}
private:
+ typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
/// Kinds of comparisons in the compare instructions.
struct Comparison {
/// defined. If the instructions are out of order, try to reorder them.
bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
- /// \brief Get the instruction that loads an immediate value into \p R,
- /// or 0 if such an instruction does not exist.
- MachineInstr *defWithImmediate(unsigned R);
+ /// \brief Return true if MO and MI pair is visited only once. If visited
+ /// more than once, this indicates there is recursion. In such a case,
+ /// return false.
+ bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the Phi may generate a value that may underflow,
+ /// or may wrap.
+ bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the induction variable may underflow an unsigned
+ /// value in the first iteration.
+ bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
+ const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Check if the given operand has a compile-time known constant
+ /// value. Return true if yes, and false otherwise. When returning true, set
+ /// Val to the corresponding constant value.
+ bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
+
+ /// \brief Check if the operand has a compile-time known constant value.
+ bool isImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ return checkForImmediate(MO, V);
+ }
- /// \brief Get the immediate value referenced to by \p MO, either for
- /// immediate operands, or for register operands, where the register
- /// was defined with an immediate value.
- int64_t getImmediate(MachineOperand &MO);
+ /// \brief Return the immediate for the specified operand.
+ int64_t getImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ if (!checkForImmediate(MO, V))
+ llvm_unreachable("Invalid operand");
+ return V;
+ }
/// \brief Reset the given machine operand to now refer to a new immediate
/// value. Assumes that the operand was already referencing an immediate
unsigned PhiOpReg = Phi->getOperand(i).getReg();
MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
unsigned UpdOpc = DI->getOpcode();
- bool isAdd = (UpdOpc == Hexagon::A2_addi);
+ bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
if (isAdd) {
- // If the register operand to the add is the PHI we're
- // looking at, this meets the induction pattern.
+ // If the register operand to the add is the PHI we're looking at, this
+ // meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
- if (MRI->getVRegDef(IndReg) == Phi) {
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
- int64_t V = DI->getOperand(2).getImm();
IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
End = &EndValInstr->getOperand(1);
}
- assert (Start->isReg() || Start->isImm());
- assert (End->isReg() || End->isImm());
+ if (!Start->isReg() && !Start->isImm())
+ return nullptr;
+ if (!End->isReg() && !End->isImm())
+ return nullptr;
bool CmpLess = Cmp & Comparison::L;
bool CmpGreater = Cmp & Comparison::G;
// Loop going while iv is "less" with the iv value going down. Must wrap.
return nullptr;
- // If loop executes while iv is "greater" with the iv value going up, then
- // the iv must wrap.
if (CmpGreater && IVBump > 0)
// Loop going while iv is "greater" with the iv value going up. Must wrap.
return nullptr;
+ // Phis that may feed into the loop.
+ LoopFeederMap LoopFeederPhi;
+
+ // Check if the inital value may be zero and can be decremented in the first
+ // iteration. If the value is zero, the endloop instruction will not decrement
+ // the loop counter, so we shoudn't generate a hardware loop in this case.
+ if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
+ LoopFeederPhi))
+ return nullptr;
+
if (Start->isImm() && End->isImm()) {
// Both, start and end are immediates.
int64_t StartV = Start->getImm();
if (CmpHasEqual)
Dist = Dist > 0 ? Dist+1 : Dist-1;
- // assert (CmpLess => Dist > 0);
- assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
- // assert (CmpGreater => Dist < 0);
- assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
+ // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
+ // CmpGreater should imply Dist < 0. These conditions could actually
+ // fail, for example, in unreachable code (which may still appear to be
+ // reachable in the CFG).
+ if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
+ return nullptr;
// "Normalized" distance, i.e. with the bump set to +-1.
- int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump
- : (-Dist + (-IVBump-1)) / (-IVBump);
+ int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
+ : (-Dist + (-IVBump - 1)) / (-IVBump);
assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
uint64_t Count = Dist1;
MachineOperand &Use = *J;
MachineInstr *UseMI = Use.getParent();
- // If the phi node has a user that is not MI, bail...
