--- /dev/null
+//===-- llvm/Analysis/DemandedBits.h - Determine demanded bits --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a demanded bits analysis. A demanded bit is one that
+// contributes to a result; bits that are not demanded can be either zero or
+// one without affecting control or data flow. For example in this sequence:
+//
+// %1 = add i32 %x, %y
+// %2 = trunc i32 %1 to i16
+//
+// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
+// trunc.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DEMANDED_BITS_H
+#define LLVM_ANALYSIS_DEMANDED_BITS_H
+
+#include "llvm/Pass.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+namespace llvm {
+
+class FunctionPass;
+class Function;
+class Instruction;
+class DominatorTree;
+class AssumptionCache;
+
+struct DemandedBits : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ DemandedBits();
+
+ bool runOnFunction(Function& F) override;
+ void getAnalysisUsage(AnalysisUsage& AU) const override;
+
+ /// Return the bits demanded from instruction I.
+ APInt getDemandedBits(Instruction *I);
+
+ /// Return true if, during analysis, I could not be reached.
+ bool isInstructionDead(Instruction *I);
+
+private:
+ void determineLiveOperandBits(const Instruction *UserI,
+ const Instruction *I, unsigned OperandNo,
+ const APInt &AOut, APInt &AB,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2);
+
+ AssumptionCache *AC;
+ DominatorTree *DT;
+
+ // The set of visited instructions (non-integer-typed only).
+ SmallPtrSet<Instruction*, 128> Visited;
+ DenseMap<Instruction *, APInt> AliveBits;
+};
+
+/// Create a demanded bits analysis pass.
+FunctionPass *createDemandedBitsPass();
+
+} // End llvm namespace
+
+#endif
void initializeFloat2IntPass(PassRegistry&);
void initializeLoopDistributePass(PassRegistry&);
void initializeSjLjEHPreparePass(PassRegistry&);
+void initializeDemandedBitsPass(PassRegistry&);
}
#endif
initializeCFLAliasAnalysisPass(Registry);
initializeDependenceAnalysisPass(Registry);
initializeDelinearizationPass(Registry);
+ initializeDemandedBitsPass(Registry);
initializeDivergenceAnalysisPass(Registry);
initializeDominanceFrontierPass(Registry);
initializeDomViewerPass(Registry);
CodeMetrics.cpp
ConstantFolding.cpp
Delinearization.cpp
+ DemandedBits.cpp
DependenceAnalysis.cpp
DivergenceAnalysis.cpp
DomPrinter.cpp
--- /dev/null
+//===---- DemandedBits.cpp - Determine demanded bits -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a demanded bits analysis. A demanded bit is one that
+// contributes to a result; bits that are not demanded can be either zero or
+// one without affecting control or data flow. For example in this sequence:
+//
+// %1 = add i32 %x, %y
+// %2 = trunc i32 %1 to i16
+//
+// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
+// trunc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "demanded-bits"
+
+char DemandedBits::ID = 0;
+INITIALIZE_PASS_BEGIN(DemandedBits, "demanded-bits", "Demanded bits analysis",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(DemandedBits, "demanded-bits", "Demanded bits analysis",
+ false, false)
+
+DemandedBits::DemandedBits() : FunctionPass(ID) {
+ initializeDemandedBitsPass(*PassRegistry::getPassRegistry());
+}
+
+
+void DemandedBits::getAnalysisUsage(AnalysisUsage& AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.setPreservesAll();
+}
+
+static bool isAlwaysLive(Instruction *I) {
+ return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
+ I->isEHPad() || I->mayHaveSideEffects();
+}
+
+void
+DemandedBits::determineLiveOperandBits(const Instruction *UserI,
+ const Instruction *I, unsigned OperandNo,
+ const APInt &AOut, APInt &AB,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2) {
+ unsigned BitWidth = AB.getBitWidth();
+
+ // We're called once per operand, but for some instructions, we need to
+ // compute known bits of both operands in order to determine the live bits of
+ // either (when both operands are instructions themselves). We don't,
+ // however, want to do this twice, so we cache the result in APInts that live
+ // in the caller. For the two-relevant-operands case, both operand values are
+ // provided here.
