg)
+    mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case  37:    // reg:   Rem(reg, reg)
+  case 237:    // reg:   Rem(reg, Constant)
+    assert(0 && "REM instruction unimplemented for the SPARC.");
+    break;
+    
+  case  38:    // reg:   And(reg, reg)
+  case 238:    // reg:   And(reg, Constant)
+    mvec[0] = new MachineInstr(AND);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 138:    // reg:   And(reg, not)
+    mvec[0] = new MachineInstr(ANDN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case  39:    // reg:   Or(reg, reg)
+  case 239:    // reg:   Or(reg, Constant)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 139:    // reg:   Or(reg, not)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case  40:    // reg:   Xor(reg, reg)
+  case 240:    // reg:   Xor(reg, Constant)
+    mvec[0] = new MachineInstr(XOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 140:    // reg:   Xor(reg, not)
+    mvec[0] = new MachineInstr(XNOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 41:     // boolconst:   SetCC(reg, Constant)
+    // Check if this is an integer comparison, and
+    // there is a parent, and the parent decided to use
+    // a branch-on-integer-register instead of branch-on-condition-code.
+    // If so, the SUBcc instruction is not required.
+    // (However, we must still check for constants to be loaded from
+    // the constant pool so that such a load can be associated with
+    // this instruction.)
+    // 
+    // Otherwise this is just the same as case 42, so just fall through.
+    // 
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+       subtreeRoot->parent() != NULL)
+      {
+       InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+       assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+       const vector<MachineInstr*>&
+         minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+       MachineOpCode parentOpCode;
+       if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
+           (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+           parentOpCode <= BRGEZ)
+         {
+           numInstr = 0;               // don't forward the operand!
+           break;
+         }
+      }
+    // ELSE FALL THROUGH
+    
+  case 42:     // bool:   SetCC(reg, reg):
+  {
+    // If result of the SetCC is only used for a branch, we can
+    // discard the result. otherwise, it must go into an integer register.
+    // Note that the user may or may not be in the same tree, so we have
+    // to follow SSA def-use edges here, not BURG tree edges.
+    // 
+    Instruction* result = subtreeRoot->getInstruction();
+    Value* firstUse = (Value*) * result->use_begin();
+    bool discardResult =
+      (result->use_size() == 1
+       && firstUse->isInstruction()
+       && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
+    
+    bool mustClearReg;
+    int valueToMove;
+    MachineOpCode movOpCode;
+    
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() ||
+       subtreeRoot->leftChild()->getValue()->getType()->isPointerType())
+      {
+       // integer condition: destination should be %g0 or integer register
+       // if result must be saved but condition is not SetEQ then we need
+       // a separate instruction to compute the bool result, so discard
+       // result of SUBcc instruction anyway.
+       // 
+       mvec[0] = new MachineInstr(SUBcc);
+       Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
+       
+       // mark the 4th operand as being a CC register, and a "result"
+       mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
+                                     subtreeRoot->getValue(), /*def*/ true);
+       
+       if (!discardResult) 
+         { // recompute bool if needed, using the integer condition codes
+           if (result->getOpcode() == Instruction::SetNE)
+             discardResult = true;
+           else
+             movOpCode =
+               ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
+         }
+      }
+    else
+      {
+       // FP condition: dest of FCMP should be some FCCn register
+       mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+       mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                     subtreeRoot->getValue());
+       mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+                                     subtreeRoot->leftChild()->getValue());
+       mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                     subtreeRoot->rightChild()->getValue());
+       
+       if (!discardResult)
+         {// recompute bool using the FP condition codes
+           mustClearReg = true;
+           valueToMove = 1;
+           movOpCode = ChooseMovFpccInstruction(subtreeRoot);
+         }
+      }
+    
+    if (!discardResult)
+      {
+       if (mustClearReg)
+         {// Unconditionally set register to 0
+          int n = numInstr++;
+          mvec[n] = new MachineInstr(SETHI);
+          mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
+          mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+                                        subtreeRoot->getValue());
+         }
+       
+       // Now conditionally move `valueToMove' (0 or 1) into the register
+       int n = numInstr++;
+       mvec[n] = new MachineInstr(movOpCode);
+       mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                     subtreeRoot->getValue());
+       mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+                                     valueToMove);
+       mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                     subtreeRoot->getValue());
+      }
+    break;
+  }    
+  
+  case 43:     // boolreg: VReg
+  case 44:     // boolreg: Constant
+    numInstr = 0;
+    break;
+
+  case 51:     // reg:   Load(reg)
+  case 52:     // reg:   Load(ptrreg)
+  case 53:     // reg:   LoadIdx(reg,reg)
+  case 54:     // reg:   LoadIdx(ptrreg,reg)
+    mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 55:     // reg:   GetElemPtr(reg)
+  case 56:     // reg:   GetElemPtrIdx(reg,reg)
+    if (subtreeRoot->parent() != NULL)
+      {
+       // Check if the parent was an array access.