+ // If the phi node has a user that is not MI, bail.
if (MI != UseMI)
return false;
}
return true;
}
-
bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
MachineInstr *CmpI) {
assert (BumpI != CmpI && "Bump and compare in the same instruction?");
return FoundBump;
}
+/// This function is required to break recursion. Visiting phis in a loop may
+/// result in recursion during compilation. We break the recursion by making
+/// sure that we visit a MachineOperand and its definition in a
+/// MachineInstruction only once. If we attempt to visit more than once, then
+/// there is recursion, and will return false.
+bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
+ MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const {
+ if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
+ const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
+ // Ignore all BBs that form Loop.
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ if (A == MBB)
+ return false;
+ }
+ MachineInstr *Def = MRI->getVRegDef(MO->getReg());
+ LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
+ return true;
+ } else
+ // Already visited node.
+ return false;
+}
+
+/// Return true if a Phi may generate a value that can underflow.
+/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
+bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
+ MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
+ MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
+ assert(Phi->isPHI() && "Expecting a Phi.");
+ // Walk through each Phi, and its used operands. Make sure that
+ // if there is recursion in Phi, we won't generate hardware loops.
+ for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
+ if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
+ if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
+ Phi->getParent(), L, LoopFeederPhi))
+ return true;
+ return false;
+}
+
+/// Return true if the induction variable can underflow in the first iteration.
+/// An example, is an initial unsigned value that is 0 and is decrement in the
+/// first itertion of a do-while loop. In this case, we cannot generate a
+/// hardware loop because the endloop instruction does not decrement the loop
+/// counter if it is <= 1. We only need to perform this analysis if the
+/// initial value is a register.
+///
+/// This function assumes the initial value may underfow unless proven
+/// otherwise. If the type is signed, then we don't care because signed
+/// underflow is undefined. We attempt to prove the initial value is not
+/// zero by perfoming a crude analysis of the loop counter. This function
+/// checks if the initial value is used in any comparison prior to the loop
+/// and, if so, assumes the comparison is a range check. This is inexact,
+/// but will catch the simple cases.
+bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
+ const MachineOperand *InitVal, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const {
+ // Only check register values since they are unknown.
+ if (!InitVal->isReg())
+ return false;
+
+ if (!EndVal->isImm())
+ return false;
+
+ // A register value that is assigned an immediate is a known value, and it
+ // won't underflow in the first iteration.
+ int64_t Imm;
+ if (checkForImmediate(*InitVal, Imm))
+ return (EndVal->getImm() == Imm);
+
+ unsigned Reg = InitVal->getReg();
+
+ // We don't know the value of a physical register.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return true;
+
+ MachineInstr *Def = MRI->getVRegDef(Reg);
+ if (!Def)
+ return true;
+
+ // If the initial value is a Phi or copy and the operands may not underflow,
+ // then the definition cannot be underflow either.
+ if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+ if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
+ EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+
+ // Iterate over the uses of the initial value. If the initial value is used
+ // in a compare, then we assume this is a range check that ensures the loop
+ // doesn't underflow. This is not an exact test and should be improved.
+ for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
+ E = MRI->use_instr_nodbg_end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpMask = 0, CmpValue = 0;
+
+ if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
+ continue;
+
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 2> Cond;
+ if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
+ continue;
+
+ Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
+ if (Cmp == 0)
+ continue;
+ if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
+ Cmp = Comparison::getNegatedComparison(Cmp);
+ if (CmpReg2 != 0 && CmpReg2 == Reg)
+ Cmp = Comparison::getSwappedComparison(Cmp);
+
+ // Signed underflow is undefined.
+ if (Comparison::isSigned(Cmp))
+ return false;
+
+ // Check if there is a comparison of the inital value. If the initial value
+ // is greater than or not equal to another value, then assume this is a
+ // range check.
+ if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
+ return false;
+ }
+
+ // OK - this is a hack that needs to be improved. We really need to analyze
+ // the instructions performed on the initial value. This works on the simplest
+ // cases only.
+ if (!Def->isCopy() && !Def->isPHI())
+ return false;
+
+ return true;
+}
+
+bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
+ int64_t &Val) const {
+ if (MO.isImm()) {
+ Val = MO.getImm();
+ return true;
+ }
+ if (!MO.isReg())
+ return false;
+
+ // MO is a register. Check whether it is defined as an immediate value,
+ // and if so, get the value of it in TV. That value will then need to be
+ // processed to handle potential subregisters in MO.