+ auto ComputeKnownBits =
+ [&](unsigned BitWidth, const Value *V1, const Value *V2) {
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ KnownZero = APInt(BitWidth, 0);
+ KnownOne = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
+ AC, UserI, DT);
+
+ if (V2) {
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
+ 0, AC, UserI, DT);
+ }
+ };
+
+ switch (UserI->getOpcode()) {
+ default: break;
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap:
+ // The alive bits of the input are the swapped alive bits of
+ // the output.
+ AB = AOut.byteSwap();
+ break;
+ case Intrinsic::ctlz:
+ if (OperandNo == 0) {
+ // We need some output bits, so we need all bits of the
+ // input to the left of, and including, the leftmost bit
+ // known to be one.
+ ComputeKnownBits(BitWidth, I, nullptr);
+ AB = APInt::getHighBitsSet(BitWidth,
+ std::min(BitWidth, KnownOne.countLeadingZeros()+1));
+ }
+ break;
+ case Intrinsic::cttz:
+ if (OperandNo == 0) {
+ // We need some output bits, so we need all bits of the
+ // input to the right of, and including, the rightmost bit
+ // known to be one.
+ ComputeKnownBits(BitWidth, I, nullptr);
+ AB = APInt::getLowBitsSet(BitWidth,
+ std::min(BitWidth, KnownOne.countTrailingZeros()+1));
+ }
+ break;
+ }
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ // Find the highest live output bit. We don't need any more input
+ // bits than that (adds, and thus subtracts, ripple only to the
+ // left).
+ AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
+ break;
+ case Instruction::Shl:
+ if (OperandNo == 0)
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+ uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+ AB = AOut.lshr(ShiftAmt);
+
+ // If the shift is nuw/nsw, then the high bits are not dead
+ // (because we've promised that they *must* be zero).
+ const ShlOperator *S = cast<ShlOperator>(UserI);
+ if (S->hasNoSignedWrap())
+ AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
+ else if (S->hasNoUnsignedWrap())
+ AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ }
+ break;
+ case Instruction::LShr:
+ if (OperandNo == 0)
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+ uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+ AB = AOut.shl(ShiftAmt);
+
+ // If the shift is exact, then the low bits are not dead
+ // (they must be zero).
+ if (cast<LShrOperator>(UserI)->isExact())
+ AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ }
+ break;
+ case Instruction::AShr:
+ if (OperandNo == 0)
+ if (ConstantInt *CI =
+ dyn_cast<ConstantInt>(UserI->getOperand(1))) {
+ uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
+ AB = AOut.shl(ShiftAmt);
+ // Because the high input bit is replicated into the
+ // high-order bits of the result, if we need any of those
+ // bits, then we must keep the highest input bit.
+ if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
+ .getBoolValue())
+ AB.setBit(BitWidth-1);
+
+ // If the shift is exact, then the low bits are not dead
+ // (they must be zero).
+ if (cast<AShrOperator>(UserI)->isExact())
+ AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ }
+ break;
+ case Instruction::And:
+ AB = AOut;
+
+ // For bits that are known zero, the corresponding bits in the
+ // other operand are dead (unless they're both zero, in which
+ // case they can't both be dead, so just mark the LHS bits as
+ // dead).
+ if (OperandNo == 0) {
+ ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
+ AB &= ~KnownZero2;
+ } else {
+ if (!isa<Instruction>(UserI->getOperand(0)))
+ ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
+ AB &= ~(KnownZero & ~KnownZero2);
+ }
+ break;
+ case Instruction::Or:
+ AB = AOut;
+
+ // For bits that are known one, the corresponding bits in the
+ // other operand are dead (unless they're both one, in which
+ // case they can't both be dead, so just mark the LHS bits as
+ // dead).