+       // If so, we still need to generate this instruction.
+       MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+       const PointerType* ptrType =
+         (const PointerType*) memInst->getPtrOperand()->getType();
+       if (! ptrType->getValueType()->isArrayType())
+         {// we don't need a separate instr
+           numInstr = 0;               // don't forward operand!
+           break;
+         }
+      }
+    // else in all other cases we need to a separate ADD instruction
+    mvec[0] = new MachineInstr(ADD);
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 57:     // reg:   Alloca: Implement as 2 instructions:
+               //      sub %sp, tmp -> %sp
+    {          //      add %sp, 0   -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType());
+    int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
+    assert(tsize != 0 && "Just to check when this can happen");
+    // if (tsize == 0)
+    //   {
+       // numInstr = 0;
+       // break;
+    // }
+    //else go on to create the instructions needed...
+    
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+    
+    // Instruction 1: sub %sp, tsize -> %sp
+    // tsize is always constant, but it may have to be put into a
+    // register if it doesn't fit in the immediate field.
+    // 
+    mvec[0] = new MachineInstr(SUB);
+    mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+    mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 2: add %sp, 0 -> result
+    numInstr++;
+    mvec[1] = new MachineInstr(ADD);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+    break;
+    }
+  
+  case 58:     // reg:   Alloca(reg): Implement as 3 instructions:
+               //      mul num, typeSz -> tmp
+               //      sub %sp, tmp    -> %sp
+    {          //      add %sp, 0      -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType() &&
+          instrType->getValueType()->isArrayType());
+    const Type* eltType =
+      ((ArrayType*) instrType->getValueType())->getElementType();
+    int tsize = (int) target.findOptimalStorageSize(eltType);
+    
+    assert(tsize != 0 && "Just to check when this can happen");
+    // if (tsize == 0)
+      // {
+       // numInstr = 0;
+       // break;
+      // }
+    //else go on to create the instructions needed...
+
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = ConstPoolSInt::get(Type::IntTy, tsize);
+    
+    // Create a temporary value to hold `tmp'
+    Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+                                         subtreeRoot->leftChild()->getValue(),
+                                         NULL /*could insert tsize here*/);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+    // Instruction 1: mul numElements, typeSize -> tmp
+    mvec[0] = new MachineInstr(MULX);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                               subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
+
+    tmpInstr->addMachineInstruction(mvec[0]);
+    
+    // Instruction 2: sub %sp, tmp -> %sp
+    numInstr++;
+    mvec[1] = new MachineInstr(SUB);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
+    mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 3: add %sp, 0 -> result
+    numInstr++;
+    mvec[2] = new MachineInstr(ADD);
+    mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+    break;
+    }
+    
+  case 61:     // reg:   Call
+               // Generate a call-indirect (i.e., JMPL) for now to expose
+               // the potential need for registers.  If an absolute address
+               // is available, replace this with a CALL instruction.
+               // Mark both the indirection register and the return-address
+    {          // register as hidden virtual registers.
+      
+    Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
+       ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+    Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
+                                            subtreeRoot->getValue(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
+    
+    mvec[0] = new MachineInstr(JMPL);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+                                 (int64_t) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
+
+    // NOTE: jmpAddrReg will be loaded by a different instruction generated
+    //      by the final code generator, so we just mark the CALL instruction
+    //      as computing that value.
+    //      The retAddrReg is actually computed by the CALL instruction.
