RecursionLimit);
}
-static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
- unsigned) {
+static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const Query &Q, unsigned) {
// undef / X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
if (match(Op1, m_Undef()))
return Op1;
+ // 0 / X -> 0
+ // Requires that NaNs are off (X could be zero) and signed zeroes are
+ // ignored (X could be positive or negative, so the output sign is unknown).
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
+ return Op0;
+
return nullptr;
}
-Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *DL,
+Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionCache *AC,
const Instruction *CxtI) {
- return ::SimplifyFDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
RecursionLimit);
}
-static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
- unsigned) {
+static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const Query &, unsigned) {
// undef % X -> undef (the undef could be a snan).
if (match(Op0, m_Undef()))
return Op0;
if (match(Op1, m_Undef()))
return Op1;
+ // 0 % X -> 0
+ // Requires that NaNs are off (X could be zero) and signed zeroes are
+ // ignored (X could be positive or negative, so the output sign is unknown).
+ if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
+ return Op0;
+
return nullptr;
}
-Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *DL,
+Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
+ const DataLayout *DL,
const TargetLibraryInfo *TLI,
const DominatorTree *DT, AssumptionCache *AC,
const Instruction *CxtI) {
- return ::SimplifyFRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
+ return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
RecursionLimit);
}
return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::FDiv:
+ return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
- case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
+ case Instruction::FRem:
+ return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
case Instruction::Shl:
return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Q, MaxRecurse);
AC, I);
break;
case Instruction::FDiv:
- Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::SRem:
Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
AC, I);
break;
case Instruction::FRem:
- Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
- AC, I);
+ Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
+ I->getFastMathFlags(), DL, TLI, DT, AC, I);
break;
case Instruction::Shl:
Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),