+ if (OperandNo == 0) {
+ ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
+ AB &= ~KnownOne2;
+ } else {
+ if (!isa<Instruction>(UserI->getOperand(0)))
+ ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
+ AB &= ~(KnownOne & ~KnownOne2);
+ }
+ break;
+ case Instruction::Xor:
+ case Instruction::PHI:
+ AB = AOut;
+ break;
+ case Instruction::Trunc:
+ AB = AOut.zext(BitWidth);
+ break;
+ case Instruction::ZExt:
+ AB = AOut.trunc(BitWidth);
+ break;
+ case Instruction::SExt:
+ AB = AOut.trunc(BitWidth);
+ // Because the high input bit is replicated into the
+ // high-order bits of the result, if we need any of those
+ // bits, then we must keep the highest input bit.
+ if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
+ AOut.getBitWidth() - BitWidth))
+ .getBoolValue())
+ AB.setBit(BitWidth-1);
+ break;
+ case Instruction::Select:
+ if (OperandNo != 0)
+ AB = AOut;
+ break;
+ }
+}
+
+bool DemandedBits::runOnFunction(Function& F) {
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ Visited.clear();
+ AliveBits.clear();
+
+ SmallVector<Instruction*, 128> Worklist;
+
+ // Collect the set of "root" instructions that are known live.
+ for (Instruction &I : instructions(F)) {
+ if (!isAlwaysLive(&I))
+ continue;
+
+ DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
+ // For integer-valued instructions, set up an initial empty set of alive
+ // bits and add the instruction to the work list. For other instructions
+ // add their operands to the work list (for integer values operands, mark
+ // all bits as live).
+ if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+ if (!AliveBits.count(&I)) {
+ AliveBits[&I] = APInt(IT->getBitWidth(), 0);
+ Worklist.push_back(&I);
+ }
+
+ continue;
+ }
+
+ // Non-integer-typed instructions...
+ for (Use &OI : I.operands()) {
+ if (Instruction *J = dyn_cast<Instruction>(OI)) {
+ if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
+ AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
+ Worklist.push_back(J);
+ }
+ }
+ // To save memory, we don't add I to the Visited set here. Instead, we
+ // check isAlwaysLive on every instruction when searching for dead
+ // instructions later (we need to check isAlwaysLive for the
+ // integer-typed instructions anyway).
+ }
+
+ // Propagate liveness backwards to operands.
+ while (!Worklist.empty()) {
+ Instruction *UserI = Worklist.pop_back_val();
+
+ DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
+ APInt AOut;
+ if (UserI->getType()->isIntegerTy()) {
+ AOut = AliveBits[UserI];
+ DEBUG(dbgs() << " Alive Out: " << AOut);
+ }
+ DEBUG(dbgs() << "\n");
+
+ if (!UserI->getType()->isIntegerTy())
+ Visited.insert(UserI);
+
+ APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
+ // Compute the set of alive bits for each operand. These are anded into the
+ // existing set, if any, and if that changes the set of alive bits, the
+ // operand is added to the work-list.
+ for (Use &OI : UserI->operands()) {
+ if (Instruction *I = dyn_cast<Instruction>(OI)) {
+ if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
+ unsigned BitWidth = IT->getBitWidth();
+ APInt AB = APInt::getAllOnesValue(BitWidth);
+ if (UserI->getType()->isIntegerTy() && !AOut &&
+ !isAlwaysLive(UserI)) {
+ AB = APInt(BitWidth, 0);
+ } else {
+ // If all bits of the output are dead, then all bits of the input
+ // Bits of each operand that are used to compute alive bits of the
+ // output are alive, all others are dead.
+ determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
+ KnownZero, KnownOne,
+ KnownZero2, KnownOne2);
+ }
+
+ // If we've added to the set of alive bits (or the operand has not
+ // been previously visited), then re-queue the operand to be visited
+ // again.