+    //
+    jmpAddrReg->addMachineInstruction(mvec[0]);
+    retAddrReg->addMachineInstruction(mvec[0]);
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }
+    
+  case 62:     // reg:   Shl(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 63:     // reg:   Shr(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType->isSigned()
+                               ? ((opType == Type::LongTy)? SRAX : SRA)
+                               : ((opType == Type::LongTy)? SRLX : SRL)));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+    break;
+    
+  case 64:     // reg:   Phi(reg,reg)
+  {            // This instruction has variable #operands, so resultPos is 0.
+    Instruction* phi = subtreeRoot->getInstruction();
+    mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+                                 subtreeRoot->getValue());
+    for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
+      mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
+                                     phi->getOperand(i));
+    break;
+  }  
+  case 71:     // reg:     VReg
+  case 72:     // reg:     Constant
+    numInstr = 0;                      // don't forward the value
+    break;
+
+  case 111:    // stmt:  reg
+  case 112:    // stmt:  boolconst
+  case 113:    // stmt:  bool
+  case 121:
+  case 122:
+  case 123:
+  case 124:
+  case 125:
+  case 126:
+  case 127:
+  case 128:
+  case 129:
+  case 130:
+  case 131:
+  case 132:
+  case 153:
+  case 155:
+    // 
+    // These are all chain rules, which have a single nonterminal on the RHS.
+    // Get the rule that matches the RHS non-terminal and use that instead.
+    // 
+    assert(ThisIsAChainRule(ruleForNode));
+    assert(nts[0] && ! nts[1]
+          && "A chain rule should have only one RHS non-terminal!");
+    nextRule = burm_rule(subtreeRoot->state, nts[0]);
+    nts = burm_nts[nextRule];
+    numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
+    break;
+    
+  default:
+    assert(0 && "Unrecognized BURG rule");
+    numInstr = 0;
+    break;
+  }
+  
+  if (forwardOperandNum >= 0)
+    { // We did not generate a machine instruction but need to use operand.
+      // If user is in the same tree, replace Value in its machine operand.
+      // If not, insert a copy instruction which should get coalesced away
+      // by register allocation.
+      if (subtreeRoot->parent() != NULL)
+       ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
+                      forwardOperandNum);
+      else
+       {
+         int n = numInstr++;
+         mvec[n] = new MachineInstr(ADD);
+         mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+               subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
+         mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+         mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+                                       subtreeRoot->getInstruction());
+       }
+    }
+  
+  if (! ThisIsAChainRule(ruleForNode))
+    numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
+  
+  return numInstr;
+}
+
+
diff --git a/lib/Target/SparcV9/SparcV9RegInfo.cpp b/lib/Target/SparcV9/SparcV9RegInfo.cpp
new file mode 100644 (file)
index 0000000..c3a5220
--- /dev/null
@@ -0,0 +1,301 @@
+#include "SparcInternals.h"
+#include "llvm/CodeGen/IGNode.h"
+
+
+//-----------------------------------------------------------------------------
+// Int Register Class
+//-----------------------------------------------------------------------------
+
+void SparcIntRegClass::colorIGNode(IGNode * Node, bool IsColorUsedArr[]) const 
+{
+
+  /* Algorithm:
+  Record the color of all neighbors.
+
+  If there is no call interf, try to allocate volatile, then non volatile
+  If there is call interf, try to allocate non-volatile. If that fails
+     try to allocate a volatile and insert save across calls
+  If both above fail, spill.
+
+  */
+
+  unsigned NumNeighbors =  Node->getNumOfNeighbors();   // total # of neighbors
+
+  for(unsigned n=0; n < NumNeighbors; n++) {            // for each neigh 
+    IGNode *NeighIGNode = Node->getAdjIGNode(n);
+    if( NeighIGNode->hasColor() ) {                     // if neigh has a color
+      IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+    }
+  }
+
+
+
+  unsigned SearchStart;                 // start pos of color in pref-order
+  bool ColorFound= false;               // have we found a color yet?