+ int64_t TV;
-MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ return false;
MachineInstr *DI = MRI->getVRegDef(R);
unsigned DOpc = DI->getOpcode();
switch (DOpc) {
+ case TargetOpcode::COPY:
case Hexagon::A2_tfrsi:
case Hexagon::A2_tfrpi:
case Hexagon::CONST32_Int_Real:
- case Hexagon::CONST64_Int_Real:
- return DI;
- }
- return nullptr;
-}
+ case Hexagon::CONST64_Int_Real: {
+ // Call recursively to avoid an extra check whether operand(1) is
+ // indeed an immediate (it could be a global address, for example),
+ // plus we can handle COPY at the same time.
+ if (!checkForImmediate(DI->getOperand(1), TV))
+ return false;
+ break;
+ }
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineir:
+ case Hexagon::A4_combineii:
+ case Hexagon::A4_combineri:
+ case Hexagon::A2_combinew: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S2 = DI->getOperand(2);
+ int64_t V1, V2;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
+ return false;
+ TV = V2 | (V1 << 32);
+ break;
+ }
+ case TargetOpcode::REG_SEQUENCE: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S3 = DI->getOperand(3);
+ int64_t V1, V3;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
+ return false;
+ unsigned Sub2 = DI->getOperand(2).getImm();
+ unsigned Sub4 = DI->getOperand(4).getImm();
+ if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
+ TV = V1 | (V3 << 32);
+ else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
+ TV = V3 | (V1 << 32);
+ else
+ llvm_unreachable("Unexpected form of REG_SEQUENCE");
+ break;
+ }
+ default:
+ return false;
+ }
-int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
- if (MO.isImm())
- return MO.getImm();
- assert(MO.isReg());
- unsigned R = MO.getReg();
- MachineInstr *DI = defWithImmediate(R);
- assert(DI && "Need an immediate operand");
- // All currently supported "define-with-immediate" instructions have the
- // actual immediate value in the operand(1).
- int64_t v = DI->getOperand(1).getImm();
- return v;
+ // By now, we should have successfuly obtained the immediate value defining
+ // the register referenced in MO. Handle a potential use of a subregister.
+ switch (MO.getSubReg()) {
+ case Hexagon::subreg_loreg:
+ Val = TV & 0xFFFFFFFFULL;
+ break;
+ case Hexagon::subreg_hireg:
+ Val = (TV >> 32) & 0xFFFFFFFFULL;
+ break;
+ default:
+ Val = TV;
+ break;
+ }
+ return true;
}
-
void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
if (MO.isImm()) {
MO.setImm(Val);
unsigned NewR = MRI->createVirtualRegister(RC);
MachineBasicBlock &B = *DI->getParent();
DebugLoc DL = DI->getDebugLoc();
- BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
- .addImm(Val);
+ BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
MO.setReg(NewR);
}
+static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
+ // These two instructions are not extendable.
+ if (CmpOpc == Hexagon::A4_cmpbeqi)
+ return isUInt<8>(Imm);
+ if (CmpOpc == Hexagon::A4_cmpbgti)
+ return isInt<8>(Imm);
+ // The rest of the comparison-with-immediate instructions are extendable.
+ return true;
+}
bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
MachineBasicBlock *Header = L->getHeader();
// If the register operand to the add/sub is the PHI we are looking
// at, this meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
- if (MRI->getVRegDef(IndReg) == Phi) {
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
- int64_t V = DI->getOperand(2).getImm();
IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
if (MO.isImplicit())
continue;
if (MO.isUse()) {
- unsigned R = MO.getReg();
- if (!defWithImmediate(R)) {
+ if (!isImmediate(MO)) {
CmpRegs.insert(MO.getReg());
continue;
}
if (!CmpImmOp)
return false;
+ // If the register is being compared against an immediate, try changing
+ // the compare instruction to use induction register and adjust the
+ // immediate operand.
int64_t CmpImm = getImmediate(*CmpImmOp);
int64_t V = RB.second;
- if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit).
- return false;
- if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit).
+ // Handle Overflow (64-bit).