+ APInt ABPrev(BitWidth, 0);
+ auto ABI = AliveBits.find(I);
+ if (ABI != AliveBits.end())
+ ABPrev = ABI->second;
+
+ APInt ABNew = AB | ABPrev;
+ if (ABNew != ABPrev || ABI == AliveBits.end()) {
+ AliveBits[I] = std::move(ABNew);
+ Worklist.push_back(I);
+ }
+ } else if (!Visited.count(I)) {
+ Worklist.push_back(I);
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+APInt DemandedBits::getDemandedBits(Instruction *I) {
+ const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
+ if (AliveBits.count(I))
+ return AliveBits[I];
+ return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
+}
+
+bool DemandedBits::isInstructionDead(Instruction *I) {
+ return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
+ !isAlwaysLive(I);
+}
+
+FunctionPass *llvm::createDemandedBitsPass() {
+ return new DemandedBits();
+}
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/BasicBlock.h"
+#include "llvm/Analysis/DemandedBits.h"
#include "llvm/IR/CFG.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-
using namespace llvm;
#define DEBUG_TYPE "bdce"
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<DemandedBits>();
}
-
- void determineLiveOperandBits(const Instruction *UserI,
- const Instruction *I, unsigned OperandNo,
- const APInt &AOut, APInt &AB,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2);
-
- AssumptionCache *AC;
- DominatorTree *DT;
};
}
char BDCE::ID = 0;
INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DemandedBits)
INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination",
false, false)
-static bool isAlwaysLive(Instruction *I) {
- return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
- I->mayHaveSideEffects();
-}
-
-void BDCE::determineLiveOperandBits(const Instruction *UserI,
- const Instruction *I, unsigned OperandNo,
- const APInt &AOut, APInt &AB,
- APInt &KnownZero, APInt &KnownOne,
- APInt &KnownZero2, APInt &KnownOne2) {
- unsigned BitWidth = AB.getBitWidth();
-
- // We're called once per operand, but for some instructions, we need to
- // compute known bits of both operands in order to determine the live bits of
- // either (when both operands are instructions themselves). We don't,
- // however, want to do this twice, so we cache the result in APInts that live
- // in the caller. For the two-relevant-operands case, both operand values are
- // provided here.
- auto ComputeKnownBits =
- [&](unsigned BitWidth, const Value *V1, const Value *V2) {
- const DataLayout &DL = I->getModule()->getDataLayout();
- KnownZero = APInt(BitWidth, 0);
- KnownOne = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
- AC, UserI, DT);
-
- if (V2) {
- KnownZero2 = APInt(BitWidth, 0);
- KnownOne2 = APInt(BitWidth, 0);
- computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
- 0, AC, UserI, DT);
- }
- };
-
- switch (UserI->getOpcode()) {
- default: break;
- case Instruction::Call:
- case Instruction::Invoke:
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::bswap:
- // The alive bits of the input are the swapped alive bits of
- // the output.
- AB = AOut.byteSwap();
- break;
- case Intrinsic::ctlz:
- if (OperandNo == 0) {
- // We need some output bits, so we need all bits of the
- // input to the left of, and including, the leftmost bit
- // known to be one.
- ComputeKnownBits(BitWidth, I, nullptr);
- AB = APInt::getHighBitsSet(BitWidth,
- std::min(BitWidth, KnownOne.countLeadingZeros()+1));
- }
- break;
- case Intrinsic::cttz:
- if (OperandNo == 0) {
- // We need some output bits, so we need all bits of the
- // input to the right of, and including, the rightmost bit
- // known to be one.
- ComputeKnownBits(BitWidth, I, nullptr);
- AB = APInt::getLowBitsSet(BitWidth,
- std::min(BitWidth, KnownOne.countTrailingZeros()+1));
- }
- break;
- }
- break;
- case Instruction::Add:
- case Instruction::Sub:
- // Find the highest live output bit. We don't need any more input
- // bits than that (adds, and thus subtracts, ripple only to the
- // left).
- AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
- break;
- case Instruction::Shl:
- if (OperandNo == 0)
- if (ConstantInt *CI =
- dyn_cast<ConstantInt>(UserI->getOperand(1))) {
- uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
- AB = AOut.lshr(ShiftAmt);
-
- // If the shift is nuw/nsw, then the high bits are not dead
- // (because we've promised that they *must* be zero).