+
+  //if this Node is between calls
+  if( Node->getNumOfCallInterferences() == 0) { 
+
+    // start with volatiles (we can  allocate volatiles safely)
+    SearchStart = SparcIntRegOrder::StartOfAllRegs;  
+  }
+  else {           
+    // start with non volatiles (no non-volatiles)
+    SearchStart =  SparcIntRegOrder::StartOfNonVolatileRegs;  
+  }
+
+  unsigned c=0;                         // color
+  // find first unused color
+  for( c=SearchStart; c < SparcIntRegOrder::NumOfAvailRegs; c++) { 
+    if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+  }
+
+  if( ColorFound) 
+    Node->setColor(c);                  // first color found in preffered order
+
+  // if color is not found because of call interference
+  // try even finding a volatile color and insert save across calls
+  else if( Node->getNumOfCallInterferences() ) 
+  { 
+    // start from 0 - try to find even a volatile this time
+    SearchStart = SparcIntRegOrder::StartOfAllRegs;  
+
+    // find first unused volatile color
+    for(c=SearchStart; c < SparcIntRegOrder::StartOfNonVolatileRegs; c++) { 
+      if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+    }
+
+    if( ColorFound) { 
+      Node->setColor(c);  
+      // since LR span across calls, must save across calls 
+      Node->markForSaveAcrossCalls();       
+    }
+
+  }
+
+  // If we couldn't find a color regardless of call interference - i.e., we
+  // don't have either a volatile or non-volatile color left
+  if( !ColorFound )  
+    Node->markForSpill();               // no color found - must spill
+
+
+  if( DEBUG_RA)                  
+    UltraSparcRegInfo::printReg( Node->getParentLR() );
+
+}
+
+
+
+
+
+
+//-----------------------------------------------------------------------------
+// Float Register Class
+//-----------------------------------------------------------------------------
+
+// find the first available color in the range [Start,End] depending on the
+// type of the Node (i.e., float/double)
+
+int SparcFloatRegClass::findFloatColor(const IGNode *const Node, unsigned Start,
+                                      unsigned End, 
+                                      bool IsColorUsedArr[] ) const
+{
+
+  bool ColorFound = false;
+  unsigned c;
+
+  if( Node->getTypeID() == Type::DoubleTyID ) { 
+      
+    // find first unused color for a double 
+    for( c=Start; c < End ;c+= 2){
+      if( ! IsColorUsedArr[ c ] &&  ! IsColorUsedArr[ c+1 ]) 
+       { ColorFound=true;  break; }
+    }
+    
+  } else {
+    
+    // find first unused color for a single
+    for( c=Start; c < End; c++) { 
+      if( ! IsColorUsedArr[ c ] ) { ColorFound=true;  break; }
+    }
+  }
+  
+  if( ColorFound ) return c;
+  else return -1;
+}
+
+
+
+
+
+void SparcFloatRegClass::colorIGNode(IGNode * Node,bool IsColorUsedArr[]) const
+{
+
+  /* Algorithm:
+
+     If the LR is a double try to allocate f32 - f63
+     If the above fails or LR is single precision
+        If the LR does not interfere with a call
+          start allocating from f0
+       Else start allocating from f6
+     If a color is still not found because LR interferes with a call
+        Search in f0 - f6. If found mark for spill across calls.
+     If a color is still not fond, mark for spilling
+  */
+
+
+  unsigned NumNeighbors =  Node->getNumOfNeighbors();   // total # of neighbors
+
+  for(unsigned n=0; n < NumNeighbors; n++) {            // for each neigh 
+    IGNode *NeighIGNode = Node->getAdjIGNode(n);
+    if( NeighIGNode->hasColor() ) {                     // if neigh has a color
+      IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+      if( NeighIGNode->getTypeID() == Type::DoubleTyID )
+       IsColorUsedArr[ (NeighIGNode->getColor()) + 1 ] = true;  
+    }
+  }
+
+  int ColorFound = -1;               // have we found a color yet?