+ if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
+ ((V < 0) && (CmpImm < INT64_MIN - V)))
return false;
CmpImm += V;
- // Some forms of cmp-immediate allow u9 and s10. Assume the worst case
- // scenario, i.e. an 8-bit value.
- if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
+ // Most comparisons of register against an immediate value allow
+ // the immediate to be constant-extended. There are some exceptions
+ // though. Make sure the new combination will work.
+ if (CmpImmOp->isImm())
+ if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
+ return false;
+
+ // It is not valid to do this transformation on an unsigned comparison
+ // because it may underflow.
+ Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
+ if (!Cmp || Comparison::isUnsigned(Cmp))
return false;
// Make sure that the compare happens after the bump. Otherwise,
return false;
}
-
/// \brief Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
MachineLoop *L) {
--- /dev/null
+; RUN: llc -march=hexagon -mcpu=hexagonv5 -O3 < %s | FileCheck %s
+
+; Test that we do not generate a hardware loop due to a potential underflow.
+
+; CHECK-NOT: loop0
+
+%struct.3 = type { i8*, i8, i8, i32, i32, i16, i16, i16, i16, i16, i16, i16, %struct.2* }
+%struct.2 = type { i16, i16, i16, i16, %struct.1* }
+%struct.1 = type { %struct.1*, %struct.0*, i32, i32, i16, [2 x i16], [2 x i16], i16 }
+%struct.0 = type { %struct.0*, i32, i32, i32, i32, i32, i32, i16, i16, i16, i8, i8, i8, i8 }
+
+@pairArray = external global i32**
+@carray = external global %struct.3**
+
+define void @test() #0 {
+entry:
+ %0 = load i32**, i32*** @pairArray, align 4
+ %1 = load %struct.3**, %struct.3*** @carray, align 4
+ br i1 undef, label %for.end110, label %for.body
+
+for.body:
+ %row.0199 = phi i32 [ %inc109, %for.inc108 ], [ 1, %entry ]
+ %arrayidx = getelementptr inbounds i32*, i32** %0, i32 %row.0199
+ %2 = load i32*, i32** %arrayidx, align 4
+ br i1 undef, label %for.body48, label %for.inc108
+
+for.cond45:
+ %cmp46 = icmp sgt i32 %dec58, 0
+ br i1 %cmp46, label %for.body48, label %for.inc108
+
+for.body48:
+ %i.1190 = phi i32 [ %dec58, %for.cond45 ], [ 0, %for.body ]
+ %arrayidx50 = getelementptr inbounds i32, i32* %2, i32 %i.1190
+ %3 = load i32, i32* %arrayidx50, align 4
+ %cmp53 = icmp slt i32 %3, 0
+ %dec58 = add nsw i32 %i.1190, -1
+ br i1 %cmp53, label %for.end59, label %for.cond45
+
+for.end59:
+ %cmp60 = icmp slt i32 %i.1190, 0
+ br i1 %cmp60, label %if.then65, label %for.inc108
+
+if.then65:
+ br label %for.body80
+
+for.body80:
+ %j.1196.in = phi i32 [ %j.1196, %for.body80 ], [ %i.1190, %if.then65 ]
+ %j.1196 = add nsw i32 %j.1196.in, 1
+ %arrayidx81 = getelementptr inbounds i32, i32* %2, i32 %j.1196
+ %4 = load i32, i32* %arrayidx81, align 4
+ %arrayidx82 = getelementptr inbounds %struct.3*, %struct.3** %1, i32 %4
+ %5 = load %struct.3*, %struct.3** %arrayidx82, align 4
+ %cxcenter83 = getelementptr inbounds %struct.3, %struct.3* %5, i32 0, i32 3
+ store i32 0, i32* %cxcenter83, align 4
+ %6 = load i32, i32* %arrayidx81, align 4
+ %arrayidx87 = getelementptr inbounds i32, i32* %2, i32 %j.1196.in
+ store i32 %6, i32* %arrayidx87, align 4
+ %exitcond = icmp eq i32 %j.1196, 0
+ br i1 %exitcond, label %for.inc108, label %for.body80
+
+for.inc108:
+ %inc109 = add nsw i32 %row.0199, 1
+ br i1 undef, label %for.body, label %for.end110
+
+for.end110:
+ ret void
+}