- const ShlOperator *S = cast<ShlOperator>(UserI);
- if (S->hasNoSignedWrap())
- AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
- else if (S->hasNoUnsignedWrap())
- AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::LShr:
- if (OperandNo == 0)
- if (ConstantInt *CI =
- dyn_cast<ConstantInt>(UserI->getOperand(1))) {
- uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
- AB = AOut.shl(ShiftAmt);
-
- // If the shift is exact, then the low bits are not dead
- // (they must be zero).
- if (cast<LShrOperator>(UserI)->isExact())
- AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::AShr:
- if (OperandNo == 0)
- if (ConstantInt *CI =
- dyn_cast<ConstantInt>(UserI->getOperand(1))) {
- uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
- AB = AOut.shl(ShiftAmt);
- // Because the high input bit is replicated into the
- // high-order bits of the result, if we need any of those
- // bits, then we must keep the highest input bit.
- if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
- .getBoolValue())
- AB.setBit(BitWidth-1);
-
- // If the shift is exact, then the low bits are not dead
- // (they must be zero).
- if (cast<AShrOperator>(UserI)->isExact())
- AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
- }
- break;
- case Instruction::And:
- AB = AOut;
-
- // For bits that are known zero, the corresponding bits in the
- // other operand are dead (unless they're both zero, in which
- // case they can't both be dead, so just mark the LHS bits as
- // dead).
- if (OperandNo == 0) {
- ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
- AB &= ~KnownZero2;
- } else {
- if (!isa<Instruction>(UserI->getOperand(0)))
- ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
- AB &= ~(KnownZero & ~KnownZero2);
- }
- break;
- case Instruction::Or:
- AB = AOut;
-
- // For bits that are known one, the corresponding bits in the
- // other operand are dead (unless they're both one, in which
- // case they can't both be dead, so just mark the LHS bits as
- // dead).
- if (OperandNo == 0) {
- ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
- AB &= ~KnownOne2;
- } else {
- if (!isa<Instruction>(UserI->getOperand(0)))
- ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
- AB &= ~(KnownOne & ~KnownOne2);
- }
- break;
- case Instruction::Xor:
- case Instruction::PHI:
- AB = AOut;
- break;
- case Instruction::Trunc:
- AB = AOut.zext(BitWidth);
- break;
- case Instruction::ZExt:
- AB = AOut.trunc(BitWidth);
- break;
- case Instruction::SExt:
- AB = AOut.trunc(BitWidth);
- // Because the high input bit is replicated into the
- // high-order bits of the result, if we need any of those
- // bits, then we must keep the highest input bit.
- if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
- AOut.getBitWidth() - BitWidth))
- .getBoolValue())
- AB.setBit(BitWidth-1);
- break;
- case Instruction::Select:
- if (OperandNo != 0)
- AB = AOut;
- break;
- }
-}
-
bool BDCE::runOnFunction(Function& F) {
if (skipOptnoneFunction(F))
return false;
+ DemandedBits &DB = getAnalysis<DemandedBits>();
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
- DenseMap<Instruction *, APInt> AliveBits;
SmallVector<Instruction*, 128> Worklist;
-
- // The set of visited instructions (non-integer-typed only).
- SmallPtrSet<Instruction*, 128> Visited;
-
- // Collect the set of "root" instructions that are known live.
- for (Instruction &I : instructions(F)) {
- if (!isAlwaysLive(&I))
- continue;
-
- DEBUG(dbgs() << "BDCE: Root: " << I << "\n");
- // For integer-valued instructions, set up an initial empty set of alive
- // bits and add the instruction to the work list. For other instructions
- // add their operands to the work list (for integer values operands, mark
- // all bits as live).
- if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
- if (!AliveBits.count(&I)) {
- AliveBits[&I] = APInt(IT->getBitWidth(), 0);
- Worklist.push_back(&I);
- }
-
- continue;
- }
-
- // Non-integer-typed instructions...
- for (Use &OI : I.operands()) {
- if (Instruction *J = dyn_cast<Instruction>(OI)) {
- if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
- AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
- Worklist.push_back(J);
- }
- }
- // To save memory, we don't add I to the Visited set here. Instead, we
- // check isAlwaysLive on every instruction when searching for dead
- // instructions later (we need to check isAlwaysLive for the
- // integer-typed instructions anyway).