+  unsigned NumOfCallInterf = Node->getNumOfCallInterferences();
+
+  // if value is a double - search the double only reigon (f32 - f63)
+  if( Node->getTypeID() == Type::DoubleTyID )       
+    ColorFound = findFloatColor( Node, 32, 64, IsColorUsedArr );
+    
+
+  if( ColorFound >= 0 ) {
+    Node->setColor(ColorFound);                
+    if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+    return;
+  }
+
+  else { // the above fails or LR is single precision
+
+    unsigned SearchStart;                 // start pos of color in pref-order
+
+    //if this Node is between calls (i.e., no call interferences )
+    if( ! NumOfCallInterf ) {
+      // start with volatiles (we can  allocate volatiles safely)
+      SearchStart = SparcFloatRegOrder::StartOfAllRegs;  
+    }
+    else {           
+      // start with non volatiles (no non-volatiles)
+      SearchStart =  SparcFloatRegOrder::StartOfNonVolatileRegs;  
+    }
+    
+    ColorFound = findFloatColor( Node, SearchStart, 32, IsColorUsedArr );
+
+  }
+
+  if( ColorFound >= 0 ) {
+    Node->setColor(ColorFound);                  
+    if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+    return;
+  }
+
+  else if( NumOfCallInterf ) { 
+
+    // We are here because there is a call interference and no non-volatile
+    // color could be found.
+    // Now try to allocate even a volatile color
+
+    ColorFound = findFloatColor( Node, SparcFloatRegOrder::StartOfAllRegs, 
+                               SparcFloatRegOrder::StartOfNonVolatileRegs,
+                               IsColorUsedArr);
+  }
+
+  if( ColorFound >= 0 ) {
+    Node->setColor(ColorFound);         // first color found in preffered order
+    Node->markForSaveAcrossCalls();  
+    if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+    return;
+  }
+
+  else {
+    Node->markForSpill();               // no color found - must spill
+    if( DEBUG_RA) UltraSparcRegInfo::printReg( Node->getParentLR() );
+  }
+  
+
+}
+
+
+
+
+
+
+#if 0
+
+//-----------------------------------------------------------------------------
+// Float Register Class
+//-----------------------------------------------------------------------------
+
+void SparcFloatRegClass::colorIGNode(IGNode * Node,bool IsColorUsedArr[]) const
+{
+
+  /* Algorithm:
+  Record the color of all neighbors.
+
+  Single precision can use f0 - f31
+  Double precision can use f0 - f63
+
+  if LR is a double, try to allocate f32 - f63.
+  if the above attempt fails, or Value is single presion, try to allcoate 
+    f0 - f31.
+
+      */
+
+  unsigned NumNeighbors =  Node->getNumOfNeighbors();   // total # of neighbors
+
+  for(unsigned n=0; n < NumNeighbors; n++) {            // for each neigh 
+    IGNode *NeighIGNode = Node->getAdjIGNode(n);
+    if( NeighIGNode->hasColor() ) {                     // if neigh has a color
+      IsColorUsedArr[ NeighIGNode->getColor() ] = true; // record that color
+      if( NeighIGNode->getTypeID() == Type::DoubleTyID )
+       IsColorUsedArr[ (NeighIGNode->getColor()) + 1 ] = true;  
+    }
+  }
+
+
+  unsigned SearchStart;                 // start pos of color in pref-order
+  bool ColorFound= false;               // have we found a color yet?
+  unsigned c;    
+
+
+  if( Node->getTypeID() == Type::DoubleTyID ) {        // if value is a double
+
+    // search the double only reigon (f32 - f63)
+     for( c=32; c < 64; c+= 2) { 
+      if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+    }
+
+     // search f0 - f31 region
+    if( ! ColorFound )  {                // if color not found
+     for( c=0; c < 32; c+= 2) { 
+      if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+     }
+    }
+
+  }
+
+  else {  // value is Single
+
+    for( c=0; c < 32; c++) { 
+      if( ! IsColorUsedArr[ c ] ) { ColorFound = true; break; }
+    }
+  }
+  
+
+  if( ColorFound) 
+    Node->setColor(c);                  // first color found in preferred order
+  else
+    Node->markForSpill();               // no color found - must spill
+
+
+  if( DEBUG_RA)                  
+    UltraSparcRegInfo::printReg( Node->getParentLR() );
+
+}
+
+#endif
diff --git a/lib/Target/SparcV9/SparcV9TargetMachine.cpp b/lib/Target/SparcV9/SparcV9TargetMachine.cpp
new file mode 100644 (file)
index 0000000..80de2e7
--- /dev/null
@@ -0,0 +1,123 @@
+//***************************************************************************
+// File:
+//     Sparc.cpp
+// 
+// Purpose:
+//     
+// History:
+//     7/15/01  -  Vikram Adve  -  Created
+//**************************************************************************/
+
+#include "SparcInternals.h"
+#include "llvm/Method.h"
+#include "llvm/CodeGen/InstrScheduling.h"
+#include "llvm/CodeGen/InstrSelection.h"
+
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcInstrInfo 
+// 
+// Purpose:
+//   Information about individual instructions.