- }
-
- // Propagate liveness backwards to operands.
- while (!Worklist.empty()) {
- Instruction *UserI = Worklist.pop_back_val();
-
- DEBUG(dbgs() << "BDCE: Visiting: " << *UserI);
- APInt AOut;
- if (UserI->getType()->isIntegerTy()) {
- AOut = AliveBits[UserI];
- DEBUG(dbgs() << " Alive Out: " << AOut);
- }
- DEBUG(dbgs() << "\n");
-
- if (!UserI->getType()->isIntegerTy())
- Visited.insert(UserI);
-
- APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
- // Compute the set of alive bits for each operand. These are anded into the
- // existing set, if any, and if that changes the set of alive bits, the
- // operand is added to the work-list.
- for (Use &OI : UserI->operands()) {
- if (Instruction *I = dyn_cast<Instruction>(OI)) {
- if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
- unsigned BitWidth = IT->getBitWidth();
- APInt AB = APInt::getAllOnesValue(BitWidth);
- if (UserI->getType()->isIntegerTy() && !AOut &&
- !isAlwaysLive(UserI)) {
- AB = APInt(BitWidth, 0);
- } else {
- // If all bits of the output are dead, then all bits of the input
- // Bits of each operand that are used to compute alive bits of the
- // output are alive, all others are dead.
- determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
- KnownZero, KnownOne,
- KnownZero2, KnownOne2);
- }
-
- // If we've added to the set of alive bits (or the operand has not
- // been previously visited), then re-queue the operand to be visited
- // again.
- APInt ABPrev(BitWidth, 0);
- auto ABI = AliveBits.find(I);
- if (ABI != AliveBits.end())
- ABPrev = ABI->second;
-
- APInt ABNew = AB | ABPrev;
- if (ABNew != ABPrev || ABI == AliveBits.end()) {
- AliveBits[I] = std::move(ABNew);
- Worklist.push_back(I);
- }
- } else if (!Visited.count(I)) {
- Worklist.push_back(I);
- }
- }
- }
- }
-
bool Changed = false;
- // The inverse of the live set is the dead set. These are those instructions
- // which have no side effects and do not influence the control flow or return
- // value of the function, and may therefore be deleted safely.
- // NOTE: We reuse the Worklist vector here for memory efficiency.
for (Instruction &I : instructions(F)) {
- // For live instructions that have all dead bits, first make them dead by
- // replacing all uses with something else. Then, if they don't need to
- // remain live (because they have side effects, etc.) we can remove them.
- if (I.getType()->isIntegerTy()) {
- auto ABI = AliveBits.find(&I);
- if (ABI != AliveBits.end()) {
- if (ABI->second.getBoolValue())
- continue;
-
- DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
- // FIXME: In theory we could substitute undef here instead of zero.
- // This should be reconsidered once we settle on the semantics of
- // undef, poison, etc.
- Value *Zero = ConstantInt::get(I.getType(), 0);
- ++NumSimplified;
- I.replaceAllUsesWith(Zero);
- Changed = true;
- }
- } else if (Visited.count(&I)) {
- continue;
+ if (I.getType()->isIntegerTy() &&
+ !DB.getDemandedBits(&I).getBoolValue()) {
+ // For live instructions that have all dead bits, first make them dead by
+ // replacing all uses with something else. Then, if they don't need to
+ // remain live (because they have side effects, etc.) we can remove them.
+ DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n");
+ // FIXME: In theory we could substitute undef here instead of zero.
+ // This should be reconsidered once we settle on the semantics of
+ // undef, poison, etc.
+ Value *Zero = ConstantInt::get(I.getType(), 0);
+ ++NumSimplified;
+ I.replaceAllUsesWith(Zero);
+ Changed = true;
}
-
- if (isAlwaysLive(&I))
+ if (!DB.isInstructionDead(&I))
continue;
Worklist.push_back(&I);