+//   Most information is stored in the SparcMachineInstrDesc array above.
+//   Other information is computed on demand, and most such functions
+//   default to member functions in base class MachineInstrInfo. 
+//---------------------------------------------------------------------------
+
+/*ctor*/
+UltraSparcInstrInfo::UltraSparcInstrInfo()
+  : MachineInstrInfo(SparcMachineInstrDesc,
+                    /*descSize = */ NUM_TOTAL_OPCODES,
+                    /*numRealOpCodes = */ NUM_REAL_OPCODES)
+{
+}
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcSchedInfo 
+// 
+// Purpose:
+//   Scheduling information for the UltraSPARC.
+//   Primarily just initializes machine-dependent parameters in
+//   class MachineSchedInfo.
+//---------------------------------------------------------------------------
+
+/*ctor*/
+UltraSparcSchedInfo::UltraSparcSchedInfo(const MachineInstrInfo* mii)
+  : MachineSchedInfo((unsigned int) SPARC_NUM_SCHED_CLASSES,
+                    mii,
+                    SparcRUsageDesc,
+                    SparcInstrUsageDeltas,
+                    SparcInstrIssueDeltas,
+                    sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta),
+                    sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta))
+{
+  maxNumIssueTotal = 4;
+  longestIssueConflict = 0;            // computed from issuesGaps[]
+  
+  branchMispredictPenalty = 4;         // 4 for SPARC IIi
+  branchTargetUnknownPenalty = 2;      // 2 for SPARC IIi
+  l1DCacheMissPenalty = 8;             // 7 or 9 for SPARC IIi
+  l1ICacheMissPenalty = 8;             // ? for SPARC IIi
+  
+  inOrderLoads = true;                 // true for SPARC IIi
+  inOrderIssue = true;                 // true for SPARC IIi
+  inOrderExec  = false;                        // false for most architectures
+  inOrderRetire= true;                 // true for most architectures
+  
+  // must be called after above parameters are initialized.
+  this->initializeResources();
+}
+
+void
+UltraSparcSchedInfo::initializeResources()
+{
+  // Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps
+  MachineSchedInfo::initializeResources();
+  
+  // Machine-dependent fixups go here.  None for now.
+}
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcMachine 
+// 
+// Purpose:
+//   Primary interface to machine description for the UltraSPARC.
+//   Primarily just initializes machine-dependent parameters in
+//   class TargetMachine, and creates machine-dependent subclasses
+//   for classes such as MachineInstrInfo. 
+// 
+//---------------------------------------------------------------------------
+
+UltraSparc::UltraSparc() : TargetMachine("UltraSparc-Native") {
+  machineInstrInfo = new UltraSparcInstrInfo();
+  machineSchedInfo = new UltraSparcSchedInfo(machineInstrInfo); 
+  
+  optSizeForSubWordData = 4;
+  minMemOpWordSize = 8; 
+  maxAtomicMemOpWordSize = 8;
+  zeroRegNum = 0;                      // %g0 always gives 0 on Sparc
+}
+
+UltraSparc::~UltraSparc() {
+  delete (UltraSparcInstrInfo*) machineInstrInfo;
+  delete (UltraSparcSchedInfo*) machineSchedInfo;
+}
+
+
+bool UltraSparc::compileMethod(Method *M) {
+  if (SelectInstructionsForMethod(M, *this)) {
+    cerr << "Instruction selection failed for method " << M->getName()
+       << "\n\n";
+    return true;
+  }
+  
+  if (ScheduleInstructionsWithSSA(M, *this)) {
+    cerr << "Instruction scheduling before allocation failed for method "
+       << M->getName() << "\n\n";
+    return true;
+  }
+  return false;
+}